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This paper reports on the mechanism of the hysteresis in the transition between regular and Mach shock
wave reflections. We disclose that, for a given inflow Mach number, a stable reflection configuration should
maintain the minimal dissipation. As the wedge angle varies, the set of the minimal dissipation points forms the
valley lines in the dissipation landscape, and these valley lines compose the hysteresis loop. The saddle-nodes,
intersections of the ridge line, and the valley lines are actually the transition points. Additionally, the predicted
reflection configurations agree well with the experimental and numerical results, validating this theory.
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I. INTRODUCTION

Hysteresis is a general property of systems with two or
more possible steady states. A canonical example is provided
by ferromagnetic systems [1], where the intensity variation
of the magnetic field can induce a magnetization hysteresis.
Classic hysteresis models [2,3], such as Preisach model [4]
for magnetic hysteresis, Bouc-Wen model [5–7] for structural
engineering, and dynamical hysteresis model [8] for periodi-
cally switched bistable systems, have captured main features
of hysteresis, mathematically. In the shock wave reflection
system, the hysteresis process also exists and has an important
impact on supersonic and hypersonic flight performance [9].
Consequently, shock wave reflection hysteresis (SRH) is of
both theoretical value and engineering applications signifi-
cance. Different from the classic hysteresis models, a geome-
try method is proposed to describe SRH process in this paper.

In 1878, conducting his experiments in a shock tube, Mach
[10] first found two types of shock wave reflection—regular
reflections (RR) and Mach reflections (MR), for a given com-
bination of incident shock wave Mach number Ms and wedge
angle θw. In wind tunnel experiments, for a given inflow Mach
number M0, these two shock reflection configurations can also
be observed with θw varying. As shown in Fig. 1(a), the pres-
ence of a Mach stem—one segment of strong concave shock
wave—is the main distinction between RRs (states 1 and 2)
and MRs (states 3 and 4); see also Figs. 3(a) and 3(b) for
details. Later on, von Neumann [11,12] proposed two critical
wedge angles, θN

w and θD
w , as shown in Figs. 1(b) and 1(c),

and clarified that only RRs exist when θw < θN
w (the overall

RR domain); only MRs exist when θw > θD
w (the overall MR

domain); both stable RRs and MRs are mathematically possi-
ble when θN

w � θw � θD
w (the dual-solution domain). Based on

the possibility two steady states existing in the dual-solution
domain, Hornung [13] hypothesized that SRHs could exist in
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RRs � MRs transitions. Subsequently, the existence of SRHs
was verified both experimentally [14–17] and numerically
[14,18–20]. Figure 1(a) shows flow configurations of hystere-
sis induced by θw variation for a given M0 = 4.5. As θw varies
continuously from 20◦ (state 1 in the overall RR domain) to
24◦ (state 2 in the dual-solution domain), the configuration
maintains a stable RR. However, if θw varies from 28◦ (state 3
in the overall MR domain) back to 24◦ (state 4 in the overall
MR domain), then it will maintain a stable MR. Note that
whether the reflection configuration at θw = 24◦ is a stable
RR (state 2) or a stable MR (state 4) depends on its evolution
history, and states 1 → 2 → 3 → 4 → 1 constitute a SRH
loop shown in Fig. 1(c).

Many theoretical studies on shock wave reflection have
been done since SRH was first put forward [13], including
investigations to determine the Mach stem height hm0 for sta-
ble MRs [21–27] and investigations on the stability of various
reflection configurations [23,28–30]. Among these investiga-
tions, Li and Ben-Dor [29] applied the principle of minimum
entropy production (MEP) to demonstrate that both RRs and
MRs are stable in the dual-solution domain. This important
basic work proved theoretically the possibility of SRH. MEP
as a posteriori axiom [29] postulated by Glansdorff and Pri-
gogine [31], has been found to predict the stability of a wide
range of phenomena. Recent research [32] found that viscous
dissipation, which is similar to entropy production but fulfills
the mathematical conditions more strictly, should be consid-
ered as a Lagrangian in systems dominated by shock waves.
In this paper we attempt to explain the mechanism behind this
complex phenomenon using the minimal viscous dissipation
(MVD) theorem.

The rest of this paper is organized as follows. In Sec. II, we
present detailed information to calculate the total dissipation
to apply MVD, with which the steady shock wave reflection
can be determined. Particularly, in Sec. II A, we provide the
proof of that a compressible flow should maintain MVD if
three conditions are satisfied. In Sec. II B, we demonstrate that
shock waves satisfy these three conditions and then should
maintain MVD. In Sec. II C, we introduce flow structures in
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FIG. 1. (a) Hysteresis configurations of shock wave reflections
for M0 = 4.5 with colors representing the local Mach numbers M ob-
tained by numerical computations, and simulation details are shown
in Appendix A; (b) characteristic (θ, p/p0 )-polars, where polars
I-N and I-D correspond to θN

w and θD
w , respectively, and polar I-R

corresponds to the θw in the dual-solution domain; (c) variations of
θD
w and θN

w with M0 and the hysteresis loop induced by θw variation
for M0 = 4.5.

a shock reflection configuration and we analyze the order of
magnitude of dissipation induced by different structures, in-
dicating that a stable reflection configuration should maintain
MVD. In Sec. II D, we compute the total dissipation of the
reflection configuration depending on the Mach stem height
and the wedge angle for a given inflow Mach number. In
Sec. III, we display the total dissipation landscape, with whose
geometric properties we explain the mechanism of shock re-
flection hysteresis. In addition, we also validate the present
theory with previous experimental and numerical results. Fi-
nally, in Sec. IV, we conclude with a summary and a few open
viewpoints. Some details of the derivation are relegated to the
Appendices.

