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How Euglena gracilis swims: Flow field reconstruction and analysis
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Euglena gracilis is a unicellular organism that swims by beating a single anterior flagellum. We study the
nonplanar waveforms spanned by the flagellum during a swimming stroke and the three-dimensional flows that
they generate in the surrounding fluid. Starting from a small set of time-indexed images obtained by optical
microscopy on a swimming Euglena cell, we construct a numerical interpolation of the stroke. We define an
optimal interpolation (which we call synthetic stroke) by minimizing the discrepancy between experimentally
measured velocities (of the swimmer) and those computed by solving numerically the equations of motion of the
swimmer driven by the trial interpolated stroke. The good match we obtain between experimentally measured
and numerically computed trajectories provides a first validation of our synthetic stroke. We further validate
the procedure by studying the flow velocities induced in the surrounding fluid. We compare the experimentally
measured flow fields with the corresponding quantities computed by solving numerically the Stokes equations
for the fluid flow, in which the forcing is provided by the synthetic stroke, and find good matching. Finally,
we use the synthetic stroke to derive a coarse-grained model of the flow field resolved in terms of a few
dominant singularities. The far field is well approximated by a time-varying Stresslet, and we show that the
average behavior of Euglena during one stroke is that of an off-axis puller. The reconstruction of the flow field
closer to the swimmer body requires a more complex system of singularities. A system of two Stokeslets and
one Rotlet, that can be loosely associated with the force exerted by the flagellum, the drag of the body, and a
torque to guarantee rotational equilibrium, provides a good approximation.
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I. INTRODUCTION

Euglenids are one of the best-known groups of flagellates
and are easily found in freshwater [1]. Their biology and
cellular structure is well known and over the last decade there
has been a growing interest in studying the mechanics under-
lying their motility. An interesting feature is that Euglenids
can exhibit distinct forms of motility (flagellar swimming and
amoeboid motion), can switch between them [2], and respond
to environmental cues such as confinement and light [3]. This
makes them an interesting model system to study sensing and
response mechanisms in an elementary, single-cell organism.

The amoeboid motion of Euglenids, typically referred to as
metaboly, has been studied from an analytical [4], numerical
[5], and experimental [2,6] perspective, and it has inspired the
design of soft robots [7]. The flagellar swimming of Euglena
gracilis, powered by the nonplanar beating of a single anterior
flagellum, termed “spinning lasso” in the literature, has been
studied for a long time, but a detailed experimental recon-
struction of this complex kinematics has been obtained only
recently and can be found in Ref. [8]. It is also known that the
organism can modulate the beating of the flagellum to change
its trajectory [3], also in response to external light stimuli. In
fact, E. gracilis is phototactic.

The study of the flow fields induced by unicellular
swimmers through their shape changes plays a key role in

understanding the interactions of the cell with its living envi-
ronment [9–13]. For example, predators may sense their preys
through the flows they generate with their motion, or they
may induce flows to drive preys towards their feeding organs
and capture them (see, e.g., Refs. [14,15] and the references
cited therein). The main features of all these flows can be
rationalized by approximating them as the superposition of
a few elementary singular solutions [16,17]. Many different
organisms have been analyzed in this way in recent years.
Bacteria exhibit mainly rotational flows near the cell body
and a pusher flow far away from the cell [16]. As another
example, Chlamydomonas reinhardtii produces flow fields
of different character during its stroke, oscillating between
pusher and puller behaviors, while in average it behaves as
a puller [18]. The time-dependent features of the flow of
sperm cells have been analyzed in Ref. [19]. Analyses of this
type yield interesting insight in understanding the interactions
between different swimmers [20] or between the swimmer
and different interfaces [21–23].

Given the three-dimensional nature of the motion of the
flagellum and the lack of obvious symmetries, resolving the
flow fields induced by Euglena cells would be particularly
interesting. The technical challenges involved have prevented
this, at least until now. In fact, extending to three dimensions
the two-dimensional results on trajectories and flows obtained
in recent years is one of the frontiers in the research on the
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biophysics of microswimmers, as witnessed by the increas-
ing focus on three-dimensional effects in the recent literature
[8,13,24–28].

In this paper, we propose to use numerical simulations
of the dynamics of swimmer and surrounding fluid to com-
plement the experimental data and overcome some of the
difficulties that have limited the study of the swimming be-
havior of E. gracilis so far. Our main results are the following.
We provide a reconstruction of the swimming stroke in terms
of shapes and of their rate of change and validate it by
showing that the application of a hydrodynamic model to
the theoretical flagellar waveforms produces swimming tra-
jectories in close agreement with the experimentally observed
ones. We further validate our reconstruction of the swimming
stroke by computing the three-dimensional flows induced in
the surrounding fluid, measuring them with particle tracking
velocimetry techniques, and showing good match between
the two. Finally, we provide a coarse-grained model of the
fluid flows induced by a swimming Euglena in terms of a
few dominant singularities. A time-varying Stresslet suffices
to capture the far field, and the average behavior in one stroke
is that of an off-axis puller (i.e., the axes of the puller flow are
not aligned with the body axis). Closer to the swimmer body,
a system of two Stresslets and one Rotlet is more appropriate
to resolve the salient features of the induced flows, loosely
associated with the forces exerted by the beating flagellum,
the drag of the body, and a torque ensuring rotational equi-
librium. In order to capture the fact that the forces exerted
by the flagellum at any given time may change character
from propulsive to resistive along the flagellum, an even more
complex systems of singularities would be required.

