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Rayleigh-Taylor instability in elastic-plastic solid slabs bounded by a rigid wall
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The linear evolution of the incompressible Rayleigh-Taylor instability for the interface between an elastic-
plastic slab medium and a lighter semi-infinite ideal fluid beneath the slab is developed for the case in which slab
is attached to a rigid wall at the top surface. The theory yields the maps for the stability in the space determined
by the initial perturbation amplitude and wavelength, as well as for the transition boundary from the elastic to
the plastic regimes for arbitrary thicknesses of the slab and density contrasts between the media. In particular,
an approximate but very accurate scaling law is found for the minimum initial perturbation amplitude required
for instability and for the corresponding perturbation wavelength at which it occurs. These results allows for an
interpretation of the recent experiments by Maimouni et al. [Phys. Rev. Lett. 116, 154502 (2016)].
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) has been extensively
studied when the involved media are fluids, and the underlying
physical mechanism is rather well understood in many differ-
ent scenarios [1–7]. However, RTI taking place in solid media
is much less understood although it has implications in many
different fields such as geophysics [8], astrophysics [9–12],
planetary science [13–22], and material science [23–26]. It
also plays a role in many problems of high energy density
(HED) [27–36]. In fact, RTI has important implications in
laboratory experiments in which matter is taken to extreme
states by means of the acceleration of shells and plates driven
by very high pressures.

At such extreme conditions a solid behaves as a deformable
medium, first as an elastic medium and then as a plastic one.
Of course, depending on the driving conditions it may later
become successively a fluid, an ideal gas, and a plasma. But in
the solid phase, the nonlinear character of the constitutive ma-
terial properties clearly distinguishes RTI in solid media from
its fluid counterparts, making its analysis and the construction
of a compelling theory much more involved.

With the focus on the instability of metal plates accelerated
by high explosives, Miles performed in 1966 the first theoret-
ical analysis of the problem of RTI in solids by considering a
simple physical model known as the one-degree-of-freedom
model [37]. Such a model would be adopted by other
researchers in the following years yielding different predic-
tions that, although of showing a qualitative agreement with
some of the features of the RTI in solids, they turned out
quantitatively inaccurate when compared with the numerical
simulation results and experiments. In particular, such models
failed to account for the transition from the elastic to the
plastic regime of the instability [32,33,38].

On the other hand, experiments on RTI in solids were per-
formed by Barnes et al. [34]. These and subsequent analytical,
experimental, and numerical simulation works showed that
the stability conditions of the linear RTI in elastic-plastic solid
materials is not determined only by the perturbation wave-
length as it occurs in fluids (for given gravity acceleration
and slab thickness), but also by the amplitude of the initial
perturbation [35,39,40].

A physical model based on the second law of Newton
that produced approximate but very accurate results, was de-
veloped to consider a semi-infinite perfectly elastic medium
[19,41], and it was also applied to a semi-infinite elastic-
plastic solid medium for the case of Atwood number AT = 1
(AT = (ρ2 − ρ1)(ρ2 + ρ1), where ρ2 and ρ1 are the densities
of the heavier and lighter media, respectively) [42,43]. In
the latter case, it was shown that the elastic and the plastic
regimes could be treated as successive phases, and thus, it
was established that a stability criterion pointed out that, in
general, the transition to the plastic regime is a necessary
but not a sufficient condition for instability. In later works,
the application of this approximate irrotational model was
extended for considering AT < 1, and interfaces with viscous
fluids and with regions filled by magnetic fields [44,45].

The exact linear theory for the RTI in accelerated elas-
tic solid slabs (with a free surface) of arbitrary thickness
was developed by Plohr and Sharp for the particular case of
AT = 1 [46], and it was recently extended to arbitrary Atwood
numbers [47]. The latter work was based on the normal modes
method and yields analytical expressions for the dispersion
relation from which the instability growth rate in slabs of arbi-
trary thickness is obtained. The work shows that the vorticity
generation cannot be neglected when relatively thin slabs are
considered. In addition, it also includes the results by Terrones
for semi-infinite media and arbitrary Atwood number [48].
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More recently, the linear RTI in a perfectly elastic
(Hookean) slabs of thickness h and shear modulus G attached
to a rigid wall and subject to a gravity g (equal to the Earth
gravity) has been experimentally and theoretically studied by
Mora et al. [49], including surface tension effects and for
AT = 1. They have found an expression for the dimensionless
slab thickness α = ρ2gh/G as a function of the dimensionless
cut-off wave number kch (for which the instability growth rate
is zero. k = 2π/λ where λ is the perturbation wavelength)
and, although they do not present an explicit form for the
dispersion relation, the instability growth rate is shown in a
graphical representation. In addition, they have pointed out
the existence of an instability threshold for α ≈ 6.223, below
which the system is stable for any perturbation wave number.
The same problem was somewhat later studied theoretically
in Ref. [50] for arbitrary Atwood numbers, but the general
expression for the dispersion relation was still missing.

Very recently, a different category of experiments using
soft matter has been reported, in which the material exhibits its
elastic-plastic properties under conditions of Earth gravity or
some few times the Earth gravity [51–53]. These experiments
are also necessarily performed in contact with a rigid wall, in
contrast to the free surface situation present in the HED exper-
iments. However, this set of experiments are complementary
of those performed in the framework of HED physics, since
the underlaying physics is analog. Therefore, they represent
an excellent work scenario that can contribute to shed light on
the basic physics of the RTI in solids, and can serve for testing
theories and numerical simulation calculations. In addition,
the elastic-plastic constitutive properties of these materials
can be well characterized and the parameters can be controlled
more easily, which allows for the achievements of a higher
experimental precision. Moreover, since extreme conditions
are not required, big and expensive facilities and set ups (high
explosives, high intensity lasers or ion beams) are not needed,
making them much more accessible to small laboratories with
relatively modest technical and economical resources. In sum-
mary, such experiments can aid to the construction of a wide
experimental database with potential benefits for the research
on RTI in solids under HED physics conditions.