II. METHODS

In this section, we first introduce the definition of MVD
and its scope of application in compressible flows. Then we
explain the reason why a stable shock reflection configuration
satisfies MVD. Finally we derive the relations of the total
dissipation with the Mach stem height and wedge angle for
a given inflow Mach number, with which we can obtain the
total dissipation landscape shown in the next section.

A. MVD for compressible flows

Helmholtz and Rayleigh [33–35] proved that, for an in-
compressible viscous fluid, if the acceleration a = u · ∇u can
be derived by a potential �, i.e., a = ∇� or ∇ × a = 0, it
should possess MVD, which is the well-known Helmholtz-

Rayleigh MVD theorem. Ho et al. [36,37] have tried to
generalized this theorem to steady compressible flows, which
satisfy

∇ · (ρu) = 0, (1)

ρu · ∇u = ρf − ∇p + ∇(η�) + ∇ · (2μD), (2)

ρu · ∇(
1
2 |u|2) = ρf · u + p� + ∇ · (T · u) − φ, (3)

where Eqs. (1)–(3) are the mass, momentum, and ki-
netic energy equations, respectively; ρ, u, f , p, η, and
μ are the density, velocity, body force, pressure, dilata-
tion viscosity, and shear viscosity, respectively. � = ∇ · u,
D = [∇u + (∇u)T ]/2 and T = (−p + η�)I + 2μD are the
velocity divergence, strain-rate tensor and stress tensor, re-
spectively. φ is the viscous dissipation per unit volume:

φ = η�2 + 2μD : D. (4)

Here, we provide the proof process of MVD and clarify its
applicable scope for compressible flows. The proof of MVD
is mathematically a variational problem. The total dissipation
� in a control volume V bounded by 	 is considered, where
V is nondeformable or the flow on 	 (if V is deformable) is
nondissipative. With the constraint provided by Eq. (1), the
variation of � can be written as

δ� = δ

∫
V

[φ + λ∇ · (ρu)]dV = 0, (5)

where λ is a Lagrangian multiplier and L = φ + λ∇ · (ρu)
is the Lagrangian. Because u and ρ are the two independent
variables of L, the Eular-Lagrangian equations are

δL
δu

= 0 ⇒ ∂L
∂u

− ∇ · ∂L
∂∇u

− ∇ ∂L
∂∇ · u

= 0, (6)

δL
δρ

= 0 ⇒ ∂L
∂ρ

− ∇ · ∂L
∂∇ρ

= 0. (7)

Substituting Eq. (4) into L and Eq. (6), we can obtain

λ∇ρ − ∇ · [2μ(∇u + ∇uT )] − ∇[2η(∇ · u) + λρ] = 0.

(8)
From Eq. (8), we can finally obtain

2[∇ · (2μD) + ∇(η�)] + ρ∇λ = 0. (9)

Substituting Eq. (4) into L and Eq. (7), we can obtain

λ∇ · u − ∇ · (λu) = 0. (10)

From Eq. (10), we can finally obtain

u · ∇λ = 0. (11)

If a flow satisfies (i) a = ∇�; (ii) f = −∇U , i.e., the
body force can be derived by a potential U ; (iii)∇p/ρ =
∇ ∫

d p/ρ or ∇p × ∇ρ = 0, i.e., the flow is barotropic, then
the viscous force can be derived by a potential  in Eq.
(2), i.e., [∇(ηϑ ) + ∇ · (2μD)]/ρ = ∇. Thus, with λ chosen
as λ = −(� + ∫

d p/ρ + U + ), Eqs. (9) and (11) can be
exactly rearranged to Eqs. (2) and (3), respectively. Therefore,
compressible flows satisfying (i), (ii), and (iii) must have
minimal dissipation [32].
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FIG. 2. A streamline across the shock wave.

B. MVD for shock waves

As shown in Fig. 2, a flow passing through an oblique
straight shock wave (the gray region) is illustrated with a
characteristic streamline, where ua and ub are the velocities
ahead of and behind the shock wave. Let n and τ be the
vertical and tangential directions relative to the shock front,
respectively, then we have

∂u/∂τ = 0 and ∂a/∂τ = 0. (12)

Denote the vertical and tangential components of the acceler-
ation a as an and aτ , respectively, then Eq. (12) gives

∂an/∂τ = ∂aτ /∂τ = 0. (13)

Because the tangential components of ua and ub relative to
the shock are equal, i.e., ua,τ = ub,τ , the tangential component
aτ of acceleration a must be zero, i.e., aτ = 0. Thus, we can
obtain

∂aτ /∂n = 0. (14)

Combine Eqs. (13) and (14) to obtain

|∇ × a| = ∂aτ /∂n − ∂an/∂τ = 0, (15)

which means condition (i) is satisfied. Because the body force
f is gravity and can be negligible, i.e., f � 0, condition (ii) can
be satisfied as well.