A first attempt to reconstruct numerically the swimming
behavior of E. gracilis has been performed in Ref. [8], using
a method explored also in Ref. [24]. In Ref. [8] Resistive
Force Theory (RFT) [29,30] is used to check the consistency
of the experimentally measured trajectories with the motion
arising as a consequence of the reconstructed flagellar beat.
Quantitative discrepancies were attributed to the limitations
of RFT when dealing with hydrodynamic interactions; see
Refs. [31,32] for further details. In fact, the complex flagellar
kinematics described in Refs. [8,25] requires more accurate
models for the nonlocal hydrodynamic forces generated by a
flagellum beating in close proximity of the cell body, and in
the present work we address the problem using an open source
boundary element method [33,34] that has been validated in a
previous publication [32].

The rest of the paper is organized as follows. In Sec. II
we confront the following problem: Starting from a set of
time-indexed images defining the shapes during a stroke, and
obtained by optical microscopy, determine the corresponding
history of shape velocities (the rate at which shapes evolve
in time). In the present work we focus our attention on the
study of the flagellar shapes reported in Ref. [8]. Other beating
patterns, such as those reported in Ref. [3], will be addressed
in the future. We proceed by numerical interpolation in time
and derive an optimized numerical interpolation of the stroke
in the neighborhood of each experimental image by min-
imizing the discrepancy between experimentally measured
translational and rotational velocity of the swimmer and those
computed by solving the equations of motion of the swimmer

driven by the interpolated shapes. In this way, we obtain pairs
(shape, shape velocities) at each time frame, and hence a
time-discrete numerical description of the stroke that we call
synthetic stroke.

In Sec. III we validate the synthetic stroke by comparing
the flow fields it induces, calculated by solving numerically
the equations for the fluid flow, with experimental measure-
ments. In order to measure the fluid velocities experimentally,
we use the General Defocusing Particle Tracking (GDPT)
method [35]. This technique allows for a three-dimensional
reconstruction of the flow field looking at the displacement
of out-of-focus tracer particles with a single-camera view.
The defocusing is used to obtain the out-of-plane particles’
position, and it is enhanced by using a cylindrical lens to
induce a controlled optical aberration in the optical system
[36]. We obtain full three-dimensional velocity fields, and
then we use the azimuthal mean introduced in Ref. [37] to
compare experimental observations with the numerical results
obtained with our synthetic stroke.

Finally, in Sec. IV we analyze the flow fields induced by the
flagellar beating of E. gracilis (modeled using our synthetic
stroke). We coarse grain the flow field using Stokes flow
singularities. This kind of analysis has been successfully ap-
plied to other swimmers such as C. reinhardtii [17,38], sperm
cells [19,39], and bacteria [16,40]. The procedure extracts the
essential characteristics of the flow by approximating it as
the superposition of a few singular solutions of the Stokes
equations.

We find that, not unlike other organisms [18], the far field is
well described by a single time-varying Stresslet. This is con-
firmed by the analysis of the leading order term of a multipole
expansion of the equation describing the flow field, following
Ref. [41]. A swimming E. gracilis cell oscillates between
puller and pusher behaviours and its average behavior over
one stroke can be idealized as an off-axis puller, i.e., one in
which the axes of the puller flow are not aligned with the
longitudinal axis of the body.

To coarse grain the flow field at distances closer to the
body of the swimmer we propose a system of singularities
consisting of two Stokeslets and one Rotlet, and we show
that this system performs better than other commonly used.
The Stokeslets and Rotlet can be loosely associated with the
propulsive (and resistive) forces exerted by the flagellum, the
drag of the body, and a torque ensuring rotational equilib-
rium. We also show, however, that the flagellum may exert
forces whose orientations and character at any given time may
change along its length (e.g., propulsive forces near the proxi-
mal end and resistive ones at the distal end). The consequence
of this fact is that, to properly resolve the flows induced in
close proximity of the swimmer’s body, more complex sys-
tems of singularities are needed, such as multiple Stokeslets
along the length of the flagellum.

II. NUMERICAL RECONSTRUCTION OF A SWIMMING
STROKE (SYNTHETIC STROKE)

This section aims at constructing a numerical represen-
tation of a swimming stroke starting from a finite set of
time-indexed flagellar shapes obtained experimentally from
a representative swimmer. The experimental procedure is
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described in detail in Ref. [8] and relies on high-speed video
recordings of Euglena specimens swimming regularly1 along
a direction parallel to the microscope’s focal plane. Due to
specific symmetries in this system, we can exploit a fitting
procedure to extrapolate from the microscopy recordings the
trajectory and orientation of the swimmer body in space and
time, and to resolve the 3D flagellar shape for a finite number
of stroke positions. For the case at hand, considering a speci-
men swimming with a beating period Tb = 24.3 ms observed
with a recording frequency of 1000 fps, it was possible to
reconstruct 10 flagellar shapes. Detailed information on the
accuracy and reproducibility of the reconstruction are given
in Ref. [8].

The idea is to interpolate in time the experimentally ob-
tained flagellar shapes and to choose an optimal interpolation
capable of reproducing accurately the motion of the swimmer
and the induced flows. We call this optimal interpolation syn-
thetic stroke. This is obtained by minimizing the discrepancy
between experimentally measured translational and rotational
velocities of the swimmer and those computed by solving the
equations of motion of the swimmer driven by the interpolated
stroke.

The procedure we adopt is based on two key steps: (1)
the mathematical definition and numerical solution of the
swimming problem and (2) an optimization procedure to ex-
trapolate flagellar shapes to pairs of flagellar shapes and shape
velocities. The procedure leads to the definition of a numerical
time-discrete synthetic stroke starting from a limited set of
experimental observations.