Therefore, it is of great interest to extend the existing
theories for RTI in accelerated solids to the situation in which
the solid is in contact with a rigid wall. Such small scale
experiments may also provide a validation for the theoretical
approach currently used in the description of large scale HED
experiments.

In this work we extend and generalize previous results
with the aim of providing a theoretical framework for the
interpretation of some of the existing RTI experiments involv-
ing elastic-plastic media performed in the presence of a rigid
wall. For this purpose, we will determine the corresponding
stability region such as it is defined by the wavelength and the
initial amplitude of the perturbations.

II. LINEAR ANALYSIS OF THE INSTABILITY

We start with the consideration of an horizontal elastic-
plastic solid slab of density ρ2 and thickness h that occupies
the region −h � y � 0, is subject to a uniform gravity accel-
eration g = gey = −∇ϕ (ey is the unitary vector in the vertical

FIG. 1. Schematic of an elastic-plastic slab bounded by a rigid
wall on the top (y = −h), and by an unstable interface with a semi-
infinite ideal fluid on the bottom (y = 0).

direction and ϕ is the gravitational potential), and is in contact
with a rigid wall at y = −h, while an ideal fluid of density
ρ1 < ρ2 occupies the semi-infinite space y > 0 beneath the
slab (Fig. 1). The elastic-plastic constitutive properties of the
slab are characterized by the shear modulus G and the yield
strength Y , and the media are assumed incompressible and
immiscible [42,54]. The two-dimensional (2D) situation with
an initially flat interface, is schematically represented in Fig. 1
after a sinusoidal disturbance η(x, t ) has been applied.

The governing equations for the mass and momen-
tum conservation for incompressible continuous media read,
respectively,

∂vni

∂xi
= 0, (1)

ρn
dvni

dt
= −∂ pn

∂xi
+ ρngi + ∂σ

(n)
ik

∂xk
, (2)

where n = 1, 2, refer to the bottom and top media, respec-
tively, and index notation for Cartesian vectors and tensors
have been used, so that the spatial coordinates x, y, z are
denoted by i = 1, 2, 3, so that for i ≡ y is gi = g = −∂ϕ/∂y
(ϕ is the gravitational potential), and otherwise is gi = 0.
Besides, vni, ρn, and pn correspond to the ith component of
the velocity, to the density and to the pressure, respectively.
In addition, σ

(n)
ik is the deviatoric part of the stress tensor



(n)
ik = −pnδik + σ

(n)
ik of the medium n (δik is the Kronecker

δ). For the sake of convenience in the presentation, vector and
index notation will be interchanged when suitable. Moreover,
the material derivative of any magnitude M is

dM

dt
= ∂M

∂t
+ vni

∂M

∂xi
. (3)

As the first step, we linearize the conservation equations
in the usual manner such as it was done in Refs. [47,54].
For this, every magnitude M is written as M = M0 + δM
where M0 is the equilibrium value of M and δM � M0 is the
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corresponding perturbation. Thus, from Eqs. (1) and (2) we
get:

∂ (δvni )

∂xi
= 0, (4)

ρn
∂ (δvni )

∂t
= −∂ (δpn + ρnδϕn)

∂xi
+ ∂S(n)

ik

∂xk
, (5)

where incompressible perturbations (δρn = 0) have been as-
sumed, and δσ

(n)
ik ≡ S(n)

ik .
Hereafter, we follow a procedure analogous to the one

adopted in Ref. [54] for the RTI in accelerated solid slabs
(with a free surface). Thus, we take S(1)

ik = 0 for the ideal
medium (n = 1), and we use the nonlinear Prandtl-Reuss
model for the elastic-plastic slab in which the solid behaves
like a perfectly elastic Hookean (linear) solid for the smaller
strains and it behaves like a rigid-plastic solid when the stress
overcome the elastic limit Y [42,43]. Therefore, in the elastic
phase, we can write

∂S(2)
ik

∂t
= 2Gėik ; eik = 1

2

[
∂η2i

∂xk
+ ∂η2k

∂xi

]
, (6)

where the upper dot indicates time derivative and eik is the
strain tensor, and ηni are the components of the displace-
ment vector ηn (η̇n = δvn). For the plastic phase we write
[22,42,43]

S(2)
ik =

√
2

3

ėik

‖ėik‖Y. (7)

As it was already discussed in Ref. [54], the usual von Mises
criterion accounting for the onset of plastic flow not nec-
essarily describes the transition from the instability regime
controlled by the elasticity to the one controlled by the plastic-
ity. In fact, we must take into account the fact pointed out by
Drucker [39,40] that for the instability of the system, it is not
enough to marginally overcome the phase of contained plastic
flow given by the von Mises criterion, but it must achieve a
subsequent phase of unrestricted plastic flow. This is because
during the phase of contained plastic flow the elasticity still
plays a major role and it must be considered as a part of the
previous elastic phase [55]. This procedure, developed in the
analysis of soil plasticity is of particular significance for RTI
in which the onset of plastic flow starts on the interface, where
deformation is a maximum, and then, it progresses towards the
slab interior. Since in RTI we have to deal with the average
motion of a region affected by the instability, which extends
up to a distance of the order of d = min {h, k−1} from the
interface, RTI is not expected to be sensitive to the onset of
the plastic flow until it has affected the entire region with
thickness of the order of d [42].

As it was shown in Refs. [47,54], the determination of the
stability regions in terms of the initial amplitude and wave-
length of the perturbations, requires one to know the time
evolution of the perturbation amplitude along the successive
elastic and plastic phases, which at the same time depends
on the asymptotic growth rates given by the corresponding
dispersion relations in each regime.