For the density ρ and the pressure p, there also be ∂ρ/∂τ =
0 and ∂ p/∂τ = 0. Let −→eτ and −→en be the unit vectors of direc-
tions τ and n, then ∇ρ and ∇p are given by

∇ρ = ∂ρ

∂τ

−→eτ + ∂ρ

∂n
−→en = ∂ρ

∂n
−→en ,

∇p = ∂ p

∂τ

−→eτ + ∂ p

∂n
−→en = ∂ p

∂n
−→en . (16)

Combining the two formulas in Eq. (16) can give

∇ρ × ∇p = ∂ρ

∂n
−→en × ∂ p

∂n
−→en = 0. (17)

With Eq. (17), condition (iii) is satisfied. The detailed proof
is shown as follows. Let x, y, and z be the spatial coordinates,
corresponding the unit vectors i, j, and k, respectively. Then

we have

∇ρ(x, y, z) × ∇p(x, y, z) = X i + Yj + Zk = 0, (18)

where

X =
(

∂ρ

∂y

∂ p

∂z
− ∂ρ

∂z

∂ p

∂y

)
=

∣∣∣∣∣
∂ρ

∂y
∂ρ

∂z
∂ p
∂y

∂ p
∂z

∣∣∣∣∣ = 0,

Y =
(

∂ρ

∂z

∂ p

∂x
− ∂ρ

∂x

∂ p

∂z

)
= −

∣∣∣∣ ∂ρ

∂x
∂ρ

∂z
∂ p
∂x

∂ p
∂z

∣∣∣∣ = 0,

Z =
(

∂ρ

∂x

∂ p

∂y
− ∂ρ

∂y

∂ p

∂x

)
=

∣∣∣∣∣
∂ρ

∂x
∂ρ

∂y
∂ p
∂x

∂ p
∂y

∣∣∣∣∣ = 0.

(19)

The flow is assumed nonuniform, i.e., there is some variation
of ρ at least one direction (x, y, and z directions are all possible
and equivalent). Here y direction is chosen, e.g., ∂ρ/∂y �= 0.
Based on the implicit function theorem, the Jacobian is zero
in Eq. (19), indicating that p can be written as an explicit
function of ρ and x, without independent variables y and z,
i.e.,

p = F [ρ(x, y, z), x] = F (ρ, x). (20)

Substituting Eq. (20) into Eq. (19) (z direction), we have

∂ρ

∂x

∂ p

∂y
− ∂ρ

∂y

∂ p

∂x

= ∂ρ

∂x

∂F (ρ, x)

∂ρ

∂ρ

∂y
− ∂ρ

∂y

[
∂F (ρ, x)

∂ρ

∂ρ

∂x
+ ∂F (ρ, x)

∂x

]

= 0. (21)

Simplifying Eq. (21), we have

∂ρ

∂y

∂F (ρ, x)

∂x
= 0. (22)

Because ∂ρ/∂y �= 0, there must be

∂F (ρ, x)

∂x
= 0. (23)

Equation (23) means that F (ρ, x) is independent of x, i.e.,

p = F (ρ, x) = F (ρ). (24)

As the “y direction” in this proof is not specify in advance,
once the density is not uniform, the condition ∂ρ/∂y �= 0 can
be fulfilled with proper selection of “y direction.” And if the
density is constant, p = F (ρ) is always true. Then the proof
is completed, i.e., barotropic flow p = F (ρ) can be confirmed
with ∇ρ × ∇p = 0.

Because conditions (i), (ii), and (iii) are all satisfied, a
steady flow across an oblique straight shock wave should
maintain MVD. Additionally, for a curved shock wave, if
its curvature radius is much larger than its thickness, then
every local segment of this curved shock can be regarded as a
straight one, and this curved shock also maintains MVD.

C. MVD for shock reflection configurations

1. Flow structures in shock reflection configurations

Figure 3(a) shows the characteristic flow structures of an
MR, including the shock waves, the expansion fan RBC, the
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FIG. 3. Schematic diagrams of (a) an MR and (b) an RR.

quasi-one-dimensional duct flow, and the shear layer T S. The
shock waves are composed of an incident shock wave AT , a
Mach stem T G with a height of hm, and a reflected shock wave
including a straight segment T B, a curved segment BC and
another straight segment CD. Five characteristic flow stream-
lines I–V are illustrated to show the flow features. Streamlines
I–V are parallel in region (0), where I–III pass through shock
AT and streamlines IV and V pass through T G. Behind shock
AT , streamline I first experiences the isentropic expansion
process and then enters into region (4), finally passing through
shock CD; streamline II passes through shock BC at point E ,
which is inside the expansion fan; streamline III first passes
through shock T B and then encounters the expansion fan. Be-
hind shock T G, streamline IV first deflects slightly toward the
reflecting surface JK at a subsonic speed, paralleling stream-
line III in region (2), and then gradually expands; streamline
V continuously parallels the reflecting surface JK . Figure 3(b)
shows the flow structures of an RR. Different from the MR,
shock T G, the shear layer T S, and streamlines IV and V
vanish and streamline III in region (2) parallels JK . A control
volume V is chosen to enclose the reflection configuration. It
is bounded by the upper wall ARD, the reflecting surface JK ,
the inflow surface AJ , and the outflow surface DK .

Figures 3(a) and 3(b) are in fact half-plane symmetrical
RR and MR configurations with two symmetrical wedges
analogous to those in experiments [9,15], respectively. In this
case, the reflecting surface JK is the virtual symmetrical line
rather than a nonslip solid wall, thus completely eliminating
the development of a boundary layer along it.