A. Mathematical formulation of the swimming problem

We follow Refs. [42,43] to represent a model swimmer
as a time-dependent bounded open set Bt ∈ R3. We describe
the motion using the map χ :B̄0 ⊂ R3×[0, T ] → R3 which
carries a material point X of the swimmer into its current
position x at time t ,

x = χ (X, t ) = fr (s(X, t ), t ) = q(t ) + R(t )[s(X, t ) − O],
(1)

where bold symbols denote points, vectors, and tensors.
According to Eq. (1), χ results from the composition of
prescribed shape changes s(X, t ) and a rigid motion fr of
translation q(t ) and rotation R(t ). We set Bt = χ (B0, t ); see
Fig. 1. As for the velocity of any material point on � = ∂Bt ,
from (1) we obtain

ẋ = ∂χ (X, t )

∂t
= q̇(t ) + R(t )ṡ(X, t ) + ω(t ) ∧ {R(t )[s(X, t ) − O]}, (2)

where we have introduced the angular velocity ω(t ). As-
suming that shape changes are prescribed through a periodic
function of time, the unknowns of the swimming problem
are q̇(t ) and ω(t ), which characterize the translational and
rotational motion of the swimmer (referred to as the rigid
velocities in what follows).

1We consider the specimen to swim regularly when it uses consec-
utive identical strokes, resulting in a helical motion around a straight
screw axis.

FIG. 1. A sketch of the swimmer motion χ (X, t ) to highlight
its decomposition into prescribed shape changes s(X, t ) and a rigid
motion fr .

In view of the characteristic length and time scales relevant
to microswimmers, inertial effects are negligible such that the
balance of linear and angular momentum read∫

�

f (x, t ) dγ = 0,

∫
�

f (x, t ) ∧ (x − O) dγ = 0, (3)

where f (x, t ) is the viscous traction acting on the boundary of
the swimmer. This is given by the action of the Cauchy stress
tensor σ [44],

f = σ(v, p)n, (4)

where n is the outer unit normal to the boundary �, and (v, p)
represent the velocity and pressure fields in the fluid. For an
incompressible Newtonian fluid the Cauchy stress tensor is
given by

σ(v, p) = μ(∇v + ∇vT ) − pI, (5)

so that, in the low-Reynolds number approximation of micro-
hydrodynamics, fluid flow is governed by Stokes’ equations
[45]. Neglecting gravity (here we consider a neutrally buoy-
ant swimmer) and assuming that the swimmer moves in free
space, these read

div σ = μ�v − ∇p = 0 , and div v = 0 , in R3 \ Bt .

(6)
These are complemented by no-slip boundary conditions at
the swimmer boundary, where v must match the velocity of
the swimmer given by (2), and decay conditions at infinity.
Notice that the linearity of Stokes’ equations leads to a linear
dependence of the tractions f (x, t ) appearing in (3) on the
shape velocities ṡ(X, t ) (data) and on the rigid velocities q̇(t )
and ω(t ) (unknowns) appearing in (2). Solving (3) for the
latter, we obtain the instantaneous translational and rotational
velocities of the swimmer resulting from shapes changing at
rate ṡ.

We solve numerically the Stokes system by exploiting a
Boundary Element Method (BEM), and among the different
possible implementations we follow Refs. [33,46]. Figure 2
shows the geometric BEM discretization of Euglena con-
sisting of 1032 different cells. Further information about the
numerical scheme are available in the Supplemental Material
[47].
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FIG. 2. Geometric reconstruction of E. gracilis: 384 cells consti-
tute the cell body and 648 the flagellum. We report on the right the
10 flagellar shapes corresponding to the 10 times t used to discretize
the beating period Tb in Ref. [8].

B. Optimal numerical interpolation based
on experimental rigid velocities

The numerical procedure exploiting the BEM defines a
unique map between the function giving the history of the
shapes of the swimmer during one stroke and its rigid ve-
locities (translational and rotational) during the stroke. In
principle, we could write

s(X, t )
numerical−−−−−−−→

differentiation
ṡ(X, t )

BEM−−−−−→
resolution

ṗ(t ) (7)

to obtain the rigid velocities ṗ(t ) = (q̇(t ),ω(t )) from pre-
scribed s(X, t ).

In practice, information on the swimmer shapes is only
available through finitely many snapshots coming from opti-
cal microscopy. For example, the experimental observations
of Ref. [8] provide ten flagellar shapes during one stroke.
However, as shown in Sec. II A, the rigid velocities of the
swimmer, ṗ(t ), can be computed by solving the equations of
motion (3) only if the rate at which flagellar shapes change,
ṡ(X, t ), is known. The experimental observations of Ref. [8]
do not provide this information, and we discuss now how we
overcome this problem, by finding a suitable interpolation in
time of the ten experimentally measured shapes.

Clearly, there are infinitely many interpolating paths. We
reduce the degeneracy by exploiting the knowledge of the
experimental values for the rigid velocities at the 10 instants
at which flagellar shapes are known (Figs. 5(f) and 5(g)
of Ref. [8]), and by defining an optimal interpolation that
minimizes the discrepancy between experimentally measured
translational and rotational velocities of the swimmer and
those computed by solving the equations of motion (3) of the
swimmer driven by the interpolated stroke. In this way, we
obtain the pairs (shape, shape velocities) at each time frame,
and hence a time-discrete synthetic stroke. The procedure is
described in more detail below.

We consider the 10 flagellar shapes s̄(X, ti ), i =
{1, . . . , 10}, reported in Ref. [8], and we interpolate them
in time using spline interpolation. To this end, we introduce
spline interpolants g j (X, t ) with degree j = {1, . . . , Ng}. We
fix the maximum degree Ng = 5 to obtain a good interpolation
while limiting oscillating phenomena related to high order
polynomials [48]. We reconstruct shapes as linear combina-
tions of the Ng basis splines in a neighborhood of the 10

experimental frames,

s(X, t ) =
Ng∑
j=1

αi jg j (X, t ), t ∈ (ti − τ, ti + τ ), (8)

where αi j are coefficients to be determined by best fit of the
experimental data, and τ � ti+1 − ti specifies the neighbor-
hood of the experimental frame. To ensure that (8) interpolates
the experimental flagellar shapes we require that gj (X, ti ) =
s̄(X, ti ) for all j, which is possible since s̄(X, ti ) is given in
Ref. [8] as a spline, and that

Ng∑
j=1

αi j = 1. (9)

We notice that

ṡ(X, t ) =
Ng∑
j=1

αi j ġ j (X, t ), t ∈ (ti − τ, ti + τ ), (10)

and that we can associate some rigid linear and angular veloc-
ities to the basis shape velocities ġ j (X, t ),

g j (X, t )
numerical−−−−−−−→

differentiation
ġ j (X, t )

BEM−−−−−→
resolution

ṗ j (t ) for j =1, . . . , Ng.

