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Transformation toughness induced by surface tension of the crack-tip process zone interface: A
field-theoretical approach
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We study a crystal with a motionless crack exhibiting the transformational process zone at its tip within the
field-theoretical approach. The latter enables us to describe the transformation toughness phenomenon and relate
it to the solid’s location on its phase diagram. We demonstrate that the zone extends backward beyond the
crack tip due to the zone boundary surface tension. This setback engenders the crack-tip shielding, thus forming
the transformation toughness. We obtain a quadrature expression for the effective fracture toughness using two
independent approaches—(i) with the help of the elastic Green function and, alternatively, (ii) using the weight
functions—and calculate it numerically applying the results of our simulations. Based on these findings, we
derive an accurate analytical approximation that describes the transformation toughness. We further express it in
terms of the experimentally accessible parameters of the phase diagram: the hysteresis width, the phase transition
line slope, and the transformation strain.
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I. INTRODUCTION

A. Transformational process zones at the crack tips

Stress concentration at the tip of a brittle crack impacts
the solid state, gives rise to various nonlinear phenomena
that influence the crack’s static and dynamic properties. One
of them is the formation of the transformation process zone
(also referred to here as the zone). Within the zone, the solid
exhibits a phase which differs from that in bulk.

Observations of zones have been reported for many materi-
als of various chemical compositions such as some metals [1];
transformation-induced plasticity (TRIP) steels [2,3]; shape
memory alloys [4]; metallic glasses [5]; dielectric monocrys-
tals [6,7]; ferroelectric ceramics [8–10]; ZrO2 monocrystals,
ceramics, and composites [11–14]; and the two-dimensional
(2D) nanocrystal MoWSe2 [15]. Superconductive zones have
also been observed in high-Tc superconductors [16]. Observa-
tions of process zones in polymers and resins have been also
reported [17].

The modern instruments that have been developed during
the last decade—such as high resolution synchrotron scatter-
ing [18], high-angle annular dark-field scanning transmission
electron microscopy [19], electron nanodiffraction [20], scan-
ning electron microscopy with backscatter diffraction [21,22],
high-resolution x-ray microdiffraction [23], and atomic force
microscopy [24,25] to name a few—enable the direct obser-
vation of the zone, at least at the tip of a motionless or slowly
propagating crack.

A correlation has been established between the process
zone formation and the fracture toughness’s improvement,
referred to as the transformation toughness. Its observation
has been reported in TRIP steels [2], stishovite [26], zirconia
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ceramics [11,27–30], and ceramic composites containing zir-
conia components [31]. This has engendered a keen interest
to understand the origin of the transformation toughness.

B. Theoretical analysis of process zones

In the theoretical studies of transformational process zones
computational, mechanical, and field-theoretical approaches
can be pointed out.

1. Computational approach

The atomistic mechanisms of local phase transformations
have been studied by computer simulations and density-
functional-theory-like calculations for several solids, such as
iron [32], amorphous metal [33], silicon [34,35], tantalum
[36], zirconium [37], ZrO2 [38], UO2 [39], molybdenum
[20], Bi2NiAl [40], and nitinol [41]. This has become pos-
sible thanks to the development of computational power
accompanied by the advance of molecular dynamics and the
implementation of hybrid approaches that combine molecular
dynamics with quantum mechanics [35,42].

Simulations have revealed a strong dependence of the zone
formation upon (i) the loading mode, (ii) the crack plane
direction, and (iii) the sample geometry [32,43]. They have
further elucidated the atomistic mechanisms leading to the
development of a process zone [35,43].

2. Mechanical approach

Many papers have formulated the mechanical approach,
based on the assumptions that (i) the zone only differs from
the rest of the solid by its elastic modules and the existence
of a spontaneous strain, and (ii) a simple invariant relation
imposed on stress tensor components determines the zone-
matrix interface. This approach has enabled the description
of the process zone as an “elastic washer” that is produced
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from a different material and inserted into the matrix orifice
with a preload. Within these assumptions one treats the zone
as a purely mechanical problem with the moving boundary
[13,44–47].

Antolovich was the first to explain the transformation
toughness within a simplified mechanical approach [2]. He
included the energy of the wake, the long-living metastable
layer, to the fracture energy, thus explaining the growth of
the fracture toughness. Antolovich approach was followed in
many succeeding papers [27–30].

By analyzing the transformation toughness in a material
exhibiting a phase transition with a dilatant transformation
strain, McMeeking and Evans have proposed a mechanical
shielding [48] accounting for the compression taking place
within the wake: the latter opposes the crack opening. Bu-
diansky et al. analyzed this mechanism in a composite with
particles exhibiting stress-induced transformation [49]. Rose
discovered [50] and, while using Hutchinson’s approach [51],
Stump and Budiansky studied in detail the divergence of the
process zone referred to as the resonance [52]. These papers
used the phase boundary criterion σii = σm, where σii is the
spur of the stress tensor and σm is its critical value regarded as
a material constant. With these assumptions, the process zone
has a cardioid form and does not contribute to the transforma-
tion toughness [48,49].

Papers [53,54] analyzed a model in which the criterion
accounts for both dilatant and shear stresses. We will dis-
cuss some of these assumptions and criteria in more detail in
Sec. VIII. Budiansky and coworkers developed a model that
focuses on the shear strain within spherical ZrO2 inclusions
embedded into the elastic matrix by regarding the tetragonal
to monoclinic transition as a proper ferroelastic one [55,56].

A detailed review up to the year 2003 one finds in the paper
of Kelly and Rose [13].

In all above papers [2,27,28,30,48–50,52] the authors
assumed the crack to propagate quasistatically, while re-
garding the phase transformation as irreversible. These two
conditions ensured the formation of the long-living wake
contacting the crack surfaces behind its tip. The latter gives
rise to mechanical shielding contributing to the transformation
toughness.

More recent papers focused on the crack-tip phase transfor-
mations in the shape memory alloys such as NiTi, and steels.
Freed and Banks-Sills [57] developed a theoretical approach
to shape memory alloys accounting for the temperature shift
of the boundary criterion. Baxevanis et al. pointed to the
path dependence of the J integral and addressed the influence
of the transformation on the ratio of the far-field-energy to
the crack-tip-energy release rates [58,59]. Ma, Korsunsky,
and McMeeking described the transformation toughening in
anisotropic solids [60]. Lexcellent and Thiebaud [61] ana-
lyzed NiTi, while focusing on the asymmetry between tension
and compression. The transformation in this material at the
crack tip has been addressed in several papers [41,62]. Maletta
and Young developed a model of the NiTi process zone
accounting for the stress triaxiality [63]. Krupp et al. ana-
lyzed the extent of the martensite ahead of the crack tip in
metastable austenite steel depending on the crack length [64].
Vatne et al. addressed the crack-tip bcc-fcc transformation in
Fe [65]. Toughening in bulk metallic glasses has been studied

in [66]. The papers [67] numerically addressed the process
zones in various zirconia ceramics.

Let us particularly note that some papers have devel-
oped analytical approaches using the Green function method
[60,68,69] to describe the process zone because it is an impor-
tant instrument also used in this paper.

3. Field-theoretical approach

Let us first note that the phenomenological criteria of the
phase boundary hypothesized in most of the papers listed
above were inspired by those used in plasticity. However,
when applied to phase transformations, they are physically
not grounded. The use of the well-founded criteria [70–72]
leads to a different process zone configuration, as we discuss
in detail later on.

Second, the phase transformation irreversibility that is
fundamental for the papers [13,48–50,52], is a rather exotic
phenomenon (see Sec. VIII E 3). Indeed, in most solids, the
interface between the stable and metastable phases propagates
with a finite velocity, resulting in the decrease of the volume
occupied by the metastable phase [73].

These two points suggest a different transformation tough-
ness scenario.