A. Instability analysis in the elastic phase

1. Displacement field

To derive the differential equation for the evolution of the
perturbations on the interface (y = 0) we follow the procedure
already described in Refs. [47,54] that we briefly summarize
here, which consists in applying the Helmholtz decomposition
to the displacement field:

η2 = ∇φ2 + ∇ × (ψ2ez), (8)

where φ2 and ψ2 = ψ2ez are the Lamé scalar and vector
potentials functions, respectively. Introducing Eq. (8) into
Eqs. (4) and (5), we obtain the following system for the
potential functions:

∇2φn = 0, (9)

∇
(

∂2φn

∂t2
+ δpn

ρn
+ δϕn

)

+∇ ×
[(

∂2ψn

∂t2
− G

ρn
∇2(ψnez

)]
= 0, (10)

where, since the semi-infinite medium in the region y � 0 is
considered to be ideal, we have ψ1 = 0. As it is known, the
vector potential in the Helmholtz’s decomposition introduces
a degree of freedom that allows for splitting Eq. (10) into two
equations for the scalar and the vector potentials, respectively,
through the choice of an adequate gauge [56–58]. Then, by
adopting the Bernoulli gauge [56] the potentials φn and ψ2
can be chosen for satisfying the following equations:

ρn
∂2φn

∂t2
+ δpn − ρnδϕ = 0, (11)

ρ2
∂2ψ2

∂t2
= G∇2ψ2. (12)

Therefore, considering 2D perturbations and solving
Eqs. (9) and (12) in the usual manner by separation of
variables, we find that the solutions are, respectively,
of the form φ2i = Fφ (t ) exp(±ky) exp(±ikx), and
ψ2i = Fψ (t ) exp(±�y) exp(±ikx). Then, we write the general
expressions of the potential functions for the elastic medium
in the following convenient form [47,54]:

φ2 = a cosh ky + b cosh k(h + y)

sinh kh
sin kx, (13)

ψ2 = c sinh �y + d sinh �(h + y)

sinh �h
cos kx, (14)

where k = 2π/λ is the perturbation wave number,

� =
√

k2 + γ 2
eiρ2

G
, (15)

and a, b, c and d are time functions such that

a ∝ b ∝ c ∝ d ∝ F (t ) =
∑

i

Qie
γeit , (16)

where F (t ) ∝ Fφ (t ) ∝ Fψ (t ), Qi are constants, and γei are all
the possible solutions of the dispersion relation that will be
determined by the boundary conditions on the interface and
on the rigid wall. In addition, the potential φ1 associated to
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the displacement field in the region y � 0 turns out (ψ1 = 0)
to be

φ1 = a1e−ky sin kx, a1 ∝ F (t ). (17)

2. Boundary conditions and dispersion relation

Adequate boundary conditions on the interface (y = 0) and
on the rigid wall (y = −h) must be imposed to determine a, b,
c, d and a1, and to find the values of the growth rate γei.

From the continuity conditions of the tangential and nor-
mal stresses at y = 0 we get

S(2)
xy (0) = 0, (18)

−δp1(0) = −δp2(0) + S(2)
yy (0), (19)

where δpn (n = 1, 2) are given by Eq. (11). And from the
continuity of the normal velocity at y = 0, we have

δv1y(0) = δv2y(0) = η̇(x, t ), (20)

where

η(x, t ) = η2y(0) = ξ (t ) sin kx. (21)

Besides, the rigid wall boundary condition requires that the
velocity at y = −h be zero:

δv2x(−h) = δv2y(−h) = 0. (22)

The previous boundary conditions constitute a set of linear
equations from which we can obtain

ȧ1 = −(ḃ + ḋ ), (23)

ċ = −ȧ, ḋ = − 2k2

�2 + k2
ḃ, (24)

ȧ(k coth kh − � coth �h)

+ ḃ

[
k

sinh kh
− 2�k2

(�2 + k2) sinh �h

]
= 0, (25)

kḃ = �2 + k2

�2 − k2
ξ̇ . (26)

Moreover, from Eq. (19) we get

ρ2

k
ξ̈

(
coth kh − F

sinh kh

)

+ 2kGξ̈

γ 2
ei

(
coth kh − F

sinh kh

)
+ C0

+ 2kG(ξ − ξ0)
�2 + k2

�2 − k2

(
coth kh − F

sinh kh

+ �F

k sinh �h
− 2�k

�2 + k2
coth �h

)

= ρ2gξ − ρ1

k
(ξ̈ + kgξ ), (27)

where we have introduced the constant C0 to take into account
that the potential function in Eqs. (13) is defined to less than
an arbitrary function of time and, using Eq. (15), we have
rewritten Eq. (26):

b̈ = ξ̈

k
+ ξ̈

k

2k2G

ρ2γ
2
ei

. (28)

Moreover, F = −ȧ/ḃ is given by Eq. (25):

F = k

�2 + k2

(�2 + k2)csch kh − 2k�csch �h

k coth kh − � coth �h
. (29)

In addition, in performing the integration of Eq. (6), we have
considered that the solid slab is initially under stress free
conditions. Thus, it turns out

ξ̈ (ρ1 + ρ2 coth kh) + kSye(0) = (ρ2 − ρ1)kgξ, (30)

where

Sye(0) = 2kG

{
ξ̈ − ξ̈0

γ 2
ei

[
coth kh − (�2 + k2)F

2k2 sinh kh

]

+ (ξ − ξ0)
�2 + k2

�2 − k2

(
coth kh − F

sinh kh

+ �F

k sinh �h
− 2�k

�2 + k2
coth �h

)}
, (31)

where ξ̈0 = ξ̈ (0). In writing Eq. (31) we have further consid-
ered that the displacement field η(x, y, t ) must be irrotational
at t = 0 since vorticity is considered to be created by the
elasticity effects at t > 0 (ψ2(t = 0) = 0). Therefore, all the
terms proportional to the shear modulus G must vanish at
t = 0. Thus, the expression for Sye in Eq. (31) includes a
dynamical component given by the first term containing the
acceleration increment ξ̈ − ξ̈0, which will contribute to the
total loading leading to plastic flow.