(11)

By the linearity of the Stokes system it follows from (10) that

ṗ(ti ) =
Ng∑
j=1

αi j ṗ j (ti ). (12)

To determine the coefficients αi j of the optimal interpolation
(8) we require that

ṗ(ti ) = ˙̄pi, (13)

where ˙̄pi is the value measured experimentally in Ref. [8]
at the specific frame ti. Notice that the set of experimental
data comprises 6×10 rigid velocities and we use five different
coefficients for 10 different time frames. We exploit a con-
strained least square minimization algorithm [49] to solve this
overdetermined system and find values of αi j fulfilling (9).

The results of the fitting procedure are shown in Fig. 3:
Fig. 3(a) reports the linear velocities, whereas the angular
velocities are shown in Fig. 3(b). Red triangles, green squares,
and blue circles represent their components along the unit
vectors of the body reference i, j, k. We plot with empty
markers the results of the optimal spline interpolation, and we
compare them with the reconstruction of Ref. [8], represented
with filled markers. Remarkable agreement is found between
our current methodology and the reference results. As for
the components ωx and ωy of the angular velocity, these are
recovered with slightly less accuracy. This minor difference
is due to the fact that those two components are the ones with
the lowest magnitude and consequently are less relevant in the
least square resolution of (13) with constraint (9).

In order to define the trajectory associated with the syn-
thetic stroke, we construct a continuous approximation of q̇
and ω by using a Fourier expansion of the BEM data. We re-
mark that this is consistent with the procedure used in Ref. [8]
for the reconstruction of the experimental data. The continu-
ous approximations are shown as continuous, dashed-dotted,
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FIG. 3. Results of the fitting procedure: (a) and (b) represent linear and angular velocities, respectively. Triangles, squares, and circles
refer to the component along i, j, k, respectively. Filled markers represent the experimental result reported in Ref. [8] while empty symbols
are current BEM computations. Continuous, dashed-dotted and dashed lines are the Fourier continuation of the BEM optimal results we use to
compare the trajectories in (c). (c) Comparison between the reference trajectory of Ref. [8] (in light green) and the trajectory from the optimal
BEM solution (in dark blue) in a reference frame whose vertical axis is aligned with the average direction of motion.

and dashed lines in Figs. 3(a) and 3(b). We use a standard
numerical integration to get the trajectory associated with our
synthetic stroke (giving the optimal numerical time interpo-
lation of the observed swimmer shapes), and we compare it
with the experimental observations of the real swimmer in
Fig. 3(c). Good agreement between our numerical reconstruc-
tion and the experimental observations is found also in terms
of integrated trajectories.

Once the pairs (shape, shape velocities) defining a
time-discrete synthetic stroke are known, one can use the
BEM-based algorithm not only to compute translational and
rotational velocity of the swimmer, but also to evaluate the
velocity field at any point of the fluid domain R3 \ Bt . We
remark that the presence of physical walls, needed in the
experimental setting, does not seem to play a very significant
role in the current analysis. In fact, Euglena swims with its
longer body axis parallel to the walls (slide and coverslip) and
in the transversal direction the diameter of the body (9 μm)
is about one tenth of the channel width (80 μm). At these
distances, the flow velocity computed form the free-space so-
lution has decayed to 10% of the average swimming velocity
(the rigid translational velocity). To double check that the
presence of the walls does not alter significantly the conclu-
sions of our analysis, we have computed the rigid velocities
associated with our synthetic stroke in the presence of two
no–slip walls, located at the same distance as in experimen-
tal setting, and we have found that the velocities variations
over the stroke are, depending on the velocity component,
between 1.7% and 16.5%. We conclude that, in agreement
with Ref. [8], walls do not play a major role in the observed
swimming behavior of Euglena.

In what follows, we use the flow velocity fields computed
numerically from our synthetic stroke for further validation
and analysis. In particular, in Sec. III we use the comparison
of fluid flow velocities measured experimentally with those
calculated from the synthetic stroke to confirm the reliability
of the synthetic stroke. In Sec. IV we use the flow fields
reconstructed numerically from the synthetic stroke to extract
the main qualitative features of Euglena’s swimming stroke.

III. EXPERIMENTAL VALIDATION
OF THE SYNTHETIC STROKE

As discussed earlier, BEM computations allow for the de-
termination of the three-dimensional flow field induced by
a swimming Euglena at given instants in the stroke with a
degree of detail which is difficult to achieve experimentally.
Nevertheless, an experimental validation of the velocity fields
obtained numerically is required to validate the results of a
computational model. Conventional 2D particle tracking ve-
locimetry (PTV) has been used in the past to measure the
flow field around microswimmers [14,50,51]. Due to its in-
herent limitations, this technique allows to measure only the
components of the velocity parallel to the focal plane, with no
information about the azimuthal velocity component [37]. To
overcome these limitations, we rely here on the GDPT method
[35] to measure the full 3D flow field around a swimming Eu-
glena. To the best of our knowledge, this is the first time that
3D PTV measurements around a swimming micro-organism
of this kind have been performed. To compare with the nu-
merical results, we follow the approach proposed in Ref. [37]
and consider time- and azimuthally averaged velocity fields,
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FIG. 4. (a) Micrograph of a swimming Euglena surrounded by tracer particles obtained with 64× magnification and astigmatic optics.
(b) Reconstruction of 3D particle positions using the GDPT method. The depth position of tracer particles is determined from the different
shape of the defocused-astigmatic particle images. (c) Determination of the depth position of the swimmer by looking at the maximum axial
velocity of the fluid in the swimmer wake. (d)–(e) Determination of the time and azimuthally averaged velocity components. All particle
positions and velocities are reported in the coordinate frame of the swimmer (i jk) and converted in cylindrical coordinates. The time and
azimuthally averaged velocity components vρ , vζ , and vφ are calculated as a function of ρ and ζ .

but this time accounting for all the velocity components, i.e.,
the radial, the vertical, and the azimuthal component. From
now on we indicate with x, y, z the coordinates in the body
reference frame identified by three unit vectors i, j, k, and
with x′, y′, z′ the coordinates in the laboratory frame.