These reasons motivated us to formulate this problem
within the field-theoretical approach. Within the latter, we
describe the zone by the field of the order parameter η =
η(R). Here R = (X,Y ), where X and Y are the spatial in-
plane coordinates. As in the classical Landau theory of phase
transitions [74], it represents a set of internal degrees of free-
dom of the solid. They determine the difference between the
crystal structures and symmetries of the mother and daugh-
ter phases, and η(R) obeys a well-established equation of
state, the Ginzburg-Landau equation [see Eq. (26), Sec. III].
Within this approach, both the process zone boundary and the
transformation reversibility straightforwardly follow from the
solution of the equation of state.

The field-theoretical approach has been pioneered by Nab-
utovsky and Shapiro [75] who described a superconducting
“filament” at a dislocation. In the paper [68] one of us first
adopted this approach to address the crack-tip zone. Later it
was developed in [76–82] as well as in the paper [83]. A few
recent papers applied the phase-field approach to cracks com-
bining it with the field-theoretical paradigm. It also proved
useful in studying the process zone in ferroelectrics [84].
This combination was used in [85] to determine the strain
and stress fields and the zone configuration at the crack tip.
Zhao et al. studied the structure of a polydomain zone at
the initial stage of the crack propagation by combining the
field-theoretical approach with the phase-field method [86].
Zhu and Luo applied such a combination to study nucleation
of the intergranular microcracking addressing polycrystalline,
tetragonal zirconia [87]. Levitas and coworkers studied the
effect of wetting of crack surfaces by the zone [88] and the
capillary phenomenon due to the interaction of the phase-field
gradients with the strain field [89]. However, these papers do
not discuss the transformation toughness problem.

Within the field-theoretical approach, we addressed the
process zone formed by the structural phase transformation,
the mother and daughter phases possessing different struc-
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FIG. 1. Schematic view of the process zone at the tip of a motion-
less or slowly propagating crack. The zone width r and the contact
length l are indicated.

tures of their crystal lattices [68,76–82]. We assumed that the
mother phase exhibits a high symmetry group, while the group
of the daughter phase is its subgroup. One can treat this case
within the Landau theory of phase transitions [74]. The zone
description differs from the classical Landau theory of the
bulk solids [74] in one essential aspect: it is the highly inho-
mogeneous stress in the vicinity of the crack tip that induces
the transition from the bulk mother phase to the daughter
phase localized within the process zone. Therefore, the order
parameter distribution is also highly inhomogeneous. Within
the zone, one finds η = η(R) �= 0. Far from the tip, the asymp-
totics η(R) → 0 holds, corresponding to the mother phase.

Previously [77], we have shown that at high temperatures,
T , or low value of the stress intensity factor, KI , no zone takes
place at the crack tip. By decreasing T , the zone emerges
upon achieving some critical temperature T∗ = T∗(KI ). At
T < T∗ the crack tip exhibits the transformational process
zone [71,77]. Analogously, at a fixed temperature T , the zone
emerges as soon as the stress intensity exceeds the critical
value KI � K∗ = K∗(T ).

We recently demonstrated [72,81] that at the tip of a mo-
tionless crack the zone shape is almost everywhere close to
the cardioid, but essentially differs from it in its back. This
difference will be discussed in Sec. V A. At the tip of a slowly
propagating crack, the zone exhibits a concave shape with an
invagination in its trailing part. Figure 1 schematically shows
the process zone (i) at the tip of the motionless or slowly
propagating crack (ii). In the slow crack propagation regime,
the wake completely “melts down.” Thus, the quasistatic
crack propagation (V → +0) allows no wake. Therefore, the
wake-based mechanisms cannot explain the transformation
toughness phenomenon, and the problem of defining the phys-
ical reasons for the transformation toughness in crystals and
its impact stays open.

(a) This paper. This paper aims to reveal the physical
origin of the transformation toughness in crystals and study
its mechanism free of the hypotheses of the transformation
irreversibility and the quasistatic crack propagation.

We report a self-consistent, field-theoretical model describ-
ing a crack’s process zone in an elastically isotropic crystal.
We show that this zone generates the transformation tough-

ness even in the case of the motionless crack. It does not
need to propagate. The field-theoretical approach enables us
to relate this phenomenon to the position of the solid in its
phase diagram.

We start with the derivation of a system of field-theoretical
equations defining the motionless crack with the process zone
at its tip, which is valid for a broad class of solids. Next,
we eliminate the elastic variables from this system. Thus, we
obtain the process zone equation only in terms of the order
parameter, demonstrating that it exhaustively describes the
crack-zone ensemble. Next, we derive an expression for the
stress intensity factor for such a crack which depends on a
single dimensionless parameter ζ0. We first obtain the value of
this parameter using our previous simulation results. On this
basis, we further obtain an accurate analytical approximation
for the transformation toughness for a motionless crack. Then,
we demonstrate that one expresses the relative perturbation
of the fracture toughness in terms of the product of two di-
mensionless variables: s only depending on the position in
the phase diagram and � defining the toughening intensity.
We, finally, show that � is proportional to the ratio �Tb/�Th,
where �Th is the hysteresis width and �Tb is the shift of the
transformation temperature under the applied transformation
stress.

(b) The structure of this paper. In Sec. II, we derive a
system of equations for the crack-zone ensemble. In Sec. III,
we eliminate the elastic variables and derive the process
zone equation. In this section, we also introduce the self-
consistency condition. In Sec. IV, we pass to dimensionless
variables convenient for the numerical solution. In Sec. V, we
recite a part of the results of our simulations [72,81] which
are necessary for the present paper. In Sec. VI, we derive
an equation for the stress intensity factor. We do this within
the Green function approach in Sec. VI A and alternatively
using the weight functions in Sec. VI B to numerically obtain
the value of ζ0 in Sec. VI C. We further derive an accurate
analytical approximation for ζ0. On this basis, we analyti-
cally obtain the expression for the transformation toughness
in Sec. VII. Section VIII contains a discussion. Here we
discuss the physical origin of the order parameter, and list
the limitations of our approach and its generalizations. We
further compare our results to the previous ones, review the
possible physical origins of long-living wakes, and relate the
mechanical “resonance” of Rose to the position on the phase
diagram. Finally, we reveal the physical origin of fracture
toughness perturbation and give estimates of its typical values.
In Appendix A, we give details of the numerical methods
and the estimates of the integrals yielding ζ0. Appendix B
communicates the derivation of the analytical expression for
the contact length l (defined in Fig. 1), which enables us to
obtain ζ0 analytically.

II. FIELD-THEORETICAL EQUATIONS DESCRIBING THE
CRACK-ZONE COMPLEX

A. The free energy

In this paper, we focus on the case of a structural phase
transformation generating the process zone at the crack tip.
In this case, the order parameter η is a normal coordinate
of an optical phonon (see Sec. VIII A for its more detailed
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description). The order parameter η(R) �= 0 contributes to the
solid’s free energy F in the following way:

F = F0 +
∫

�

�(η, ε)d� (1)

where F0 is the free energy of a solid containing a crack
without a process zone, and d� = dXdY is the area element.
Here X and Y are the in-plane coordinates, and � is the infinite
plane. In the expression (1), we assign the integral to the
unit length in the Z direction. � = �(η, ε) is the free energy
density of the process zone, and ε ≡ εik is the strain tensor:

εik = 1

2

(
∂ui

∂Xk
+ ∂uk

∂Xi

)
. (2)

Here the vector ui = ui(X,Y ) also denoted as u(R) is the
displacement vector. Note that it should not be confused with
the rescaled order parameter, u(x, y, τ ), used in the following.