2. Dissipation of different flow structures

For two-dimensional flows, Eq. (4) can be written in detail
as

φ = η

[(
∂uτ

∂τ

)2

+
(

∂un

∂n

)2

+ 2

(
∂uτ

∂τ

∂un

∂n

)]

+ 2μ

[(
∂uτ

∂τ

)2

+
(

∂un

∂n

)2

+
(

∂uτ

∂n

)2

+
(

∂un

∂τ

)2]
,

(25)

where n and τ are the orthogonal coordinates, and un and uτ

are the velocity components in n and τ directions, respec-
tively. We will use Eq. (25) to analyze the magnitude order
of the dissipation induced by different flow structures.

For a shock wave with length Lω and characteristic
thickness εω, as shown in Fig. 4(a), we have ∂uτ /∂τ ≈ 0,
∂uτ /∂n ≈ 0 and ∂un/∂τ ≈ 0. Using Eq. (25), the dissipation
φω induced by this shock wave can be written as

φω = (η + 2μ)

(
∂un

∂n

)2

≈ (ηω + 2μω )

(
�uω,n

εω

)2

, (26)

where �uω,n = ua,n − ub,n is the characteristic velocity dif-
ference of this shock wave. ηω and μω are the characteristic
dilatation viscosity and shear viscosity, respectively, defined
as the values at the center line of this shock wave. Then the
total dissipation �ω can be approximate to

�ω ≈ Lωεω(ηω + 2μω )

(
�uω,n

εω

)2

= (ηω + 2μω )(�uω,n)2 Lω

εω

. (27)

For a shear layer with length Ls and characteristic thickness
εs, as shown in Fig. 4(b), we have ∂uτ /∂τ ≈ 0, ∂uτ /∂n ≈ 0
and ∂un/∂τ ≈ 0. Using Eq. (25), the dissipation φs induced
by this shear layer can be written as

φs = 2μ

(
∂uτ

∂n

)2

≈ 2μs

(
�uτ

εs

)2

. (28)

Where �us,τ = ua,τ − ub,τ is characteristic velocity differ-
ence of this shear layer, and μs is the characteristic shear
viscosity, defined as the value at the center line of this shear
layer. Then the total dissipation �s induced by this shear layer
can be approximate to

�s ≈ Lsεs(2μs)

(
�us,τ

εs

)2

= 2μs(�us,τ )2 Ls

εs
. (29)

For a quasi-one-dimensional duct flow with height Ld

and characteristic thickness εd , as shown in Fig. 4(c), we
have un ≈ 0, ∂uτ /∂τ ≈ 0, ∂uτ /∂n ≈ 0, and ∂un/∂τ ≈ 0.
Using Eq. (25), the dissipation φd induced by this quasi-one-
dimensional duct flow can be written as

φd = (η + 2μ)

(
∂uτ

∂τ

)2

≈ (ηd + 2μd )

(
�ud,τ

εd

)2

, (30)

where �ud,n = ua,n − ub,n is the characteristic velocity differ-
ence of this quasi-one-dimensional duct flow. ηd and μd are
the characteristic dilatation viscosity and shear viscosity of
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FIG. 4. Features of different flow structures. (a) A shock wave; (b) a shear layer; (c) a quasi-one-dimensional duct flow.

this duct flow, defined as the values at εd/2. Then the total
dissipation �d induced by this shear layer can be approximate
to

�d ≈ Ldεd (ηd + 2μd )

(
�ud,τ

εd

)2

= (ηd + 2μd )(�ud,τ )2 Ld

εd

. (31)

As a matter of fact, a quasi-one-dimensional duct flow can be
regarded as an isentropic process and nondissipative.

In addition, a flow passing through an expansion fan is an
isentropic process, so there is no viscosity dissipation in this
process, i.e., the total dissipation induced by an expansion fan
is zero.

Then we analyze the order of magnitude of dissipation
induced by different flow structures. In the scale of global flow
field, we have

Lω ∼ Ls ∼ Ld , �uω,n ∼ �us,τ ∼ �ud,τ

ηω + 2μω ∼ 2μs ∼ ηd + 2μd , εd 	 εs 	 εω. (32)

Substituting Eq. (32) into Eqs. (27), (29), and (31), we can
obtain

�s

�ω

∼ εω

εs

→ o(1),
�d

�ω

∼ εω

εd

→ o(1). (33)

Equation (33) shows that the dissipation induced by the shear
layer and the quasi-one-dimensional duct flow can be negligi-
ble relative to that induced by the shock waves. Besides, the
expansion fan and the quasi-one-dimensional flow are isen-
tropic and nondissipative. Consequently, the total dissipation
of a shock wave reflection system is mainly contributed by the
shock waves.

As demonstrated above, a steady shock wave configura-
tion should maintain MVD. Since viscous dissipation in V is
mainly contributed by shock waves, a stable reflection config-
uration, either an RR or an MR, should maintain the MVD.
Using the Mach stem height hm to represent a shock wave
reflection state, for a stable configuration with hm0, we have

∂�

∂hm

∣∣∣∣
hm0

= 0,
∂2�

∂h2
m

∣∣∣∣
hm0

> 0. (34)

D. The total dissipation of a shock reflection configuration

Here we compute the total dissipation � in a shock reflec-
tion configuration and provide its dependence on the Mach
stem height hm and wedge angle θw for a given Mach number

M0. Without loss of generality, � in V can be written as

� =
∑

i

�i =
∑

i

∫
φidσi, (35)

where φ and σ are the dissipation induced per unit length of
shock i and the length of this shock, respectively. These quan-
tities are closely related to the flow properties and geometric
relations. The flow properties on both sides of shock wave i
(i = AT, T G, T B, BC,CD) satisfy