In addition, the following initial conditions must be con-
sidered (at t = 0):

ξ (0) = ξ0, ξ̇ (0) = 0. (32)

To solve the differential equation given by Eq. (30), we
construct the general solution in the usual manner by pos-
tulating an exponential solution of the form ξ ∝ eγeit for the
homogeneous part of the equation, and then adding a particu-
lar solution of the complete equation. Thus, by introducing
such an exponential solution into the homogeneous part of
Eq. (30), the dispersion relation for the asymptotic growth rate
for the rigid wall case is obtained:

κ (2κ2 + σ 2)2 + 4κ3(κ2 + σ 2) − [4κ4 + (2κ2 + σ 2)2]

×
√

κ2 + σ 2 coth ακ coth α
√

κ2 + σ 2

+ 4κ2(2κ2 + σ 2)
√

κ2 + σ 2 csch ακ csch α
√

κ2 + σ 2

− σ 2

[
κ − 1 − AT

1 + AT
(κ + σ 2)

]
(κ coth ακ

−
√

κ2 + σ 2 coth α
√

κ2 + σ 2) = 0, (33)

where we have used the following definitions for the dimen-
sionless magnitudes:

κ = k

k0
; σ = γei√

k0g
; k0 = ρ2g

G
,

α = ρ2gh

G
; AT = ρ2 − ρ1

ρ2 + ρ1
, (34)

As in the dispersion relation for the instability of accel-
erated solid slabs, Eq.(33) is a transcendental equation for
σ 2 as a function of κ , with α and AT as parameters, and
σ 2 is always a real number [47,54]. Such an equation has a
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unique real and positive root when the slab is unstable (for
κcL � κ � κcH , where κcL and κcH are, respectively, the lower
and the higher dimensionless cut-off wave numbers for which
σ = 0). A graphical representation of σ 2 as a function of κ is
given by Mora et al. [49] for the particular case with AT = 1
and for different values of the parameter α, but with different
definitions of the dimensionless magnitudes.

As we will see later, for our present purposes we are
interested in the stable solutions of Eq. (33) corresponding
to the cases when −�2 ≡ σ 2 < 0, which occur for κ � κcL

and κ � κcH , or below the threshold 2AT α/(1 + AT ) � 6.223
for which no cut-off wave number exists. In particular, when
κ � κcH Eq. (33) yields an infinite number of roots resulting
from the divergence of the dispersion relation to infinity when
α
√

κ2 − �2 = imπ , where m is an integer number [46,54]. In
such a case we have

�2 = κ2 + m2π2

α2
. (35)

Therefore, there is a root in between successive asymptotes
for which �2 � κ2. In addition, there is another root for which
�2 < κ2 that constitutes the smallest value of �2. As a conse-
quence, in the stable ranges of κ , the perturbation amplitude at
the interface consists, in general, of a multimodal oscillation
containing an infinite number of frequencies corresponding to
these infinite roots of the dispersion relation [46,54,56].

The lowest dimensionless oscillation frequency � as a
function of the dimensionless perturbation wave number κ is
shown in Fig. 2 for the stable cases (�2 > 0), for two different
values of the Atwood number (AT = 1 and AT = 0.4) and for
different values of the parameter α. In the limit κ → ∞, we
can see from the numerical solutions of the dispersion relation
that it is � → rκ (r ≈ 0.9 to 0.96) almost independently of
the values of AT and α. In the opposite limit of κ → 0, the
lowest frequency turns out to be α�(κ = 0) = π/2 for any
value of AT . The latter can be easily obtained analytically by
noticing that, in the limit κ → 0, the third term in Eq. (33)
becomes the dominant one.

On the other hand, the unstable region between the lower
and the higher cut-off wave numbers, in which �2 < 0, in-
creases with the dimensionless slab thickness α and, in the
limit α → ∞, it is κcL → 0, thus retrieving the semi-infinite
case for elastic RTI [48]. Moreover, when the slab thickness
is below the threshold (2AT α/(1 + AT ) � 6.223), curves a)
and b) in Fig. 2, it is �2 > 0 for all the perturbation wave
numbers, so that the slab is elastically stable. Besides, we can
see that the existence of a lighter medium beneath the slab
(AT < 1) enhances the stability of the system such as it could
be expected.

These results are better understood by looking at the con-
ditions for marginal stability in the elastic regime already
studied by Mora et al. [49]. Such conditions correspond to
σ 2 = 0 in Eq. (33) and are easily determined after a first-order
Taylor development of the terms of the form coth �h and
csch �h in Eq. (33):

coth �h ≈ coth kh − (� − k)h

(sinh kh)2
,

csch �h ≈ csch kh − (� − k)h

(sinh kh)2
cosh kh. (36)

FIG. 2. Dimensionless oscillation frequency � for the stable
regimes as a function of the dimensionless perturbation wavenumber
κ , for AT = 1 (a), and for AT = 0.4 (b), and for different values of
the dimensionless slab thickness α.

Thus, after some algebra, we get

2AT

1 + AT
α = 2w(2w2 + cosh 2w + 1)

sinh 2w − 2w
, (37)

(w = kch) which is the straightforward generalization for ar-
bitrary Atwood number of the result presented in Refs. [49,50]
in absence of interfacial surface tension. The graphical repre-
sentation of the previous equation is shown in Fig. 3 where
it can be seen that for 2AT α/(1 + AT ) ≈ 6.223 there is a
threshold below which the interface becomes elastically stable
for any perturbation wave number. Above such a threshold
value, the interface is unstable for a finite range of κ values
(κcL � κ � κcH ).