One can regard the free energy density as a molecular po-
tential for nonlinear atomic vibrations in terms of the normal
coordinate η, and write it down in the following form:

�(η, εik ) = �pt(η) + �el(ε) − Aη2εii. (3)

Here the function �pt(η) denotes the part responsible for the
phase transition in the stress-free solid. One can represent
�pt(η) as a polynomial in terms of even powers of the order
parameter η and its gradient ∇η [74]. Given that we aim to
describe a first-order transition, the polynomial must be at
least the sixth order:

�pt = g

2
(∇η)2 + α

2
η2 + β0

4
η4 + γ

6
η6. (4)

Here g > 0 and γ > 0 are the parameters of the Landau
potential (1). If β0 < 0, then the potential (4) describes the
first-order phase transition between the mother phase η = 0
and the daughter phase η �= 0. It is this case that we address in
the present paper. In accord with the classical Landau theory
we assume that only the factor α depends on the temperature:

α = α0(T − Tc0) (5)

where α0 > 0 is a constant, T is the temperature, and Tc0 is
the Curie temperature at zero pressure.

We do not examine here the justification of the free energy
(4). It has been discussed in numerous papers and textbooks.
In the case of homogeneous crystals, the description of the
second-order phase transformations (β0 > 0, γ > 0, or γ =
0) one finds in, e.g., [74,90], and [91]. The discussion of the
first-order phase transformations with the potential (4) (β0 <

0, γ > 0) one finds in [90,91]. For more complex cases with
multicomponent order parameters and the Landau polynomial
of the order higher than 6, we refer the reader to the book
[92,93].

Furthermore, �el(ε) is the elastic part of the free energy
density, and here we use the elastically isotropic approxima-
tion:

�el = λ

2
ε2

ii + με2
ik (6)

where λ = Eν/(1 + ν)(1 − 2ν) and μ = E/2(1 + ν) are
Lamé coefficients, μ is the shear modulus, E is Young’s
modulus, and ν is Poisson’s ratio.

The limitation with the square terms �el ∼ ε2 implies that
we assume that the elastic nonlinearity plays a negligible role.

In contrast, the nonlinearity related to the order parameter
(4) is essential. This assumption is valid for many inorganic
solids. Let us note that it fails for the essentially elastically
nonlinear solids such as ferroelastics [94] or brittle gels [95].

Finally, the contribution Aη2εii to (3) takes into account
the coupling between the strain and order parameter fields. It
is worth commenting that the form of the term Aη2εii in (3)
implies that the phase transition only gives rise to a transfor-
mation strain that is a pure dilatation, while no spontaneous
shear strain takes place. Whether an increase in the volume
or its decrease takes place during the transformation depends
on the sign of the striction constant A. For A < 0, the process
zone only emerges below the bulk phase transition tempera-
ture, Tb. At A > 0, it appears at T > Tb [77]. It is this latter
case, A > 0, that we focus on here. Within the process zone,
the transformation dilatation generates the stress referred to
here as the transformation stress.

Let us observe that in a homogeneous solid with no crack,
one can unify the terms ∼ η2 in the free energy density (3)
and (4) in the following way:

�(η, εik ) = α0

2

(
T − Tc0 − 2Aεii

α0

)
η2 + 1

4
β0η

4

+ 1

6
γ η6 + �el(ε).

Let us express the dilatation εii in terms of the hydrostatic
pressure p = −σii/3 as follows: εii = −3(1 − 2ν)p/E . This
representation enables us to define the pressure-dependent
Curie temperature Tc(p):

Tc(p) = Tc0 − 3(1 − 2ν)A

α0E
p. (7)

We make use of this expression below.
The parameters of the Landau potential g, α0, β0, Tc0, and

A related to the phase transformation together with the elastic
constants E and ν constitute a set of material constants of the
solid that control both its phase transformations and fracture
behavior.

B. Equations of state

By variation of the free energy F (1) with respect to the
order parameter η and displacement vector u one derives the
equations of state:

g�η − [α − 2Aεii(R)]η − β0η
3 − γ η5 = 0

∂σik/∂Xk = 0 (8)

Here � = ∂2/∂X 2 + ∂2/∂Y 2 is the 2D Laplace operator. The
term ∼ εiiη in the first equation (8) accounts for the inter-
action of the soft mode η with the strain field of the solid.
Alternatively, one can regard it as the interaction between the
acoustic and optical phonons. Furthermore, σik is the stress
tensor defined as σik = ∂�/∂εik , which takes the following
form:

σik = λε j jδik + 2μεik − Aη2δik . (9)

Here δik is the Kronecker symbol, and the last term in (9)
describes the transformation stress generated by the phase
transition.
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FIG. 2. Illustration to the mechanical boundary conditions. A
fragment of an infinite plane with a semi-infinite crack loaded nor-
mally to its surface by the force p(X ). The origin of coordinates is
placed in the crack tip.

C. Statement of the problem

1. Boundary conditions

A system of equations (8) and (9) describes a more general
range of phenomena than only the crack-tip process zone,
such as the condensation of soft phonons, and magnetic or
superconductive states at dislocations [96] and others.

The crack-process zone complex is a particular case obey-
ing this system, and its specificity manifests itself in the
boundary conditions.

Keeping in mind that we aim to describe the process zone
localized in the close vicinity of the crack tip while vanishing
afar, we use the zero Dirichlet condition at the outer boundary
∂� of the domain �:

η|∂� = 0. (10)

One also needs to define the boundary condition for the
order parameter at the crack’s surfaces ∂�crack. Here we use
the so-called natural boundary condition:

(n · ∇η)|∂�crack
= 0 (11)

where n is the unit vector normal to the crack surfaces ∂�crack.
Depending on specific properties of the material and the

state of the fracture surface a few other types of boundary
conditions at ∂�crack are also plausible, such as in the case of
the wetting of the crack surface by the daughter phase [88,89].
However, a discussion of such boundary conditions is out of
the scope of this paper.

Let us turn to the statement of the mechanical problem. We
consider a semi-infinite crack spanning from X = −∞ to 0
in the infinite plane. The crack is only loaded by a force p(X )
(X < 0) that is normally and symmetrically applied to both its
surfaces, as shown schematically in Fig. 2.

2. A high-temperature solution and bifurcation

At high temperatures, T , or low value of the crack load,
only the solution η(R) ≡ 0 of (8) is stable. This corresponds

to no zone at the crack tip. The stress intensity factor has the
classical form

K (ap)
I =

√
2

π

∫ ∞

0

p(−X )√
X

dX (12a)

referred to here as the applied stress intensity factor. Here “ap”
in the superscript stands for “applied.” It generates the classi-
cal stress and strain distributions around the tip. The applied
stress intensity factor gives rise to the solution known from the
linear elastic fracture mechanics with the displacement vector
u(0)

i (i = 1, 2) in the standard form [97]:

u(0)
i = K (ap)

I

μ

√
R

2π
ϕi(θ ) (13)

with

ϕi(θ ) =
{

cos(θ/2)
[
1 − 2ν + sin2(θ/2)

]
, i = 1

sin(θ/2)[2 − 2ν − cos2(θ/2)], i = 2
. (14)

Here R = √
X 2 + Y 2 and θ = arctan(Y/X ) are the polar coor-

dinates with the origin at the crack tip. Within the linear elastic
fracture mechanics (13) and (14) give rise to the classical
expression for the crack-tip strain ε

(0)
i j [97].

Below a certain temperature T = T∗(K (0)
I ), the system of

equations (8) and (9) exhibits a bifurcation. The mother-phase
solution η ≡ 0 becomes unstable and a new stable solution
η(R) �= 0 with η(∞) = 0 arises. This solution describes a
crack-tip zone embedded into the mother-phase matrix. The
temperature of the zone formation T∗ lies above the spinodal
of the bulk phase transition [71]. Further details can be found
in the paper [77].

D. Bueckner’s approach revisited

The transformation from the zoneless crack to that possess-
ing the zone gives rise to the transformation strain. The latter
adds to ε

(0)
i j and, correspondingly, forms a supplementary

stress distribution around the crack tip. This stress contributes
to the load experienced by the crack and, thus, perturbs the
stress intensity factor. The net stress intensity factor KI takes
the following form:

KI = K (ap)
I + δKI . (15)

Within the present approach, we determine this perturbation
in a self-consistent way.