Mb,i = FM (Ma,i, βi ), pb,i/pa,i = Fp(Ma,i, βi ),

ρb,i/ρa,i = Fρ (Ma,i, βi ), Ab,i/Aa,i = FA(Ma,i, βi ),

Fβ (Ma,i, βi, θi ) = 0, (36)

where functions FM , Fp, Fρ , FA, and Fβ are the classical
Rankine-Hugoniot relations [38–40] and shown in part 1 of
Appendix B. Subscripts “a” and “b” denote variables ahead of
and behind the shock wave i, respectively. A, θ, and β are the
acoustic speed, the flow deflection angle and the shock angle
(the angle between the incoming flow and the shock wave),
respectively. Flow properties ahead of point E on shock BC
inside the expansion fan satisfy

HP−M (Ma,E , Mb,AT , αa,E , θw ) = 0,

pa,E/pb,AT = Hp(Ma,E , Mb,AT ),

ρa,E/ρb,AT = Hρ (Ma,E , Mb,AT ),

Aa,E/Ab,AT = HA(Ma,E , Mb,AT ), (37)

where HP−M , Hp, Hρ , and HA are the Prandtl-Meyer
expansion fan relations [41,42] and shown in part 2 of
Appendix B, and αa,E is the flow (ahead of point E )
deflection angle relative to the reflecting surface JK . Addi-
tionally, let the coordinates of point A be (xA, yA) = (0, 0),
we have (xR, yR) = (lw cos θw,−lw sin θ ) and (xT , yT ) =
[(h0 − hm) cot βAT ,−(h0 − hm)], where h0 and lw are the in-
flow height and the wedge length, respectively. Thus, the
coordinates of point B, E , C, and D satisfy

yB − yT = (xB − xT ) tan (βT B − θAT ),

yB − yR = (xB − xR) tan

(
arctan

1

M1
+ θAT

)
,

GE (MR, αa,E , βE , xE , yE ) = 0,

(xE , yE ) = (xB, yB), when αa,E = θw,

(xC, yC ) = (xE , yE ), when αa,E = 0,

yD − yC = (xD − xC ) tan βCD,

yD = −lw sin θw, (38)
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where function GE is the differential relations depicting the
interactions of the expansion fan and shock BC derived by
Bai et al. [25]. Note that shock T B is the initial segment
of the reflected shock wave, which plays a crucial role in
determining the shape and strength of the other two segments
BC and CD; hence, shock angle βT B and the Mach stem
height hm are two pivotal parameters of the shock wave re-
flection system. For stable configurations, βT B(RR) of a stable
RR with hm = 0 and βT B(MR) of a stable MR with hm =
hm0 can be obtained by the two- and three-shock theories
[11,12], respectively, see also Appendix C for more details.
Additionally, for a given combination of M0 and θw, there
is always βT B(RR) > βT B(MR). For an unstable reflection
(UR) in an RR � MR transition, Mouton & Hornung [23]
assumed that the configuration contains only a single but
evolutionary MR. Gao and Wu [30] found that an UR has
more detailed structures at the beginning of the RR � MR
transition; these are induced by an upstream disturbance. In
this paper, we consider URs as possible unsteady states just
maintain unsteady MR configurations with Mach stem heights
hm. As hm increases monotonically from 0 to hm0, the shock
angle βT B should decrease monotonically from βT B(RR) to
βT B(MR). The dimensionless forms of βT B and hm are writ-
ten as β∗

T B = [βT B − βT B(MR)]/[βT B(RR) − βT B(MR)] and
h∗

m = hm/hm0, respectively, where β∗
T B = 1 when h∗

m = 0 and
β∗

T B = 0 when h∗
m = 1. In consideration of physical reality

that the shear layer T S should not touch the reflecting sur-
face JK [23] when a stable RR just changes into an UR, we
propose that (dβ∗

T B/dh∗
m)h∗

m=0 = 0. When the UR approaches
becoming a stable MR, i.e., h∗

m → 1, β∗
T B is assumed to vary

linearly. Therefore, to satisfy the above conditions, β∗
T B can be

approximated to

β∗
T B = Wβ∗

T B
(h∗

m) � cos

(
h∗

m · π

2

)
, (39)

where Wβ∗
T B

is an approximate function that constructs the
relation between β∗

T B and h∗
m. Based on Eq. (38), we can ob-

tain the coordinates of points T (xT , yT ), B(xB, yB), C(xC, yC ),
D(xD, yD), and E (xT , yT ), then the length of the straight shock
waves AT , T B, and CD can be written as

σAT =
√

x2
T + y2

T ,

σT B =
√

(xB − xT )2 + (yB − yT )2,

σCD =
√

(xD − xC )2 + (yD − yC )2.

(40)

For the dissipation φi induced by per unit length of a shock
wave i, since viscous dissipation is the dominant term of
kinetic energy loss in compressible flows [43,44], it can be
approximated to

φi � 1
2ρa,i(Ma,iAa,i sin βi )

3− 1
2ρb,i[Mb,iAb,i sin (βi − θi )]

3.

(41)
Combine Eqs. (40) and (41), and we can obtain the total

dissipation induced by the straight shock waves:

�AT = φAT σAT ,

�T B = φT BσT B,

�CD = φCDσCD.