A. Velocity measurements using general defocusing
particle tracking (GDPT)

GDPT is a single-camera method that allows to measure
the position in space of monodisperse tracer particles ob-
served with an optics with small depth of field [52]. The
corresponding particle images recorded with such a systems
show distinctive defocusing patterns that depend on the parti-
cle position along the optical axis. To enhance the shape de-
formation and break the symmetry of the defocusing function
along the depth direction, we used a cylindrical lens in front
of the camera sensor to introduce a mild astigmatic aberration
in the optical system [36,53]. GDPT is based on a look-up
table approach to classify the particle-image defocusing pat-
terns in relation to the particle depth position. The normalized
cross-correlation is used to rate the similarity between target
particle images and the reference images in the look-up ta-
ble, and hence determine their respective depth position [54].
An exemplary micrograph with defocused particle images
observed with the astigmatic optics and the respective 3D par-
ticle position reconstruction performed by GDPT is reported
in Figs. 4(a) and 4(b). Clearly, particles in the image region oc-

cupied by the cell body could not be processed. The tracer par-
ticles are polystyrene beads with diameter of 1 μm (Life Tech-
nologies, catalog number F8821) at low concentration (vol-
ume fraction of 0.06%). A complete description of the experi-
mental setup can be found in the Supplemental Material [47].

With the current setup we obtained a measurement volume
of 168×147×28 μm3, with an estimated uncertainty in the
determination of the particle position of 0.02 μm (0.15 pixels)
for the in-plane coordinates and of 0.2 μm for the out-of-
plane coordinate. As for the uncertainty in the velocity, this is
affected by several factors: the particle positioning error, the
time interval between two images (1 ms), and the Brownian
motion of the particles. We estimated this uncertainty looking
at particles in regions of stagnant fluid, obtaining values of 30
μm/s for the in-plane velocity components and of 120 μm/s
for the out-of-plane component. These are of the order of
magnitude of the velocities to be measured. For this reason, it
was not possible to achieve time-resolved velocity fields and
we had to consider smoothed time- and space-averaged data. It
should be mentioned that other experimental techniques have
been proposed to measure weak time-dependent flows around
microswimmers, most notably optical tweezers [55,56]; how-
ever, they would require to immobilize the swimmer, which is
not possible in our experiments.

For each experimental recording, the 3D trajectory and
orientation of the cell was obtained using the procedure
described in Ref. [8], except for the depth position. In fact,
this was determined by looking at the maximum axial velocity
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FIG. 5. Fluid flow comparisons in which each row shows results from a different specimen. The first column reports the body linear and
angular velocities (lines with triangles, squares, and circles represent i, j, k components in body frame). The remaining three columns depict
the different axisymmetrically projected velocities vρ, vζ , vφ . The colormap is normalized using the mean velocity of the swimmer during the
stroke v∗.

component (vmax
z ) of the flow field in a plane perpendicular

to the cell body axis and just behind it; see Fig. 4(c). Under
the approximation that the cell was swimming parallel to the
image plane, the depth position could be identified by the
point of maximum average velocity. With the knowledge of
cell position and orientation, the velocity vectors measured
by GDPT were reported in the reference frame of the cell
[Fig. 4(d)] so that the cylindrical components of the flow
velocity field around a swimming cell could be computed
as defined in Fig. 4(e). In the figure, vζ denotes the vertical
component, vρ the radial component, and vφ the azimuthal
component. Finally, the time- and azimuthally averaged

velocity components were reported on a regular grid with
pitch 1/48 of the swimmer length (pitch size of approximately
1 μm). At each point of the grid, velocity components were
computed as based, on average, on 40 velocity samples,
leading to a final estimated uncertainty of about 5 μm/s in the
radial and vertical direction and of 18 μm/s in the azimuthal
direction.

B. Comparison between experimental
and numerical velocity flow fields

We report in Fig. 5 a comparison between the numerical re-
construction and the experimental results for the average flow
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field around the swimmer body. We represent two different
experimental specimens to better identify the characteristic
structures of the flow. It should be noted that a thorough analy-
sis of the variance of flagellar beating geometries of E. gracilis
specimens was performed in Ref. [8]. Such analysis showed
that, beside some variability in the kinematic parameters,
there is no substantial differences in the beating patterns of
different specimens. The first column in the figure shows the
linear and angular velocities of the cell body within a stroke.
Clearly, the results relative to the specimen from Ref. [8], used
as reference for the numerical reconstruction of Sec. II, and
those from the experimental observation of other two samples
share common distinctive features. For instance, the different
components of linear and angular velocity appear in phase,
a fact that allows for the comparison of velocity fields from
different specimens. This is reported in the other columns
of the figure in terms of the velocity components relevant to
the axisymmetric projection: vρ, vζ , vφ . In the three columns,
we identify structures that appear to be characteristic of the
average flow field around a swimming Euglena. Specifically,
all the scalar fields can be subdivided in three different re-
gions of alternating positive and negative sign. Furthermore,
the fields in the second and third columns (i.e., those for vρ

and vζ ) clearly exhibit the behavior of a puller swimmer: the
fluid is pulled by the swimmer at the top (negative vζ ) and
at the bottom (positive vζ ), while it is pushed radially at the
center (positive vρ). We note, in passing, that some differences
emerge with respect to a typical puller, which is characterized
by zero longitudinal velocity at ζ/Lbody = 0. The fact that, in
the current analysis, vζ is different from zero (mainly nega-
tive) at these locations suggests that the pulling forces are at
an angle with respect to the body axis of the swimmer. This
feature, which is due to the intrinsic lack of symmetry in the
flagellar beat of Euglena, was already observed in Ref. [51].
We will return to it in the next section.