Let us observe that the transformation stress term −Aη2δik

in Eq. (9) can be interpreted as the bulk force, f = ( f1, f2, 0),
with the components

fi = −A
∂η2

∂Xi
(i = 1, 2). (16)

One can regard it as if the zone generates the force (16) in all
its points. To cope with such forces, one can use the approach
put forward by Bueckner, enabling one to convert the load
applied somewhere to the body to the force distributed along
the crack’s surface [98] (see also [99]). One performs this
approach in two steps.

During the first step, one considers a hypothetical crack-
free body to which bulk forces are applied. One then
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determines its stressed state. Following Muschelisvili [99], we
refer to this state as the first stressed state.

During the the second step, one calculates the stress of the
first stressed state in the points of the crack surface and uses it
to determine the perturbation of the stress intensity factor.

III. ELIMINATION OF ELASTIC VARIABLES

Expression of the elastic variables in terms of the order
parameter distribution

By directly applying Bueckner’s idea to the crack with
the process zone, we observe that the displacement vector ui

comprises two contributions:

ui(R) = ũi(R) − A
∫∫
�

Gi j (R − R′)
∂η2(R′)

∂X ′
j

d�′. (17)

Here Gi j (R − R′) is the elastic Green function of the solid
with no crack, d�′ = dX ′dY ′, and we use the Einstein sum-
mation convention.

The expression (17) is the solution of the elastic part of
the problem in terms of the derivatives of the order param-
eter distribution ∂η2/∂Xj . The second term (17) describes
the displacements in the whole body generated by the phase
transformation within the zone.

The first term describes crack contribution. In the classical
Green function theory, one takes the first term in (17) in the
form ũi = u(0)

i (13). It then describes the contribution of the
bare crack with no process zone.

However, as soon as the process zone arises, taking ũi =
u(0)

i , one only accounts for a part of the crack contribution to
the displacements. Indeed, the zone generates transformation
stress in the whole body described by the second term (17).
This stress exerts a load on the crack’s surfaces. The latter
adds to the originally applied one, p(X ) (Fig. 2). It, thus,
contributes to the perturbation of the stress intensity factor.
For this reason, in the expression for (17) instead of u(0)

i (R)
(13), we use the expression ũi(R) in which one replaces the
original stress intensity factor K (ap)

I by its perturbed value KI

according to (15):

ũi(R, θ ) = KI

μ

√
R

2π
ϕi(θ ) (i = 1, 2) (18)

with ϕi(θ ) given by (14).
In the present problem, the latter replacement represents a

self-consistency condition. Let us stress that while we started
with using the Green function of the intact elastic plane, the
replacement K (ap)

I → KI accounts for the crack presence in
it. The solution (17), therefore, describes the solid with the
crack-zone complex, rather than mechanistically unifying the
bare crack with the hypothetical “crack-free zone.” The solu-
tion becomes complete. One can regard this procedure as the
“upgrading” of the Green function of the crack-free solid to
the case of one containing the crack.

One finds the strain tensor in the following form:

εil (R) = ε̃il (R) − A

2

∫∫
�

[
∂Gi j (R − R′)

∂Xl
+ ∂Gl j (R − R′)

∂Xi

]

× ∂η2(R′)
∂Xj

d�′. (19)

In the expression (19), ε̃il (R) is the strain generated by the
crack. It originates from the displacements ũi (18) according
to (2). In the following, we only use its spur, which we there-
fore write here in the explicit form:

ε̃ii(R) = 2(1 − 2ν)(1 + ν)KI

E (2πR)1/2
cos(θ/2). (20)

KI stays here, instead of K (ap)
I , as in (18), according to the

self-consistency condition.
It is convenient to introduce the Fourier transform of the

square of the order parameter, η2(R):

η2(R) =
∫∫

Q(k) exp(ikR)
d2k

(2π )2
;

Q(k) =
∫∫

η2(R) exp(−ikR)d2R (21)

where the bold k is the vector of the reciprocal space.
One should not confuse it with its in-plane components
ki, such that k = (k1, k2) and its scalar absolute value k =
(k2

1 + k2
2 )1/2 met in the expressions below. We also use the

Fourier transform of the elastic Green function Gi j (k) =∫∫
Gi j (R) exp(−ikR)d2R:

Gi j (k) = 2(1 + ν)

E

[
δi j

k2
− kik j

2(1 − ν)k4

]
. (22)

One finds the integral representation of the dilatation, εii(R):

εii(R) = ε̃ii(R) + A
∫∫

kik jGi j (k)Q(k) exp(ikR)
d2k

(2π )2
.

(23)
Let us observe that the following identity holds:

Gi j (k)kik j = (1 − 2ν)(1 + ν)

E (1 − ν)
. (24)

Substitution of this relation into (23) simplifies the latter.
Comparing it with (21) one finds∫∫

kik jGi j (k)Q(k) exp(ikR)
d2k

(2π )2
= (1 − 2ν)(1 + ν)

E (1 − ν)

×
∫∫

Q(k) exp(ikR)
d2k

(2π )2
≡ (1 − 2ν)(1 + ν)

E (1 − ν)
η2(R)

yielding the exact expression for εii(R):

εii(R) = 2(1 − 2ν)(1 + ν)KI

E (2πR)1/2
cos(θ/2)

+ A(1 − 2ν)(1 + ν)

E (1 − ν)
η2(R) (25)

where the first term in the right-hand part represents ε̃ii(R)
given by the classical expression (20) of the linear elastic
fracture mechanics, while the second one describes the con-
tribution of the zone dilatation.

Finally, the substitution of the dilatation (25) into (8) yields
the zone equation. This is the nonlinear equation of state in
terms of the order parameter:

g�η −
[
α − B

cos(θ/2)√
R

]
η − βη3 − γ η5 = 0 (26)

where for the sake of compactness, we introduce a new pa-
rameter B expressed in terms of a combination of material
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constants and the perturbed stress intensity factor KI :

B = 4A(1 − 2ν)(1 + ν)√
2πE

KI (27)

and instead of β0 we now use its modified value β:

β = −
(

|β0| + 2A2(1 − 2ν)(1 + ν)

E (1 − ν)

)
< 0. (28)

Let us note that the coordinate-dependent expression
B cos(θ/2)R−1/2 in (26) originates from the first term in the
right-hand part of (25). It describes the effect of the inhomo-
geneous strain field on the order parameter. The second term
in the right-hand part of (25) participates in the modification
of the parameter β (28).

The zone equation (26) self-consistently describes the or-
der parameter distribution at the crack tip engendered by the
net near-field strain. The latter represents the combined con-
tribution of the crack and process zone.

Furthermore, the only dependent variable of (26) is η(R),
and no elastic variables are involved. One concludes that the
solution of (26) exhaustively describes the process zone at the
crack tip. Provided that the (26) solution has been obtained,
it is possible to describe the fracture toughness. This task will
be addressed later on.

IV. RESCALING

For further study, it is convenient to rescale the variables to
make Eq. (26) dimensionless. This will enable us to decrease
the number of control parameters of (26), thus simplifying
the numerical study. Even more important, it will later enable
us to obtain a closed expression for the perturbed fracture
toughness.