(42)

For the Mach stem, since it is just slightly curved, its length
σT G can be approximate to its height hm, and the dissipation
can be approximate to

�T G � 1
2 (φT (3) + φG)hm. (43)

Where subscripts “T (3)” and “G” correspond to the parts
of shock T G near the triple point T and the shock foot G,
respectively. βT (3) has been obtained in part 2 of Appendix C,
and βG = π/2. Using the flow properties near points T and G,
we can calculate φT (3), φG, and then the total dissipation �T G

induced by shock T G.
For the curved shock BC, the infinitesimal length near point

E can be written as

dσE =
√

(dxE )2 + (dyE )2. (44)

Thus, the dissipation induced by BC can be written as

�BC =
∫ C

B
φE dσE . (45)

As the flow properties near point E can be obtained with
Ref. [25], we can calculate φE using Eq. (41). Then we can
obtain the total dissipation �BC induced by shock BC.

Combining Eqs. (40)–(45), we can obtain the total dissipa-
tion induced by the shock waves:

�(θw, hm) = �AT + �T B + �BC + �CD + �T G. (46)

As a result, for a given Mach number M0, we can obtain
the dependence of the total dissipation � on both the wedge
angle θw and the Mach stem height hm.

III. RESULTS AND DISCUSSIONS

In this section, we expound the mechanism of shock re-
flection hysteresis using the MVD theorem. The combination
of Eqs. (34)–(46) gives the total dissipation �(θw, hm/h0),
depending on θw ∈ [θN

w , θD
w ] and hm/h0. For M0 = 4.5 with

dual-solution domain θw ∈ [θN
w , θD

w ] = [20.92◦, 26.85◦], the
landscape of �(θw, hm/h0) is illustrated in Fig. 5(b). Five
characteristic wedge angles, θw = 21◦, 22.5◦, 24◦, 25.5◦, and
26.5◦, are chosen to depict the dissipation features of the
shock reflection configuration. As shown in Fig. 5(a), the
initial state is set as a stable RR with θw = 21◦, at which
angle the possible MR is highly unstable. This means that
just a small disturbance would transform the MR (if it exists)
to an RR. As θw increases to 22.5◦, a dissipation barrier
emerges and two minimal dissipation values will be formed,
corresponding to one stable RR at �(22.5◦, 0) and one MR
at �(22.5◦, hm0/h0). If θw varies continuously and slowly, the
disturbance will not be strong enough to transform the RR
into an MR; then the configuration maintains a stable RR.
The situation is similar as θw increases to 24◦; the only differ-
ence is that �(24◦, 0) > �(24◦, hm0/h0), but �(22.5◦, 0) <

�(22.5◦, hm0/h0), meaning that the MR becomes more stable.
When θw increases to 25.5◦, the RR becomes unstable and
just a small disturbance can transform it into an MR. Once
θw > 25.5◦, the configuration will maintain a stable MR.

As shown in Figs. 5(b) and 5(c), the transition point θw =
25.5◦ is a saddle-node bifurcation on the � landscape, i.e.,
the intersection point of the valley line �(θw � 25.5◦, 0) and
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FIG. 5. Different perspectives of the total dissipation � landscape, where red (with hm/h0 = 0 on the left side of each subfigure) and blue
(with hm/h0 > 0) spheres correspond to stable RRs and MRs, respectively. (a) Five latitude lines from the front view of the � landscape, with
� versus hm/h0 at θw = 21◦, 22.5◦, 24◦, 25.5◦, and 26.5◦; (b) the � landscape, where red (pointing up or right) and yellow (pointing down
or left) arrows show the paths of RR → MR and RR ← MR in the valley, respectively, and the white dashed line is the ridge line; (c) contour
of normalized total dissipation �/�(θw, 0), where the black solid line denotes the hysteresis loop of the RR � MR transition and the black
dashed line denotes the path when θw > 25.5◦.

the ridge line. Although stable RRs are possible theoretically
when θw < 25.5◦, if θw decreases again from 26.5◦, then the
configuration will remain as stable MRs until θw reaches 21◦.
Thereafter, a small disturbance will transform the MR into an
RR. The transition point θw = 21◦ is another saddle-node bi-
furcation, i.e., the intersection point of the valley line �(θw �
26.5◦, hm/h0 = hm0/h0) and the ridge line. As θw varies from
21◦ to 26.5◦ and then back to 21◦, a 3D path in the valleys
of the �(θw, hm/h0) landscape emerges, manifesting a series
of stable configurations. Clearly, the projection of the path
onto the (θw, hm/h0) plane is the hysteresis loop, as shown
in Fig. 5(c). In addition, it is seen that the MR → RR transi-
tion occurs very close to θN

w = 20.92◦, while the RR → MR
transition takes place at about 25.5◦; this angle is smaller than
θD
w = 26.85◦. The transition point of RR → MR is less than

θD
w , which was also observed by Chpoun et al. [15]. This is for

the reason that MRs have larger stable regions than those of
RRs in the dual-solution domain.

Furthermore, as cross validation, we compare the hm0

obtained by the present theory with previous experimental,
numerical, and theoretical results at M0 = 3.98, as shown in
Fig. 6. The various data have been extracted directly from
the quoted papers, then some inaccuracies may likely have
occurred and should be treated with caution. For relatively
small βAT < 35◦, the present theory compares remarkably
well with experimental [45,46] and numerical [18] results.
For relatively large βAT > 36◦, the theoretical results match
very well with experimental [46] and numerical [18,23] re-
sults. When 35◦ < βAT < 36◦, theoretical results reach values
slightly larger than for experimental [46] and numerical [23]
results. In general, the present theory is reasonable and valid.