The existence of two cut-off wave numbers when the elas-
tic slab is in contact with a rigid wall contrasts with the case
of accelerated elastic slabs (free surface), in which there is
only one cut-off wave number κc and, therefore, the slab is
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FIG. 3. Normalized dimensionless slab thickness 2AT α/(1 +
AT ) as a function of the cutoff wave number kch.

always unstable for 0 � κ � κc and any value of AT , provided
that the dimensionless thickness α is above a threshold value
(α > 2(1 − AT )/AT ) [54]. Moreover, it also differs from any
other case of RTI involving fluids in contact with a rigid wall
(either ideal or viscous). This indicates that the existence of
the lower cut-off wave number κcL must be a result of the
unique combination of the stabilization effects provided by
the elasticity and by the contact with the rigid wall. A similar
behavior was found in Refs. [10,11] for the case of an elastic
slab with a very high conductivity and in the presence of
a sufficiently strong horizontal magnetic field on the top of
the slab. In such case, the appearance of the lower cut-off
is a consequence of the reduction of the perturbed vertical
velocity by the magnetic field, and the no slip conditions
seems to be irrelevant for the existence of this lower cutoff.
A further discussion on the significance of these two cut-off
wave numbers can be found in Refs. [49–51]

B. Instability analysis in the plastic phase

In the same manner as in the case of accelerated solid
slabs [54], the analysis of the instability in the plastic regime
is performed by assuming classical plasticity. Therefore, the
displacement field in such a phase must be irrotational [59],
and the Lamé potentials are given by Eqs. (13) and (17), for
the solid and for the ideal medium, respectively (ψ2 = 0).
Besides, the boundary conditions given by Eqs. (18) to (21)
must be still satisfied.

As it was previously mentioned, although an intermediate
stage exists between the purely elastic phase and the late
phase of unrestricted flow (plastic collapse) [39,40], it can
be assimilated to the elastic regime and it can be considered
that the evolution of the RTI after the initial elastic phase is
followed by the late phase of plastic collapse [55]. Then, as it
was already shown for the case of accelerated solid slabs [54],
we can describe the plastic phase evolution of the instability

with the methods of the limit analysis discussed in the book
by Chen [55], such as it was proposed by Drucker, by taking
the average of Eq. (19) over half a wavelength and considering
the sinusoidal perturbation at the interface like a set of bumps
of height twice the perturbation amplitude [39,40]. Therefore
Eq. (19) turns out to be

ξ̈ (ρ1 + ρ2 coth kh) + kSyp(0) = (ρ2 − ρ1)gkξ, (38)

where Syp(0) ≈ 2Y and, following Drucker, we have consid-
ered that the unrestricted plastic flow occurs when the loading
force L at the bottom level of the interface (the valleys)
averaged over half a wavelength is L = (1 + π/2)Y (λ/2).
In addition, in averaging Eq. (19) we have considered that
(2/k)

∫ π

0 sin u du = (4/π )(λ/2), and that (1 + π/2)(π/4) ≈
2 [39,40,54,55]. This procedure is equivalent to consider-
ing a somewhat higher value of the yield strength Y in
Eq. (7).

Once again, the general solution of Eq. (38) can be written
as the solution of the homogeneous equation plus a particular
one, where the solutions for the homogeneous equations are
found by proposing an exponential form: ξp ∝ eγpi ; where now
γpi corresponds to the growth rate for the plastic phase and it
is determined by the solutions of the dispersion relation for
the ideal fluid slab case [60]:

σ 2
p = 2AT κ

1 − AT + (1 + AT ) coth ακ
, (39)

where σp = γpi/
√

k0g and the dimensionless magnitudes de-
fined in Eq. (34) have been used.

III. STABILITY BOUNDARIES

A. Average evolution of the perturbation amplitudes

For the system being stable, the necessary condition is
that it must be stable during the elastic phase [42,43,54].
Then, as shown in Fig. 3, the perturbation wave number
throughout such a phase must be κ � κcL or κ � κcH , or
2AT α/(1 + AT ) � 6.223 (−�2 ≡ σ 2 < 0).

Since in such a case Eq. (33) has an infinite number
of roots, the general solutions of the homogeneous parts of
Eq. (30) is given by the linear combination of the solutions
corresponding to each one of these roots, being extended to
infinity the summation in Eq. (16) and resulting the general
solution in a multimodal oscillation. However, it can be con-
sidered that in the stable regime, the perturbation amplitude
at the interface can be written as the sum of an average
oscillation determined by the lowest frequency plus infinite
superimposed oscillation modes of higher frequencies. There-
fore, we will assume that it is this average amplitude of the
perturbation corresponding to the minimum frequency, the
one that determines the evolution of the instability that de-
termines the stability boundaries [54].

Then, during the elastic phase in the stable regime, the
average amplitude at the interface is obtained by solving the
differential equation given by Eq. (27) in the usual manner
by proposing a sinusoidal solution for the homogeneous part
and adding to it a particular solution, and considering that the
oscillation takes place with average frequency. Then, with the
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initial conditions given by Eq. (32), we get

z − 1 = (z1e − 1)(1 − cos �τ ), (40)

where � corresponds to the lowest oscillation frequency given
by Eq. (33), and the following dimensionless magnitudes has
been defined:

z = ξ

ξ0
; τ = t

√
k0g,

� = iσ = ωe√
k0g

; z1e − 1 = ξ̈0

ξ0ω2
e

. (41)

Moreover, the initial acceleration ξ̈0 can be obtained by eval-
uating Eq. (30) at t = 0 (Sye(0, t = 0) = 0):

ξ̈0

ξ0ω2
e

= σ 2
p

�2
. (42)

On the other hand, the transition from the elastic to the
plastic regime will occur at the transition time tT , when the
average perturbation amplitude in the elastic phase (t � tT )
achieves the boundary of unrestricted plastic flow, which will
take place before the amplitude reaches an absolute maxi-
mum. In such a case, for t > tT the stability of the system
depends on the amplitude at tT and on the plastic flow
condition.