Rescaling Eq. (26)

Let us pass from the physical coordinates X and Y and the
order parameter, η(X,Y ), to the dimensionless ones x, y and
u = u(x, y) as follows:(

X

Y

)
= R0

(
x

y

)
, η = η0u (29)

where R0 is the intrinsic scale of the problem, and η0 is the
characteristic value of the order parameter. They are expressed
as follows:

R0 = 1

21/3

( g

B

)2/3
, η0 = B1/3

21/6γ 1/4g1/12
. (30)

Their origin has been discussed in detail in [77] and [72].
Substitution of (30) into Eq. (26) yields the following equa-

tion:

�u − [a − U (x, y)]u + bu3 − u5 = 0 (31)

with the boundary conditions u|∂� = 0 and (n · ∇u)|∂�crack
=

0.
Here �u = ∂2u/∂x2 + ∂2u/∂y2 and ∇u = (∂u/∂x, ∂u/∂y)

are the 2D Laplacian and gradient of u in terms of the dimen-
sionless coordinates

U (x, y) = [(x2 + y2)1/2 + x]1/2

(x2 + y2)1/2 =
√

2 cos(θ/2)

r1/2
(32)

FIG. 3. Plane of the dimensionless parameters (b, a) divided into
domains with different behaviors of Eqs. (3) and (4). We simulated
Eq. (31) in the domain IV at b = 1. The points where the simulations
have been performed are shown as follows: a = 0.20 (diamond), 0.21
(asterisk), 0.22 (disk), 0.23 (filled square), 0.24 (triangle), and 0.25
(open square).

where r = (x2 + y2)1/2 and θ = arctan(y/x) are dimension-
less cylindrical coordinates.

Equation (31) depends on two dimensionless control pa-
rameters, a and b. They are related to the parameters of the
potentials (4) and (6) α, β, γ , and others as follows:

a = 22/3g1/3

B4/3
α, b = − 21/3g1/6

B2/3γ 1/2
β. (33)

Let us recall that β < 0 describing the first-order transition
corresponds to b > 0. In this paper, we will only consider the
case α > 0. This corresponds to a > 0.

Equation (31) can be conveniently solved numerically.

V. NUMERICAL RESULTS

A. The phase diagram

Figure 3 shows the plane of parameters (b, a). It is divided
into domains where the free energy (3) and (4) exhibits dif-
ferent structure and, correspondingly, Eq. (31) has solutions
of different types. Let us observe that a and b depend on ther-
modynamic parameters such as temperature T and pressure p,
temperature and concentration, or any other pair. Therefore,
the (b, a) plane maps on the plane of the two thermodynamic
parameters, such as the (p, T ) plane. The latter represents the
phase diagram of the solid. Let us mention that this mapping
is standard in the Landau theory of phase transitions [90,92].
Consequently, we refer to Fig. 3 as the phase diagram.

Let us briefly describe the phase diagram. The pure mother
phase with no crack-tip process zone takes place in domain
I, while the pure daughter phase occupies the domain II. In
domains III and IV, the mother and daughter phases coexist:
the mother phase being metastable and the daughter stable in
the domain III. In contrast, the mother phase is stable and the
daughter phase is metastable in domain IV.

Domain IV is flanked by the upper spinodal

aup = b2

4
(34)

on its top (shown in Fig. 3 by the dashed line 1), and by the
binodal

ab = 3b2

16
(35)
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at its bottom (solid line 3). Domain III is bounded by the lower
spinodal alow = 0 from below (line 2 in Fig. 3). These two
domains are separated from one another by the binodal ab. On
the binodal, the mother phase’s free energy density equals that
of the daughter phase.

Finally, at line 4 (the dot-dashed line in Fig. 3) Eq. (31) ex-
hibits a bifurcation. Below this line, the process zone emerges
at the crack tip. Thus, it only exists above line 3. The zone
consists of the daughter phase embedded in the matrix of
the mother phase. A more detailed description of the phase
diagram can be found in [72].

B. The zone

In a recent paper [72], we reported the numerical solution
of Eq. (31) describing the motionless and the propagating
crack-process zone complex. By focusing on the results [72]
with V = 0, one obtains the case of the motionless crack-zone
ensemble, which we address in this paper. Let us recite a few
results of [72] and [82], which are necessary to follow this
paper.

We simulated (31) within domain IV of the phase diagram
shown in Fig. 3. The details of the simulation are described
in Appendix A. All simulations were performed with b = 1.
In this case, the upper spinodal is aup = 1/4, while the bin-
odal is ab = 3/16 ≈ 0.18. For the simulation, we selected six
values of the parameter a = 0.20 + 0.01 × i, (i = 0, 1,...,5)
taken between these boundaries. They are shown in Fig. 3
by diamond, asterisk, disk, filled square, triangle, and open
square correspondingly.

The simulation returns the distributions u = u(x, y) at the
values of a, which were listed earlier. Figure 4(a) shows a
typical distribution u(x, y) at a = 0.24, b = 1. Because of the
mirror symmetry, we only display the distribution at y � 0.
The solid line at x � 0, y = 0 (arrow) indicates the crack’s
position concerning the order parameter distribution with its
tip in the point x = y = 0.

Figure 4(b) shows the zone boundary of the distribution
shown in Fig. 4(a). The zone boundary closely resembles
the shape of the cardioid. It exhibits, however, a small but
essential difference from the cardioid configuration. Indeed,
Fig. 4(c) displays a blown-up view of a portion of the bound-
ary behind the crack tip. One observes that the boundary does
not hit the crack surface exactly at the crack tip, as it would
in the cardioid case. Instead, it meets the crack surface at a
distance l behind the tip. For instance, in the case a = 0.24
shown in Fig. 4(c) we found l to be about 18 dimensionless
units. The distributions at other a values (a = 0.20, 0.21, 0.22,
0.23, and 0.25) are similar in their shapes to that shown in
Fig. 4. These distributions only differ from one another by
their sizes. The most important geometric parameters, the
zone width r and contact length l (see Fig. 1), illustrating the
dependence of the zone sizes on the parameter a are displayed
in Figs. 5(a) and 5(b). The dots show the simulation results.

One can see that r grows from about 500 dimensionless
units at a = 0.25 to 12 718 units at a = 0.20. Meanwhile, at
the same a values the contact length l increases from 15.1 to
132.4 units.

The zone interface surface tension is described by the term
g(∇η)2/2 in the free energy density �ph(4) transforming into

FIG. 4. (a) Dimensionless order parameter u = u(x, y) at a =
0.24 and b = 1. Only the part at y � 0 is displayed. The red solid
line (pointed out by the arrow) indicates the crack position. (b) The
boundary of the zone shown in (a) in the (x, y) plane. (c) Its fragment
(shown in red) in the vicinity of the x axis enclosed in a circle in (b).
The zone boundary hits the crack surface at the point (−18, 0) behind
the crack tip placed at (0,0) yielding the contact length l ≈ 18.

�s = (∇u)2/2 in terms of the dimensionless variables. In
[71], we derived the expression for the surface energy in terms
of the interface boundary curvature radius Rc. In dimension-
less variables, it takes the following form:

�s = a1/2u2
d

Rc
(36)

where ud represents the solution of (31) with �u ≡ 0 and
U (x, y) = 0 [72]:

ud =
√

b + (b2 − 4a)1/2

2
. (37)

The boundary curvature radius in front of the tip is about
the zone width: Rc ∼ r. Furthermore, in Fig. 5(a) one can
see that r � 1. Therefore, we neglect �s when describing
the zone size in front of the crack tip. The zone boundary
condition then reduces to that of the local binodal, that is
a − √

2 cos(θ/2)r−1/2 = 3b2/16 yielding the cardioid r(θ ) =
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FIG. 5. The zone width r (a) and contact length l (b) as functions
of a. In both cases, the dots show the values obtained by simulations
at b = 1 and different a values. The solid line in (a) corresponds to
the approximate relation (38), and in (b) to (39) with l0 ≈ 10.42. The
dot-dashed vertical line indicates the binodal position where both
curves diverge.

r cos2(θ/2) with

r ≈ 2

(a − 3b2/16)2
. (38)

The run of the curve (38) as a function of a is shown in
Fig. 5(a) by the solid line.