Here, the cosine Eq. (39) is only an approximate function
and is not universal for all inflow Mach numbers. Moreover,

the analytic expression of Wβ∗
T B

may be complicated and
requires more in-depth research. More accurate models with
more detailed structures describing the evolution of URs will
be considered in the future.

FIG. 6. Comparison of results using the present theory with those
from previous works at M0 = 3.98 and |h0 − yR|/lw ≈ 0.4, including
experimental results from Hornung et al. [45,46], numerical results
from Mouton and Hornung [23] and Vuillon et al. [18], and the-
oretical results from Azevedo and Liu [47], Li and Ben-Dor [22],
Mouton and Hornung [23], Gao and Wu [24], and Bai and Wu
[25].
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IV. CONCLUSIONS

In this paper, the mechanism of hysteresis in shock wave
reflection is studied. The steady states of shock wave reflec-
tion systems should maintain MVD. Therefore, a hysteresis
loop is the projection of dissipation landscape valley lines
onto the (θw, hm/h0) plane. The saddle-node bifurcations, i.e.,
intersection points of valley and ridge lines, are actually tran-
sition points. Therefore, the emergence and disappearance of
the dissipation barriers, manifested by the ridge line of the dis-
sipation landscape, are the origin of the reflection hysteresis.

The present method, based on the least-action principle
and the geometric properties of the action surface, may be
extended and applied to other hysteretic systems such as fer-
romagnetic systems [1], liquid-solid phase transitions [48,49],
laminar-turbulent flow transitions [50–53], and Bose-Einstein
condensations [54–57].
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APPENDIX A: COMPUTATIONAL SETUP

1. Governing equations

The governing equations are the nondimensionalized con-
servative forms of the continuity, momentum and energy
equations in curvilinear coordinates. In vector notation, these
equations can be expressed as

∂U

∂t
+ ∂F

∂ξ
+ ∂G

∂ζ
= 0, (A1)

where U = J{ρ, ρu, ρv, ρe} denotes the conservative vector
flux, with ρ the density, e the energy per volume, and (u, v)
velocity components of streamwise and vertical directions,
respectively. J is the Jacobian matrix transforming Cartesian
coordinates (x, y) into computational coordinates (ξ, ζ ). F is
the flux term in ξ direction as

F = Fc + Fv

= Jrξ

⎡
⎢⎣

ρu∗
ρuu∗ + psx

ρvu∗ + psy

(ρe + p)u∗

⎤
⎥⎦ − Jrξ

⎡
⎢⎣

0
sxσxx + syσxy

sxσyx + syσyy

sxτx + syτy

⎤
⎥⎦,

(A2)

where

u∗ = usx+vsy, sx = ξx/rξ , sy = ξy/rξ , rξ =
√

ξ 2
x +ξ 2

y ,

τx = uσxx + vσyx − qx, τy = uσxy + vσyy − qy,

σi j = 2μ

[
1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
− 1

3

∂uk

∂xk
δi j

]
,

q j = − μ

Pr(γ − 1)M2
0

∂T

∂x j
. (A3)

In above equations, Fc and Fv are the convective and the
viscous terms, respectively. The flux term G in ζ direction has
similar forms as F . p and T are the pressure and temperature,

FIG. 7. Validation of grid convergence with two mesh scales.
Upper: 301 × 301; lower: 601 × 601. (a) Flow fields colored by local
Mach number; (b) numerical schlierens.

respectively. The work fluid is considered as ideal gas, i.e.,
p = ρT/γ M2

0 with the ratio of specific heats γ = 1.4 and
inflow Mach number M0 = 4.5, where subscript “0” repre-
sents the free-stream conditions. The characteristic Reynolds
number Re = 3000 based on the inflow height, and Prandtl
number Pr = 0.7. The viscosity μ fulfills the Sutherland
law:

μ = 1

Re

T 3/2(1 + Ts/T0)

T + Ts/T0
, (A4)

where Ts = 110.4 K and the free-stream temperature T0 =
108.1 K.

2. Numerical methods

The present simulations are completing by the in-house
code OPENCFD-SC. This code has been valided with a wide
range of supersonic and hypersonic flow problems, such as
SBLIs in a compression ramp, hypersonic boundary layer
over a blunt cone and homogeneous isotropic turbulence
[32,58–61]. For the flux term computation, the convective
term is dealed with Steger-Warming splitting and solved
by using WENO-SYMBO method, which is an optimized
WENO scheme in a nine-point central stencil with a fourth
order accuracy. With a limiter technique based on the to-
tal variation, the numerical dissipation and the computation
cost is greatly reduced. The viscous flux terms are cal-
culated with eighth-order central difference scheme. Three
order TVD-type Runge-kutta method is used for time-advance
[62].

3. Grid convergence study

The grid scales are chosen as 1201 × 601 for state 1-RR,
901 × 601 for state 2-RR, and 601 × 601 for both state 3-
MR and state 4-MR. The normal grid spacing �y is uniform
at different streamwise location (for instance, �y0 = h0/600
at the entrance); the streamwise grid is uniformly spacing
with width �x0/�y0 = 1.375. As shown in Figs. 7(a) and
7(b), the grid convergence is validated with two grid scales,
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FIG. 8. Schematic diagram of a flow passing through a shock
wave.

601 × 601 and 301 × 301, using state 4-MR colored by local
Mach number. It can be seen in both Figs. 7(a) and 7(b)
that locations of shock waves, triple points, shear layers, and
Mach stems are the same between these two grid scales.
For instance, locations of the feet of Mach stems are both
at x ≈ 1.3, indicating the grid scale 601 × 601 we used is
suitable.