Once in the plastic phase (t � tT ), the evolution of the
perturbation amplitude is mainly ruled by the growth rate σp,
given by Eq. (39):

z = 1 + AT

2AT

1

ξ ∗ + K1eσpτ + K2e−σpτ , (43)

where the first term is a particular solution of Eq. (38) in its
dimensionless form, and the dimensionless initial amplitude
is defined as follows:

ξ ∗ = ρ2gξ0

2Y
. (44)

To obtain the constants K1 and K2 we impose to Eq. (40) (for
t � tT ) and Eq. (43) (for t � tT ) the matching conditions at
t = tT :

ξe(t = tT ) = ξp(t = tT ) = ξT , (45)

ξ̇e(t = tT ) = ξ̇p(t = tT ) = ξ̇T , (46)

Sye(0, t = tT ) = Syp(0, t = tT ), (47)

where subscripts e and p denote, respectively, the amplitude
ξ in the elastic and plastic regimes, ξT is the amplitude at
the transition time, Sye is given by Eq. (31), and Syp = 2Y .
Besides, from Eqs. (38) and (40) we can write:

ξ̈T − ξ̈0 = −ω2
e (ξT − ξ0). (48)

In addition, Eq. (47) can be written in dimensionless form as
follows:

(zT − 1)
(A1A2 − C1C2)

C1
= λ∗

ξ ∗ , (49)

where definitions given by Eqs. (41) and (44) have been used,
zT = z(t = tT ) and the following dimensionless magnitudes
have been introduced:

λ∗ = ρ2gλ

4πG
= 1

2κ
, (50)

A1 = κ csch ακ − 2κ2
√

κ2 − �2

2κ2 − �2
csch α

√
κ2 − �2, (51)

A2 = (2κ2 − �2)2

2κ2�2
(csch ακ

− 2κ
√

κ2 − �2

2κ2 − �2
csch α

√
κ2 − �2), (52)

C1 = κ coth ακ −
√

κ2 − �2 coth α
√

κ2 − �2, (53)

C2 = 2(κ2 − �2)

�2
(coth ακ

− κ√
κ2 − �2

coth α
√

κ2 − �2), (54)

Now, from Eqs. (40) and (49) the transition time tT turns
out to be

cos �τT = 1 − 1

(z1e − 1)

λ∗

ξ ∗

[
C1

(A1A2 − C1C2)

]
, (55)

where τT = tT /t0 is the dimensionless time for the transition
to the plastic regime.

Finally, constants K1 and K2 in Eq. (43) can be calculated
from the matching conditions in Eqs. (45) and (46):

1 + λ∗

ξ ∗
C1

(A1A2 − C1C2)
= 1 + AT

2AT

1

ξ ∗

+ K1eσpτT + K2e−σpτT , (56)

(z1 − 1)� sin �τT = σp(K1eσpτT − K2e−σpτT ). (57)

and by solving for K1 and K2:

2K2e−σpτT = 1 + λ∗

ξ ∗
C1

(A1A2 − C1C2)
− 1 + AT

2AT

1

ξ ∗

− (z1 − 1)
�

σp1
sin �τT , (58)

2K1eσpτT = 1 + λ∗

ξ ∗
C1

(A1A2 − C1C2)
− 1 + AT

2AT

1

ξ ∗

+ (z1 − 1)
�

σp1
sin �τT . (59)

B. Stability boundaries

The interface will be stable provided that the average am-
plitude ξ reaches an absolute maximum at a certain time
t = tm � tT Refs. [42,43,54] so, it must be ξ̇ (tm) = 0 and
ξ̈ (tm) � 0 if the slab is stable. Therefore, stability boundaries
will be determined by the following conditions for marginal
stability:

ż(τm) = 0; z̈(τm) = 0; (τm � τT ). (60)

These conditions can only be satisfied in the regime when the
system is stable in the purely elastic phase (κ � κcL or κ �
κcH , or 2AT α/(1 + AT ) � 6.223) [42,43,54]. Therefore, we
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apply the previous marginal stability conditions to the plastic
regime evolution described by Eq. (43) (with K1 and K2 given
by Eqs. (58) and (59), respectively). Since Eq. (60) will only
be satisfied when K2 = 0, the curve of marginal stability turns
out to be

1 + 1

ξ ∗

[
λ∗C1

(A1A2 − C1C2)
− 1 + AT

2AT

]
= σp

�
sin �τT , (61)

where by using Eqs. (41) and (42) we have written

(z1e − 1) = σ 2
p

�2
. (62)

In addition, from Eq. (55) it turns out that

sin �τT =
√

1 −
[

1 − λ∗

ξ ∗
�2

σ 2
p

C1

(A1A2 − C1C2)

]2

, (63)

where Eq. (50) has to be used to write the functions Ai =
Ai(λ∗) and Ci = Ci(λ∗) (i = 1, 2) given by Eqs. (51)–(54) in
terms of λ∗. It may be relevant to notice that the marginal
stability conditions in Eq. (60) also lead to K1 = 0 and it
also yields Eq. (64). However, it is worth remarking that these
values of K1 and K2 are taken only on the curve of marginal
stability and that, in general, they are not null.

Introducing Eq. (62) into Eq. (61) and reordering terms, the
following quadratic equation for ξ ∗ = ξ ∗(λ∗) can be obtained,
with α and AT as parameters, which completely determines
the stability boundaries in the plane (ξ ∗, λ∗):

ξ ∗2 + F1(λ∗)ξ ∗ + F2(λ∗) = 0, (64)

where

F1 = 1 + AT

2AT
, (65)

F2(λ∗) =
(

H − 1 + AT

2AT

)2

+
(

H�

σp

)2

, (66)

and

H = λ∗C1

A1A2 − C1C2
, (67)

where Eq. (39) gives σp, and � corresponds to the smallest
root of Eq. (33) for κ � κcL or κ � κcH , when 2AT α/(1 +
AT ) � 6.223, or for any value of κ when 2AT α/(1 + AT ) �
6.223.

C. Plastic flow boundaries

In order to obtain the boundary for the elastic-plastic
(EP) transition we require that the transition amplitude zT be
reached when in the elastic regime the oscillation amplitude
reaches its maximum value zmax = z1e. Thus, we have

z1e − 1 = 2ξ̈a0

ξ0ω2
e

= zT − 1. (68)

Therefore, from Eqs. (49) and (62) we obtain the dimen-
sionless amplitude ξ ∗

EP = ρ2gξEP/2Y , for which the transition
from the elastic to the plastic regime occurs:

ξ ∗
EP = 1

2

(
�

σp

)2
λ∗C1

(A1A2 − C1C2)
. (69)

FIG. 4. Boundaries for stability ξ ∗ (full lines) and for the elastic-
plastic transition ξ ∗

EP (dotted lines) for AT = 1 (a), and for AT = 0.4
(b), and for different values of the dimensionless slab thickness α.