The component vφ of the velocity field (fourth column in
Fig. 4) depends strongly on the rotation of the swimmer about
its major axis. This can be described as a counterclockwise
rotation around the body axis oriented from the posterior to
the anterior end. We identify two positive regions at the top
and at the bottom, and this observations agrees with the di-
rection of rotation of the swimmer. Moreover, the asymmetric
beating of the flagellum induces a rotational flow localized
at the flagellum, and rotations of the body of opposite sign,
which in turn induce a counter-rotating flow around the body.
The negative tangential velocity in the central part of the body
is consistent with the existence of this counter-rotating flow.

While the measured components of vρ and vζ compare
well with the corresponding computed fields, a comparison
for the component vφ is more delicate. To understand why,
we recall that Stokes flow can be coarse grained by using
fundamental solutions of the Stokes system; the basic Stokes
singularity associated with rotations is the so-called Rotlet,
which induces a quadratic flow decay with the distance from
the location of the singularity. Since the beating of the flag-
ellum leads to the presence of two counter-rotating flows, the
velocity component vφ exhibits a cubic decay (we will inves-
tigate this aspect in more detail in Sec. IV). This rapid decay
leads to a very low intensity of the signal to be measured.
This fact, combined with the lower resolution of GDPT for

the out-of-plane velocity component with respect to in-plane
ones, implies a lower signal to noise ratio in the field vφ with
respect to the fields vρ and vζ . In spite of this, we are still
able to identify the three different regions highlighted by the
computational analysis, confirming that the flow structures
identified by the BEM are characteristic of the real flow field
around a swimming Euglena.

We conclude that the synthetic stroke defined in Sec. II
approximates well not only the rigid body kinematics (linear
and angular velocities, and trajectories of the cell body) but
also the essential characteristics of the flow fields induced in
the surrounding fluid.

IV. COARSE GRAINING THE FLOW FIELD

We move now to the analysis of the flow field induced by
a swimming Euglena. A natural approach to study the swim-
ming behavior of microswimmers is to consider the leading
order term of the multipole expansion corresponding to the
boundary integral equation. This approximation is expected to
well represent the flow induced by a swimmer in the far field,
and it provides useful insights about the swimming strategy
that Euglena adopts. Following Refs. [41] and [18], we intro-
duce the dipole matrix D, which represents the leading order
term of the multipole expansion for the operators appearing in
the representation formula of the Stokes system,

D(t ) =
∫

�

(x − O) ⊗ f (x, t ) dγ , (14)

where f is the traction acting at place x of the boundary
� of the swimmer’s body. We then introduce the Stresslet
matrix S as

S(t ) = 1
2 [D(t ) + DT (t )] − 1

3 Tr(D)I, (15)

which can be computed by means of the BEM. As explained
in Ref. [18], the determination of whether a swimmer is of
pusher or puller type follows from the sign of the scalar
quantity

w(t ) = q̇(t )T S(t )q̇(t ), (16)

in which q̇(t ) is the velocity of the swimmer at time t . More
explicitly, a negative sign of w identifies a puller, whereas a
positive sign of w corresponds to a pusher.

By applying the criterion above with reference to tractions
and velocities computed with the BEM, we find that, on av-
erage, E. gracilis is a puller. Usually swimmers exploiting a
single flagellum, such as E. coli or sperm cell, are pushers
(see Refs. [16,19]), but the complex “spinning lasso” mech-
anism allows for a puller swimmer strategy. If we consider
the actual behavior during the stroke we find that E. gracilis
is a microswimmer of mixed type during a stroke, a fact
in agreement with the observation of mixed pusher-puller
behaviors in complex eukaryotic swimmers, as reported in
Ref. [18].

The leading order approximation provides insights on the
far field flow around a swimmer. However, the error intro-
duced by this approximation becomes non-negligible in the
near field, as shown in Ref. [57].

A more comprehensive approach to coarse-grain the flow
field is to approximate the complex system of forces that
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FIG. 6. Sketches of the three different singularity models we analyze for the reconstruction of the velocity field: (a) the Stokeslet doublet,
(b) the two Stokeslets one Rotlet model (2S1R), and (c) the three Stokeslets one Rotlet model (3S1R).

the swimmer exerts on the surrounding fluid [19,57]. From
a physical perspective, these are described by the traction f
at the swimmer boundary—recall the balance equations (3)—
and can be computed using the BEM mentioned in Sec. II.
While this is the exact, infinite-dimensional parametrization
of the forces exerted by a swimmer, it is often of interest to
find a statically equivalent, finite-dimensional system of sin-
gularities (i.e., a system of finitely many concentrated forces
and torques) capable of reproducing the main features of the
surrounding fluid flow with sensible accuracy. In this way, one
can arrive at a coarse-grained representation of the swimmer,
and of the flow it induces, which is of great help in formulat-
ing a compact, conceptual picture of its interactions with the
environment. This is the purpose of the present section, where
we introduce and compare different singularity models for a
swimming E. gracilis.