APPENDIX B: LAWS OF SHOCK WAVE, EXPANSION FAN,
AND THEIR INTERACTIONS

1. The classical Rankine-Hugoniot relations

The classical Rankine-Hugoniot relations give the relations
of the flow properties on both sides of shock wave i:

FM (Ma,i, βi ) =
M2

a,i + 2
γ−1

2γ

γ−1 M2
a,i sin2 βi − 1

+ M2
a,i cos2 βi

γ−1
2 M2

a,i sin2 βi + 1
,

Fp(Ma,i, βi ) = 2γ

γ + 1
M2

a,i sin2 βi − γ − 1

γ + 1
,

Fρ (Ma,i, βi ) = (γ + 1)M2
a,i sin2 βi

(γ − 1)M2
a,i sin2 βi + 2

FA(Ma,i, βi ) =
[
(γ − 1)M2

a,i sin2 βi + 2
]1/2[

2γ M2
a,i sin2 βi − (γ − 1)

]1/2

(γ + 1)Ma,i sin βi
,

Fβ (Ma,i, βi, θi ) = 2 cot β
M2

a,i sin2 βi − 1

M2
a,i(γ + cos 2βi ) + 2

− tan θi.

(B1)

Where subscripts “a” and “b” denote variables ahead of
and behind the shock wave i, respectively. γ = 1.4 is the
specific heat ratio. M, p, ρ, and A are the flow Mach num-
ber, pressure, density, and acoustic speed, respectively. β

is the shock angle (the angle between the incoming flow
and the shock wave), and θ is the flow deflection angle
across shock i. The flow passing through shock i is shown in
Fig. 8.

2. The Prandtl-Meyer expansion relations

The Prandtl-Meyer expansion relations give the relations
of the flow properties in an expansion fan:

HP−M(M2, M1, α, θ ) = v(M2) − v(M1) − (α − θ ) = 0,

p2

p1
= Hp(M2, M1) =

[
ϑ (M1)

ϑ (M2)

] γ

γ−1

,

ρ2

ρ1
= Hρ (M2, M1) =

[
ϑ (M1)

ϑ (M2)

] 1
γ−1

,

A2

A1
= HA(M2, M1) =

[
ϑ (M1)

ϑ (M2)

] 1
2

,

v(M ) =
√

γ + 1

γ − 1
arctan

√
γ − 1

γ + 1
(M2 − 1)

− arctan
√

M2 − 1,

ϑ (M ) = 1 + γ − 1

2
M2. (B2)

The flow passing through the expansion fan is shown in
Fig. 9.

APPENDIX C: THE SHOCK WAVE ANGLE OF A STABLE
REFLECTION CONFIGURATION

1. The two-shock theory for a stable RR

The two-shock theory (2ST) is the analytical for describing
the flow field of an RR near the reflection point T . Applying
the Rankine-Hugoniot relations on the two oblique shock
waves, AT and T B, as shown in Fig. 3(b), we can obtain the
following equations.

Across the incident shock AT :

Fβ (M0, βAT , θw ) = 0,

Mb,AT = FM (M0, βAT ), (C1)

where subscript “0” denotes the inlet flow.
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FIG. 9. Schematic diagram of a flow passing through an expan-
sion fan.

Across the reflected shock T B:

Fβ (Mb,AT , βT B, θT B) = 0. (C2)

Because the flow behind shock T B must be parallel to the
reflecting surface JK in a stable RR, we have

θT B − θw = 0. (C3)

The above set of four equations consists of only four pa-
rameters, namely: βAT , Mb,AT , βT B, and θw. We only consider
AT and T B as weak shock waves, then the Eqs. (C1)–(C3)
result in a unique solution, and we can obtain the shock wave
βT B for an RR, i.e., βT B(RR).

2. The three-shock theory for a stable MR

The three-shock theory (3ST) is the analytical for describ-
ing the flow field of a MR near the triple point T . Applying the
Rankine-Hugoniot relations on the three shock waves AT , T B

and T G, as shown in Fig. 3(a), we can obtain the following
equations.

Across the incident shock AT :

Fβ (M0, βAT , θw ) = 0,

Mb,AT = FM (M0, βAT ),

pb,AT

p0
= Fp(M0, βAT ).

(C4)

Across the reflected shock T B:

Fβ (Mb,AT , βT B, θT B) = 0,

pb,T B

pb,AT
= Fp(Mb,AT , βT B). (C5)

Across the Mach stem T G near point T :

Fβ (M0, βT (3), θT (3) ) = 0,

pb,T (3)

p0
= Fp(M0, βT (3) ), (C6)

where subscripts T (3) is the part of shock T G near the triple
point T .

The flow states (2) and (3) are separated by a contact
surface, across which the pressure remains constant, i.e.,

pb,T (3) = pb,T B. (C7)

Additionally, the streamlines in regions (2) and (3) are
parallel, i.e.,

θw − θT B = θT (3). (C8)

The above set of nine equations consists of nine parame-
ters, namely: βAT , Mb,AT , pb,AT , βT B, θT B, pb,T B, βT (3), θT (3),
and pb,T (3). We consider AT and T B as weak shock waves and
T G as a strong shock wave, then equations Eqs. (C4)–(C8)
result in a unique solution, and we can obtain the shock wave
βT B for a MR, i.e., βT B(MR).
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