IV. RESULTS OF THE THEORY AND DISCUSSION

The stability boundary ξ ∗(λ∗) such as given by Eqs. (64)–
(67), and the plastic flow boundary ξ ∗

EP(λ∗) given by Eq. (69),
have been represented in Fig. 4 for AT = 1 and AT = 0.4 and
for several values of the dimensionless slab thickness α.

In this figure we can see that the behavior of the system
is qualitatively the same for the different values of AT , and
that the effect of the presence of the light medium beneath
the slab is, as it could be expected, to enhance the range
of perturbation amplitudes ξ ∗ for which the slab is stable.
In particular, in the limits λ∗ → 0 and λ∗ → ∞, the stabil-
ity boundary curves ξ ∗(λ∗) converge to the maximum value
ξ ∗max = (1 + AT )/2AT , for any value of the dimensionless
slab thickness α. The short wavelength limit would corre-
spond to the Drucker criterion for an arbitrary Atwood number
[39,40].

In addition, curves c) of Fig. 4 correspond to the cases in
which α is above the threshold value α0 = 6.223[2AT /(1 +
AT )] shown in Fig. 3 [49,50], and the slab is unstable for
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the perturbation wavelengths range that correlates with the
wave numbers in between the two cutoffs for which the slab
is already unstable in the early elastic phase (see Figs. 2 and
3). Therefore, in such a region the system will be unstable
for any perturbation amplitude ξ ∗ > 0, provided that all the
possible perturbation wavelengths are present in the system.
Otherwise, for a given wavelength λ∗ the required amplitude
for instability must be above the corresponding curve ξ ∗(λ∗)
for a given value of α. In particular, in the limit α → ∞, the
lower cutoff κcL → 0 and the semi-infinite case is recovered
[42,43,54].

As α decreases and approaches the threshold value α0 the
distance between the two cut-off wavelengths reduces and
both coincides when α = α0. Then, for α < α0 the slab is sta-
ble in the elastic phase, and a perturbation amplitude ξ ∗ larger
than a minimum value ξ ∗

m > 0 is required to make unstable the
system [curves a) and b)]. This, as noticed above, is assuming
that all the perturbation wavelengths are present in the system.
In the limit α → 0, ξ ∗ → (1 + AT )/2AT , and the stability is
determined only by the initial perturbation amplitude.

On the other hand, similar tendencies are followed by the
EP transition curves ξ ∗

EP(λ∗), being always below the ξ ∗(λ∗)
curves, in concordance with previous results for accelerated
solid slabs showing that, in general, plastic flow is a necessary
but not a sufficient condition for instability [42,43,54]. We
can also see that for any value of AT , in the limits λ∗ → 0
and λ∗ → ∞, these curves converge to the maximum value
ξ ∗max

EP = (1 + AT )/4AT , independently of α, being always half
of the value ξ ∗max.

Besides, when α > α0 the EP transition boundaries ξ ∗
EP

converge to the instability boundaries ξ ∗ as λ∗ approaches
the cut-off values from both sides, indicating that close to
the cutoff the stable elastic region is practically nonexistent,
though it becomes progressively wider at both sides of the
cut-off wavelengths. When α < α0 the EP boundaries still
approach to the instability boundaries close to the minimum,
but they gradually separate from each other for the lowest
values of α. Such a behavior is expected because for α → 0,
the minimum value ξ ∗

EPm must become ξ ∗
EPm = ξ ∗

m/2. The inset
in Fig. 4(a) shows the region close to λ∗ ∼ 1 in linear scale for
more details.

A remarkable and not self-evident feature resulting from
Fig. 4 is the approximate but very accurate scalings of the
minimum value ξ ∗

m of the dimensionless initial perturbation
amplitude, and of the dimensionless perturbation wavelength
λ∗

m at which it occurs, with the dimensionless slab thickness
α. These parameters are relevant because in a real experiment,
the system would become unstable once the initial perturba-
tion amplitude overcomes this minimum ξ ∗

m value, provided
that the experiment contains a sufficiently wide range of per-
turbation wavelengths as for including λ∗

m.
These scalings cannot be inferred directly from the equa-

tions, but they are revealed by numerical calculations with
an accuracy better than 4 %, and show that the quantities
2AT ξ ∗

m/(1 + AT ) and 2AT λ∗
m/(1 + AT ) are universal functions

of 2AT α/(1 + AT ) independently of the Atwood number, such
as shown in Fig. 5.

Interestingly, such scalings allow for an interpretation of
the experimental results recently reported by Maimouni et al.
[52]. Indeed, the experiment deals with the situation in which

FIG. 5. Scaling laws for the normalized dimensionless minimum
initial perturbation amplitude 2AT ξ ∗

m/(1 + AT ) (a), and for the corre-
sponding perturbation wavelength 2AT λ∗

m/(1 + AT ) (b), in terms of
the normalized dimensionless slab thickness 2AT α/(1 + AT ).