The setback observed in all of our simulations arises be-
cause of the surface tension of the zone boundary. The latter
only plays an essential role in the vicinity of the point x =
y = 0. Here it makes the casp-shaped configuration of the
cardioid energetically unfavorable forcing the boundary to
take a smooth configuration. One can approximate it by a
portion of a circle with a radius equal to the curvature radius
of the invagination [82], as we describe in detail in Appendix
B. This yields the dimensionless contact length l expressed in
terms of a and b:

l ≈ l0
16a − 3b2

[b(b2 − 4a)1/2 − 2a + b2]1/4

[8a − b2 − b(b2 − 4a)1/2]1/2
(39)

with l0 ≈ 10.42. Its behavior at 0.20 � a � 0.25 and b = 1 is
shown by the solid line in Fig. 5(b).

One sees that the contact length l diverges as it approaches
to the binodal a → ab (35) as l ∼ (a − ab)−1, and takes a
finite value lup ≈ 8.76b−5/4 at the upper spinodal a = aup (34).
The latter diverges at the tricritical point b = 0 of the phase
diagram.

This setback plays an essential role in forming the transfor-
mation toughness, as we prove below.

VI. EFFECTIVE STRESS INTENSITY FACTOR

Using these results let us turn to the calculation of the per-
turbation of the stress intensity factor according to Bueckner’s
algorithm.

A. Within the Green function approach

1. Step 1

During the first step, one defines a first stressed state in
a hypothetical crack-free body, which, nevertheless, contains
the process zone. This step is performed by using the Green
function. It is straightforward to use it in the form of the stress
in the point z = x + iy generated by the local force fx + i fy

applied in the point Z = X + iY derived in [100]. Here i is the
imaginary unit. The expression reads

�(z) = fx + i fy

8π (1 − ν)

1

z − Z
, �(z) = k( fx − i fy)

8π (1 − ν)

1

z − Z

− Z ( fx + i fy)

8π (1 − ν)

1

(z − Z )2 . (40)

Here �(z) and �(z) are Kolosov-Mushelishvili potentials, the
bar over the symbol [like Z , or �′(z)] means its complex
conjugation: Z = X − iY , and k = 3−4ν. Let us stress that
in this section all the coordinates x, y, z, X , Y , and Z are
dimensional. They have the usual dimension of length. The
stress in the point z can be defined using the standard relation
of the plane theory of elasticity [99]:

σyy = Re[2�(z) + z�′(z) + �(z)]. (41)

By passing to the point lying on the crack contour z = x
(x < 0, y = 0) and integrating over the domain � one finds
the stress σyy(x) of the first stressed state. For compactness,
we represent it in the form of two terms: σyy(x) = σ (1)

yy (x) +
σ (2)

yy (x), where

σ (1)
yy (x) = − A

4π (1 − ν)

×
∫∫

�

{
(X − x)[(1 + 2ν)Y 2 − (1 − 2ν)(X − x)2]

[(X − x)2 + Y 2]2

× ∂η2(X,Y )

∂X

}
dXdY, (42)

σ (2)
yy (x) = − A

4π (1 − ν)

×
∫∫

�

{
Y [(3 − 2ν)Y 2 + (1 − 2ν)(X − x)2]

[(X − x)2 + Y 2]2

× ∂η2(X,Y )

∂Y

}
dXdY. (43)

These expressions enable us to pass to the second step of
Bueckner’s algorithm.

2. Step 2

Within this step, one uses the first stressed state to obtain
the perturbation of the stress intensity factor, δKI :

δKI = −
√

2

π

∫ ∞

0

σyy(−x)√
x

dx. (44)
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Let us now pass from the dimensional order parameter and
coordinates x, X , and Y with the dimension of length to
dimensionless parameters u, ξ , x′, and y′:

η(X,Y ) = η0u(x′, y′), x = −R0ξ, X = R0x′, Y = R0y′

(45)
where the factors η0 and R0 are determined by (30).

Using (42) and (43) one writes down the perturbation δKI

as follows:

δKI = −Aη2
0R1/2

0 ζ0. (46)

The dimensionless parameter ζ0 is equal to an integral ex-
pressed in terms of the dimensionless variables ξ , x′, and y′:

ζ0 =
∞∫

0

dξ√
ξ

∫∫
�

dx′dy′
{

P1(ξ, x′, y′)
∂u2(x′, y′)

∂x′

+ P2(ξ, x′, y′)
∂u2(x′, y′)

∂y′

}
(47)

with

P1(ξ, x′, y′) = − (x′ + ξ )[y′2(1 + 2ν) − (x′ + ξ )2(1 − 2ν)]

(2π )3/2(1 − ν)[(x′ + ξ )2 + y′2]2

(48)
and

P2(ξ, x′, y′) = −y′[y′2(3 − 2ν) + (x′ + ξ )2(1 − 2ν)]

(2π )3/2(1 − ν)[(x′ + ξ )2 + y′2]2 . (49)

One finds the perturbed stress intensity factor KI in terms of
K (ap)

I that was originally applied to the crack:

KI = K (ap)
I − Aη2

0R1/2
0 ζ0. (50)

Therefore, the problem reduces to the calculation of the
single parameter ζ0 (47). Below, we estimate the integral (47)
numerically. After obtaining ζ0, one determines the effective
stress intensity factor KI using (50) and, with its use, finds
the fracture toughness. We fulfill this program later on in the
present paper.

Let us note, however, that the numerical estimation of the
integral according to (47)–(49) is prone to numerical errors.
They are partly due to the singular character of the expres-
sions for P1(ξ, x′, y′) and P2(ξ, x′, y′). The determination of
the derivatives ∂u2(x′, y′)/∂x′ and ∂u2(x′, y′)/∂y′ from the
numerical data for u(x′, y′) also introduces errors. For the sake
of control, in parallel to the Green function method, we also
apply the method based on the weight functions, which will
be described in the next section.

B. The weight functions procedure

The weight functions method that was introduced by
Bueckner [101] has been applied by McMeeking and Evans
to define the perturbation of the stress intensity factor by the
process zone and the zone-wake complex within the mechan-
ical approach [48]. Here, we adopt this procedure for the
field-theoretical approach.

The weight functions method expresses the perturbation of
the stress intensity factor as follows:

δKI = p1

∮
C

(H · n)dS (51)

FIG. 6. Contour C of integration of (51) consisting of two sub-
contours, C1 along the crack and C2 along the zone boundary with
the mother phase described by R = R(θ ). The contact length L where
the zone meets the crack surfaces is indicated.

where p1 is the normal stress at the zone boundary [48]. In
terms of the order parameter one expresses it as p1 = Aη2.

By adopting the weight function procedure to the field-
theoretical approach, we need to approximate the order
parameter distribution η = η(R) by a step function. Let us
approximately assume it to be strictly zero outside of the
zone. Inside, we take a constant value from the solution of
a homogeneous problem [72]:

η = η0ud (52)

where ud is given by the expression (37).
The integral (51) runs along the closed contour C = C1 ∪

C2. The contour C1 goes along the line where the zone contacts
both crack surfaces, with the length L (referred to as the
dimensional contact length with the dimension of meter). The
contour C2 runs along the zone boundary with the mother
phase and can be characterized by the radius vector R = R(θ ),
as one can see in Fig. 6. Let us again pass from L and R
with the dimensions of length to the dimensionless variables l
and r:

L = R0l, R(θ ) = R0r(θ ). (53)

In terms of the dimensionless variables l and r(θ ), one can
express the weight functions vector H, the normal unit vector
n, and the arc element dS along C2 as follows:

H = 1

2
√

2π (1 − ν)R1/2
0

√
r(θ )

(h1, h2) (54)

where

hi =
{

cos(θ/2)[2ν + sin(θ/2) sin(3θ/2)], i = 1
sin(θ/2)[−2ν − cos(θ/2) cos(3θ/2)], i = 2

and

n=
(

sin(θ )r′(θ ) + cos(θ )r(θ )√
r′2(θ ) + r2(θ )

,−cos(θ )r′(θ )− sin(θ )r(θ )√
r′2(θ )+r2(θ )

)
(55)
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and

dS = R0

√
r′2(θ ) + r2(θ )dθ. (56)

Let us represent δKI as a sum δKI = δK (1)
I + δK (2)

I corre-
sponding to the portions C1 and C2 of the contour C. One can
calculate the first contribution straightforwardly:

δK (1)
I = −4Aη2

0R1/2
0 u2

d√
2π

√
l. (57)

The second contribution takes the form

δK (2)
I = Aη2

0R1/2
0 u2

d

2
√

2π (1 − ν)
I (58)

where I is the integral along the contour C2:

I = 1

2
√

2π (1 − ν)

π∫
0

{r′(θ )J1(θ ) + r(θ )J2(θ )} dθ√
r(θ )

(59)

where

Ji(θ ) =
{

sin(θ/2)[(5 − 8ν) cos(θ ) − 4ν + 1], i = 1
cos(θ/2)[(7 − 8ν) cos(θ ) + 4ν − 5], i = 2.