The flow field around microswimmers has often been ap-
proximated by a combination of fundamental solutions of
Stokes flow. Applications of this approach range from swim-
ming sperm cells, represented in Ref. [19] by means of force
singularities (called Stokeslets), to swimming bacteria, whose
flow field has been coarse grained through a combination of
two Stokeslets (Stokeslet doublet) and two torque singularities
(Rotlet doublet); see Refs. [16,58]. As an example of particu-
lar interest for the present study, the reconstruction of the fluid
flow induced by C. reinhardtii has been successfully achieved
in Ref. [37] by means of a system of three Stokeslets.

In view of the balance equations (3), we require the system
of forces, Fi, and of torques, Ti, representing the actions of a
swimmer on the surrounding fluid to satisfy

NF∑
i=1

Fi = 0, (17a)

NF∑
i=1

rFi × Fi +
NT∑
i=1

Ti = 0, (17b)

where the positions of each force Fi and torque T j are identi-
fied using position vectors rFi = xi − O, rTj = x j − O.

The aforementioned forces and torques define the parame-
ter set for each singularity approximation as

θNF ,NT = (
rF1 , F1, . . . , rFNF

, FNF , rT1 , T1, . . . , rTNT
, TNT

)
,

(18)

and given a set of parameters, which represents NF forces and
NT torques, the coarse-grained induced flow field is

v = v(x|θNF ,NT ). (19)

Given a set of positions in the space surrounding the swimmer
we compute the optimal set of parameters through minimiza-
tion of the error:

θ̄
ti
NF ,NT

= arg min
θNF ,NT

||vBEM (x, ti ) − v(x|θNF ,NT )||L2 . (20)

We consider three different, increasingly complex, approx-
imations to coarse-grain the flow field: a Stokeslet doublet
(NF = 2, NT = 0), two Stokeslets one Rotlet (2S1R, NF = 2,

NT = 1) and three Stokeslets one Rotlet (3S1R, NF = 3,

NT = 1). The sketches of these three models are shown in
Fig. 6.

In order to find a reliable coarse-grained model for the
flow field induced by E. gracilis in terms of a limited num-
ber of singularities, we consider the values of the fluid
velocity as computed using the BEM on spherical shells
surrounding the swimmer with internal and external radii
Rmin and Rmax, respectively. We use three different ranges to
test the singularity approximations: nearby points between
Rmin = 1.5Lbody and Rmax = 5Lbody, intermediate points be-
tween Rmin = 5Lbody and Rmax = 15Lbody, and faraway points
between Rmin = 15Lbody and Rmax = 25Lbody. We denote here
by Lbody the characteristic length of the swimmer (∼50 μm),
and consider a regular grid in spherical coordinates using
11 points along the radius, the polar and the azimuthal an-
gle, for a total number of 1331 points for each spherical
shell.

We use the Akaike Information Criterion [59] to assess
the statistical quality of each model. The quantitative results
relative to the mean velocity during the stroke for the three
different models on the three different spherical shells are
shown in Table I. We notice that, on far away points, the
simple model of two Stokeslets provides the best approxi-
mation. We remark that this model is strictly related to the
Stresslet introduced in (15). Hence, it is expected to provide
a good approximation on distant points. On the contrary, the
Stokeslet doublet is not sufficient to approximate the flow
field on nearby and intermediate points. From the results of
Table I, we conclude that the 2S1R model is the most suited on
intermediate points while, on nearby points, it is statistically
equivalent to the more complex 3S1R model. Thus, our analy-
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TABLE I. Comparison in terms of the Akaike Information Cri-
terion (AIC) between the three different approximations on nearby,
intermediate, and far away points. We highlight in boldface the
results corresponding to the best performing model. The labels (a),
(b), and (c) refer to the three singularity models exploited for the
reconstruction of the velocity field: the Stokeslet doublet, the two
Stokeslets one Rotlet model (2S1R), and the three Stokeslets one
Rotlet model (3S1R). The corresponding sketches are shown in
Fig. 6.

Points (a) Two Stokeslets (b) 2S1R (c) 3S1R

Nearby points 11714.9 1892.9 1922.3
Intermediate points 22.5 13.2 18.3
Far away point 7.3 12 39

sis suggests that approximations which are more complex than
the 2S1R model are not needed for the representation of the
flow field at distances larger than 1.5Lbody.

We now extend our analysis to the geometry of the flow
field in close proximity to the cell body, in order to test
whether the singularity models provide a realistic representa-
tion of the forces that E. gracilis exerts on the fluid. Of course,
we only expect a qualitative agreement since, in the near
field, the flow is strongly influenced by the presence of body
and flagellum, with their actual shapes, which are not present
in the flow field generated by the singularities. Furthermore,
Stokes singularities lead to large velocity gradients that are
not physical.

We optimize the corresponding velocity field v2S1R =
v2S1R(x|θ2,1) and v3S1R = v3S1R(x|θ3,1) to match results from
the BEM on points between 0.75Lbody and 1.5Lbody, and we
see that the 3S1R model reduces the error of more than 50%
with respect to the 2S1R approximation. Results for the 3S1R
model are shown at the center of Fig. 7 and highlight that two
point forces are exploited by this approximation to model the
action of the flagellum on the fluid.