the EP slab is the lighter medium placed at the bottom part in
the experimental tank, but obviously it is entirely equivalent
to the situation shown in Fig. 1. Therefore, it can be analyzed
with the present theory. Thus, according to Fig. 5(a), for
a given value of 2AT α/(1 + AT ) ≡ c1 there exists a unique
value of 2AT ξ ∗

m/(1 + AT ) ≡ c2. From the main body of Fig. 3
in Ref. [52] we have G ≈ 0.225(ρ2 − ρ1) (G is in Pa and
densities in kg/m3), and with the parameters of the experiment
(g = 9.8 m/s2 and h = 0.06 m) we get c1 ≈ 2.6 as an average
value for the whole set of experiments performed with differ-
ent values of G and �ρ = ρ2 − ρ1. According to Fig. 5(a),
this value corresponds to c2 ≈ 0.323. Therefore, the results
reported in the inset of Fig. 3 in Ref. [52] (for which it is
Y/�ρ ≈ 0.015) would correspond to an average minimum
initial amplitude of the perturbation ξ0 ≈ 1 mm. Certainly,
this would be an average value for all the experiments since,
for the nature of such experiments, the initial perturba-
tion amplitude was not a controlled parameter. That is, for
any individual experiment, a particular value of the initial
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amplitude ξ0 is determined by the experimental procedure,
which at the same time determines a particular value of the
slope value c2 and, in virtue of the scaling in Fig. 5, it also
determines the slope value c1. Therefore, the particular values
of the average slopes in Fig. 3 of Ref. [52] are a consequence
of the specific experimental procedure and they would result
in a different way if such a procedure would have introduced a
different average initial amplitude. Actually, for any particular
experiment, the different values of c1 and c2 are quite evident
from the Fig. 3 of Ref. [52].

As we have already mentioned, for the system being un-
stable for initial amplitudes just above the minimum value ξ ∗

m,
it is required that the perturbations wavelengths correspond-
ing to 2AT λ∗

m/(1 + AT ) be present in the experiments. From
Fig. 5(b) we find 2AT λ∗

m/(1 + AT ) ≈ 0.49 (for c1 ≈ 2.6),
which corresponds to a perturbation wavelength λm ≈ 14 cm.
Since the experiments of Ref. [52] should contain all the
perturbation wavelengths λ � 2L (where L is the length of the
experimental tank) the experimental results should not show
any difference by changing the tanks length provided that L �
7 cm, such as it is reported in Ref. [52]. In this regard, it may
be relevant to notice that validity of the linear theory requires
kξ � 1, and it will break for sufficiently small values of the
perturbation wavelength λ. However, the extent of the wave-
lengths range in which linear theory is valid will depend on
the particular conditions of the experiment. Namely, gravity
acceleration, density contrast, perturbation initial amplitude,
and thickness of the solid slab. For the particular case of the
experiment reported in Ref. [52], in which the wavelength
spectrum includes the minimum value λm ∼ 10 cm, and for
which we have estimated and initial perturbation amplitude
ξ0 ∼ 1 mm, it turns out ξ0/λ < 0.01 and, therefore, the condi-
tions for the validity of the linear theory are very well satisfied.

In our interpretation of the experimental results of
Ref. [52], we have taken into account the results of the
creep test presented in that work, which shows that the
elastic-plastic medium can be characterized by defined val-
ues of the shear modulus G and of the yield strength Y .
However, the authors also presented the results of a pen-
etration test which they considered to contrast with the
previous ones. Such a penetration test was assumed to mimic
the dynamics of the perturbation growth, and it was con-
sidered for providing an interpretation of the experimental
results.

In our opinion, this penetration test has no clear relation
with the dynamics of the perturbation growth and, in addition,
its results can be interpreted compatibly with those of the
creep test. In fact, as soon as the plate with a rounded edge
is introduced into the elastic-plastic material, it acts as a blade
that generates a high pressure on a small surface, which eas-
ily overcomes the material yield strength. Thus, plastic flow
is induced in the region close to the edge practically from
the very beginning of the penetration process. However, this
process differs from the one that governs the dynamics of RTI,
which is driven by the hydrostatic pressure arising as soon as
a small perturbation is produced on the interface. Moreover,
this pressure is proportional to the perturbation amplitude and
it grows during the instability evolution leading, eventually,
to local plastic flow when it overcomes the material yield
strength. But, as it was previously discussed, the RTI regime

controlled by plasticity does not occurs until the plastic flow
has affected an entire region of thickness d = min{h, k−1}
[19,20,42].

For concluding, it may be also relevant to mention that
we cannot know the effects of sliding barrier place between
the media in the experiment of Ref. [52], but we assume
that it is removed in such a manner that the only effect is
to create the initial spectrum of perturbation amplitudes and
wavelengths. This is a plausible assumption provided that
the time during which the generated shearing forces on the
interface act on times longer than the characteristic time of
growth of the instability. The good comparison of the present
theory with the experimental results seems to support such an
assumption.

V. CONCLUDING REMARKS

Following the methodological procedure developed in
Ref. [54] we have extended the previous results for the RTI
in accelerated elastic-plastic solid slabs, to the situation in
which the slab is attached to a rigid wall. Thus, we intend to
describe experiments with soft matter that can be performed
in relatively small scale labs, compared with the HED matter
experiments, but that share many common features and pro-
vide valuable physical insight that can be extrapolated to such
larger scale experiments.

The previous conclusion that, in general, plastic flow is
a necessary but not a sufficient condition for instability is
retrieved. Differently than for the case of systems with a free
surface (accelerated slabs), there exists a long wavelength
stability region in which the required initial perturbation
amplitude increases up a maximum ξ ∗max = (1 + AT )/2AT ,
which is the same as for the short wavelength limit. In
the intermediate region, the slab may be still stable but the
required initial perturbation amplitude ξ ∗ reduces up to a
minimum value ξ ∗

m which becomes smaller as the dimen-
sionless slab thickness α increases. And, for α > α0 an
unstable region for any value of ξ ∗ > 0 appears, that is
bounded by two cut-off wavelengths that correlate with the
cut-off wave numbers between which the system is elastically
unstable.

Such a minimum initial perturbation amplitude, as well as
the perturbation wavelength at which it occurs, follows the ap-
proximate but very accurate scaling laws represented in Fig. 5
that allows for an interpretation of the recent experiments
reported in Ref. [52]. This fact reinforces the confidence in
the theoretical approach also used for describing RTI under
HED physics conditions for which the complexity of the ex-
periments and the limited accuracy usually make testing of
theories much more difficult. We hope the present results may
encourage new soft matter experiments with more control on
the initial perturbation amplitude and wavelength, similar to
those reported in Ref. [53], but keeping constant the gravity
acceleration g.
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