By collecting these results together one comes to the ex-
pression (46) with

ζ0 = ζ1 + ζ2, ζ1 = 23/2u2
d

π1/2

√
l, ζ2 = − u2

dI

π
√

2(1 − ν)
.

(60)
As soon as the contour C2 has been obtained, the dimension-
less parameter ζ0 can be calculated.

The dimensionless parameter ζ0 determines the magnitude
of the zone effect on the fracture toughness. Therefore, it is
essential to find its absolute value. We do this numerically in
the following section.

C. The value of ζ0

1. Numerical results

The details of the numerical estimation of integrals (47)
and (59) are given in Appendix A. These procedures enabled
us to find ζ0 = ζ0(a), which is displayed in Fig. 7. Dots
show the behavior of ζ0 at various values of a obtained by
simulations at b = 1 with the help of both the Green function
and weight functions methods. Both results are pretty close to
one another.

We indicate binodal position ab = 3/16 by the dashed
vertical line in Fig. 7. One can see that ζ0 increases as it
approaches the binodal (35).

This result differs from the previous ones. Indeed, within
the terminology of this paper, the previous authors [48,49]
and others [13] find ζ0 ≡ 0. Therefore, the fact that ζ0 is
essentially nonzero is a striking result of this paper.

2. The analytical expression for ζ0

To understand the latter fact, let us first observe that ζ1,
the first part of ζ0 expressed by the weight function method
(60), is proportional to

√
l . Here l is the dimensionless contact

length that was discussed in Sec. V A. Second, our numerical
calculations show that in all cases the ratio ζ2/ζ1 is small,

FIG. 7. Dependence of ζ0 on a at b = 1. The filled triangles show
the results obtained from the simulation using the Green function
method, while the open squares show those calculated within the
weight functions approach. The solid line shows the behavior of the
analytical function ζ0(a) Eq. (61). The dashed line shows the position
of the binodal, a = 3/16.

close to 0.2. Thus, with reasonable accuracy, one can approx-
imate the ζ0 as ζ0 ≈ ζ1/0.8 ∼ √

l . Appendix B derives the
analytical expression for l = l (a, b) (39).

Using the expressions (60), (52), and (39) one finds

ζ0 ≈ 3.22
[(b2 − 4a)1/2 + b][b2 − 2a + b(b2 − 4a)1/2]1/8

(16a − 3b2)[8a − b2 − b(b2 − 4a)1/2]1/4
.

(61)
The solid line in Fig. 7 shows the behavior of ζ0 (61) at b = 1.
One can see that it agrees with our numerical results.

Let us now pass from the dimensionless to the original
parameters. This is achieved by applying (33) to (61). One
finds the expression for ζ0 in terms of the original material
constants:

ζ0 ≈ 3.28

[
A(1 − 2ν)(1 + ν)

Eg1/4
KI

]1/6(
γ

β2

)1/8

s

(
αγ

β2

)
(62)

where for the sake of shortness, we introduced the dimension-
less variable s = s(λ):

s(λ) = [1 + (1 − 4λ)1/2][1 + (1 − 4λ)1/2 − 2λ]
1/8

(16λ − 3)1/2[8λ − 1 − (1 − 4λ)1/2]1/4 (63)

with λ = αγ /β2.
The expression (62) is defined at αb < α � αup, that is,

below the upper spinodal αup but above the binodal αb. We
now express the latter in terms of the dimensional parameters
α, β, and γ as αup = β2/4γ and αb = 3β2/16γ .

The factor s only depends on the dimensionless combi-
nation λ = αγ /β2, and thus, on the position in the phase
diagram defined within the interval:

3

16
<

αγ

β2
� 1

4
.

s(λ) varies from its minimum value smin ≈ 2.59 at the upper
spinodal αupγ /β2 = 1/4 to infinity at the binodal αbγ /β2 =
3/16.

Figure 8 displays its behavior.

023001-11



BOULBITCH AND KORZHENEVSKII PHYSICAL REVIEW E 103, 023001 (2021)

FIG. 8. Behavior of the dimensionless factor s depending on
the dimensionless combination of the Landau potential coefficients
αγ /β2. The dashed vertical line indicates the binodal position.

By introducing the binodal temperature Tb as α0(Tb −
Tc) = 3β2/16γ , one expresses λ as

λ = 3

16

T − Tc

Tb − Tc
(64)

showing that s = s[(T − Tc)/(Tb − Tc)] depends on the prox-
imity of the solid to the Curie temperature Tc.

Close to the binodal αb = 3β2/16γ the expression ζ0 (62)
simplifies as follows:

ζ0 ≈ 5.37
|β|5/4γ 1/8

(16αγ − 3β2)3/4

[
A(1 − 2ν)(1 + ν)

Eg1/4

]1/6

K1/6
I .

(65)
One sees that ζ0 diverges in the vicinity of the binodal αb as
ζ0 ∼ (16αγ − 3β2)−3/4 as can be seen in Fig. 7.

If a tricritical point β = 0 exists in the phase diagram, ζ0

diverges in its vicinity as ζ0 ∼ β−1/4.
Its smallest value

ζ
(up)
0 ≈ 3.01

(
γ

β2

)1/8[A(1 − 2ν)(1 + ν)

Eg1/4

]1/6

K1/6
I (66)

parameter ζ0 achieves at the upper spinodal αup.

VII. TRANSFORMATION TOUGHNESS

A. The analytical expression for the fracture toughness

The fracture toughness KIC is formed by interatomic inter-
actions and it is directly related to the height V0 of the atoms’
potential barrier. One can estimate it as V0 ∼ �a2

0, where � is
the fracture energy, while a0 is the atomic size. In lattices with
a few atoms per unit cell, a0 has the same order of magnitude
as the lattice constant.

During the phase transformation, the atoms displace from
their positions in the mother phase. One can interpret this as
the action of a molecular force φ = φ(η) exerted on the atoms.
It is balanced by the elasticity resulting in the transformation
strain ε0. One can, therefore, estimate it as φ ∼ ε0Ea2

0. As
soon as a bond breaks, the atom displaces approximately over
a0. Thus, the work of the force φ in the process of the bond
breaking can be estimated as �V0 ∼ φa0. This work yields the
estimate of the decrease of the barrier height �V0 ∼ ε0Ea3

0.
One finds

�V0

V0
∼ ε0Ea0

�
.

Taking typical values ε0 ∼ 10−3, E ∼ 1011 Pa, a0 ≈ 3 Å, and
� ∼ 10 to 102 J / m2 one finds �V0/V0 ∼ 10−3 to 10−4, which
suggests that the perturbation of the potential barrier height
due to the phase transformation is typically small.

The potential barrier V0 determines the fracture toughness
KIC measured deep in the mother phase, where no transforma-
tional process zone exists. Since �V0/V0 � 1 one regards the
mother-phase fracture toughness KIC as a material constant
characterizing the solid.