For the sake of clarity, we report in Fig. 7 velocity fields in
the xz-plane. Specifically, a comparison in terms of the mean
velocity field between the 2S1R approximation (left column)
and the BEM (right column) is shown in the first row of the
figure. We notice a qualitative agreement in some features,
such as the occurrence of significant velocities at the left hand
side of the flagellum (where one Stokeslet is located). Also,
the flow exhibits an off-axis puller signature (i.e., the axes of
the flow are not aligned with the longitudinal axis of the body).
Nevertheless, the two mean flows differ as a consequence of
the coarse-graining due to the singularity approximation. In
fact, the action of the flagellum is described by a single point
force, with a significant loss of information in the mean ve-
locity field. The 2S1R approximation also introduces a visible
peak in the velocity field at the center of the cell body. The
rationale behind it is twofold: (1) the torque resulting from
the tangential forces induced by the rotations of the body
is approximated by a concentrated Rotlet and (2) the forces
exerted by the flagellum are more complex than what can be
captured by a single Stokeslet, with part of them contributing
to the Stokeslet near the body center. The resulting effect is a
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FIG. 7. Qualitative flow field comparison in the xz-plane between the BEM (third column) and two singularity approximations: 2S1R used
to approximate the far field (left column) and 3S1R (middle column). The first row represents the mean velocity, while the second reports the
velocity computed for t/Tb = 0.9. The colormap represents the magnitude of the velocity field as projected on the xz-plane, while the quivers
show the velocity projected on the plane. In all the figures, we superimpose in green the cell body and in blue the flagellar shapes. In particular,
all the 10 flagellar shapes are shown in (a), (b), and (c), while only the flagellar shape relative to t/Tb = 0.9 is reported in (d), (e), and (f).
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FIG. 8. Qualitative comparison in the xz-plane between the BEM
tractions and the singularity systems 2S1R (a) and 3S1R (b). The
torques represented in black are projections along the y axis. Black
arrows on the xz-plane complement the representation of the sin-
gularity systems. The colormap is for the magnitude f = |f | of the
BEM tractions f on the xz-plane.

strong singularity in the velocity field near the body center,
with velocities having much higher magnitudes than those
from the BEM.

This fact is further emphasized by Fig. 8, where the 2S1R
(left) and the 3S1R (right) models are compared. In particular,
the figure shows the respective systems of forces as superim-
posed to the traction field f from the BEM. Interestingly, we
notice that an increase in the complexity of the model in terms
of number of singularities leads to a more accurate representa-
tion of the continuous traction field. In passing, we notice that
a better approximation in the near field could be achieved by
further increasing the number of singularities, although at the
expense of increasing the number of parameters to account for
in modeling the system.

To prove the effectiveness of the qualitative reconstruction
in the near field, we analyze in the second row of Fig. 7
the flow field at time t/Tb = 0.9. This exhibits a clear puller
signature with, in addition, rotational flows induced by the
eccentricity of the flagellum. Both these facts are recovered
by the two singularity approximations. Only the 3S1R model,
however, is able to capture a feature revealed by the BEM
analysis, namely, that the forces exerted by the flagellum are
large and propulsive (directed downwards) near the proximal
end, while they are smaller but resistive (directed upwards)
at the distal end. This is clearly visible in Fig. 8, where we
recall that the tractions exerted by the flagellum on the fluid,
as computed using the BEM, are compared with the two
systems of singularities described above. Returning to Fig. 7,
we still recognize a significant peak in the velocity magnitude
at the center of the body. As discussed earlier, this is induced
by having concentrated at a singular point all the distributed
forces exerted by the cell body.

From our analysis, we conclude that the 2S1R approx-
imation provides a satisfactory way to rationalize the flow
field induced by a sample of swimming E. gracilis at dis-
tances between 1.5Lbody and 15Lbody. To arrive at a better
approximation in the immediate proximity of the cell body we
had to account for more singularities to capture the complexity

of the action of the flagellum on the surrounding fluid, as
demonstrated by the 3S1R approximation.

V. CONCLUSIONS

The analysis of the flow fields induced in the surrounding
fluid offers insight on the swimming behavior of micro-
organisms. In this work we have presented a numerical
reconstruction of the three-dimensional flow field generated
by a specimen of E. gracilis swimming using the “spinning
lasso” flagellar mechanism, a nonplanar waveform. We have
accomplished this by reconstructing the history of flagellar
shapes and shape velocities, and then computing the result-
ing flows by solving numerically the Stokes equations with
a boundary element method. The experimentally measured
translational and angular velocities of the swimmer, and its
observed trajectories are reproduced very accurately by our
procedure. This fact provides a strong argument supporting
our reconstruction of the swimming stroke.

Furthermore, we have validated our numerical reconstruc-
tion of the flow field against experimental measurements ob-
tained with the general defocusing particle tracking method.
This technique allows to track the three-dimensional position
of passive tracer particles dispersed in the fluid, and hence
to reconstruct the complete flow field. This is needed here
since E. gracilis uses a nonplanar flagellar beat. Looking at
the time- and azimuthally averaged velocity fields, we could
identify three characteristic flow structures for all the three
velocity components, both in the numerical and in the exper-
imental data. The good agreement between experimental data
and numerical results justifies the use of the numerical model
(our synthetic stroke) to analyze in more detail the swimmer
mechanism of real Euglena cells.

We have then analyzed the flow fields, computed by solv-
ing numerically the Stokes equations via BEM and using as
input the synthetic stroke. We have considered the leading
order term of the multipole expansion and we have found that
E. gracilis can be idealized as an off-axis puller. Its instanta-
neous character during the stroke oscillates between a puller
and a pusher behavior, similarly to what has been observed for
other micro-organisms such as sperm cells and C. reinhardtii.
We have deepened our analysis by coarse-graining the flow
fields in terms of a few dominant Stokes flow singularities.
We find that a system of two eccentric Stokeslets and one
Rotlet is able to approximate well the velocity field away
from the body, and captures some of the main features of
the swimming mechanism of the organism. Moreover, the
BEM analysis shows that the flagellum may exert forces that
change orientation along its length (e.g., propulsive forces
near the proximal end and resistive ones at the distal end). To
capture this effect and, more generally, to represent adequately
the signature on the generated flow left by flagella and cilia
that do not beat in a single plane, more complex systems
of singularities would be needed. We hope that our study
may motivate also others to investigate the question of which
systems of singularities may be effective in coarse-graining
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the flows associated with the three-dimensional trajectories
that have attracted interest in the recent bio-physical literature
on microswimmers [3,8,13,24–28].

We notice that results of the present study may open the
way to future studies on the internal dynamics of the flagellum
resolving the interactions between axoneme and molecular
motors and their regulation as in Ref. [60].
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