In the course of a fracture experiment, however, one does
not measure this material constant directly. In contrast, one
measures the value of the stress intensity factor K (ap)

I applied
to the solid. Depending on the character of the experiment,
one then relates it to the fracture toughness. Let us denote
this fracture toughness value K (m)

IC , where “m” represents
“measured.” It is this measured fracture toughness K (m)

IC that
exhibits an increase as soon as the process zone arises.

The crack starts propagating as soon as the perturbed stress
intensity factor KI (15) becomes equal to the material constant
KIC . Therefore, by replacing in (50) KI → KIC and K (ap)

I →
K (m)

IC one obtains the measured fracture toughness in terms of
the material constant KIC and ζ0:

K (m)
IC = KIC + Aη2

0R1/2
0 ζ0. (67)

Making use of the analytical relation (62) for ζ0, one finds
the analytical expression for K (m)

IC :

K (m)
IC = KIC + 3.41s

(
αγ

β2

)
[(1 − 2ν)(1 + ν)]1/2

×
(

A12g

β2γ 3

)1/8√
KIC

E
. (68)

The second term in (68) describes the intensity of the zone
impact on the fracture toughness.

B. Relative perturbation of the fracture toughness

We obtained the analytical expression (68) for the trans-
formation toughness. The relative perturbation of the fracture
toughness (K (m)

IC − KIC )/KIC takes the following form:

K (m)
IC − KIC

KIC
= s

(
αγ

β2

)
� (69)

where

� = 3.41

[
(1 − 2ν)(1 + ν)

KICE

]1/2( A12g

β2γ 3

)1/8

. (70)

In this product s only depends on the position in the phase
diagram, while � depends on the values of the material con-
stants. In a given phase diagram point, the factor � (70)
determines the absolute value of the fracture toughness per-
turbation. It is, thus, essential to estimate it. This question will
be addressed in Discussion in Sec. VIII F.

VIII. DISCUSSION

A. The order parameter in the Landau theory

1. The order parameter definition

It is essential to specify the order parameter’s physical
origin since, in various scientific fields, its definitions quali-
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tatively differ from one another. In this paper, we regard the
process zone as the phase transformation localized at the crack
tip. Furthermore, we only consider the cases in which the
symmetry group of the crystal in the matrix, G, is connected
by the group-subgroup relation to the groups Gi (i = 1, 2, . . .)
of the daughter phases: Gi ⊂ G. In this case, one describes the
matrix-zone transformation within the Landau theory of phase
transitions [74,90,92].

In the case of the structural phase transitions (which we
only consider here), the phase transformation occurs due to
the crystal lattice’s structural instability. It forms a new lattice
structure in which some atoms displace from their former
positions (in the case of the displacive phase transformations)
or redistribute over a set of available positions (in the order-
disorder ones). In both cases, one characterizes the transition
by a set of degrees of freedom of the lattice involved in
forming the new structure.

In the Landau theory, the order parameter η =
(η1, η2, . . . , ηn) is the set of such degrees of freedom
[92].

2. How one determines the order parameter in practice

For a given group G, the choice of the order parameter
η fixes all possible subgroups Gi ⊂ G (i = 1, 2, . . .) of the
daughter phases. The latter observation yields a practical way
to determine the order parameter. Namely, one scans all pos-
sible order parameter candidates and finds one such that its
nonzero components decrease the mother-phase symmetry G

down to the known experimentally established subgroups Gi.
Let us give an example. In BaTiO3, one observes the phase

transitions from the cubic mother phase with the symmetry
group G = Pm3m (O1

h) to its subgroups. Here we give the
symmetry both in the International and Schoenflies notations.
The transition is described by the three-component order
parameter η = (η1, η2, η3) representing a three-dimensional
(3D) vector in the BaTiO3 case. In the mother phase, η1 =
η2 = η3 = 0 corresponding to the group G.

In the daughter phases, some of its components become
nonzero. Depending upon its orientation concerning the cube,
the vector η �= 0 decreases the cubic symmetry. For instance,
the tetragonal daughter phase G1 = P4mm (C1

4v) is described
by η3 �= 0, η1 = η2 = 0. The rhombohedric daughter phase
G2 = R3m (C5

3v) one obtains with η1 = η2 = η3 �= 0, and the
orthorhombic daughter phase G3 = Amm2 (C14

2v ) one obtains
with η1 = η2 �= 0, η3 = 0 [102].

In general, the determination of the order parameter is a
complex crystallographic problem. Its detailed description is
out of the scope of our paper. We refer the readers to such
books as [90,92,93].

3. One-component versus multicomponent order parameter

In this paper, we only studied the case of a one-
component order parameter. There are many materials exhibit-
ing phase transformations described by the one-component
order parameter such as anisotropic magnetics, like K2CoF4,
Rb2CoF4, and others [103]; uniaxial ferroelectrics, such
as LiTaO3, LiNbO3, K2PO4, Pb5GeO11, triglycine sulfate
(NH2CH2COOH)3H2SO4, and SbSJ [104]; and binary bcc al-
loys, such as Fe-Be [105] and CuZn [74]. The one-component

order parameter describes the α-β transition in quartz [106]
and the transition from the normal into the superconductive
phase in Sn, Pb, Fe, and most other superconductive materials
[107]. In such cases, our approach is directly applicable.

In many cases, it can also be applied to zones described by
multicomponent order parameters. Indeed, many transitions
controlled by η = (η1, η2, . . . , ηn) exhibit one-parametric
low-symmetry phases. These are the phases in which only
one order parameter component is unequal to zero, such as
(η, 0, . . . , 0) or (0, η, . . . , 0), and those exhibiting several
nonzero components, which are, however, equal to one an-
other, such as (η, η, 0, . . . , 0) or (η, η, . . . , η), and alike. We
have seen an example of such a case for the phases G1, G2,
and G3 in BaTiO3. This paper also directly applies to such
one-parametric phases, provided that the order parameter only
couples with the diagonal components of the strain tensor.

One can also face multiparametric phases. In these cases,
the combinations of the order parameter components such as
(η1, η2, 0, . . . , 0) or (η1, η2, η3, 0, . . . , 0) or (η1, η2, . . . , ηn)
with η1 �= η2 �= . . . �= ηn describe various daughter phases or
domains (twins, variants). In such a situation, one cannot
automatically use the results that we have reported here but
needs to solve the equation of state [like Eq. (8)] for all
components of the order parameters simultaneously. However,
this problem is out of the scope of the present paper.

Finally, some symmetries allow the order parameter to in-
teract with the deviatoric components of the strain in addition
to the dilatation. An example of such a study one finds in [88].
In that case, the situation becomes more complicated because
the zone may have a complex structure comprising different
phases and domains (twins, variants), as in the case of fracture
of ferroelectrics [108]. The zone configuration also becomes
more intricate. Such a problem requires an independent anal-
ysis. In such cases, we expect the results to differ from the
predictions of this paper.

4. Landau order parameter versus the phase field one

The popular phase-field method also uses the term “order
parameter” [109]. In this method, one determines the order
parameter as an indicator function, often a scalar one, to dis-
tinguish different states of the materials during the simulation.
The advantage of such an approach is its flexibility enabling
one to conveniently account for qualitatively different states
of the solids possibly containing a crack [110]. The same
flexibility generates difficulties to define the order parameter
field such that its relation to the material parameters would be
unique and physically grounded [111].

In the Landau theory, one should regard parameters of
the Landau potential (such as g, α0, β, γ , and A) as the
material constants of the crystal. Using modern methods, they
have been measured for many materials (see, for example,
[112,113]).

Formally, however, Landau’s theory of phase transitions
and the phase-field approach similarly treat the order parame-
ter. Indeed, in both cases, one builds the free energy functional
in terms of the order parameter and further uses it to derive its
equation of state (or motion) according to the standard rules.
The latter makes it possible to combine the phase-field method
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with the Landau theory within the same numerical study, as
was recently reported in [88].

B. The case of a higher order Landau polynomial

The expressions (68), (76), and (77) that follow use the
dependence of K (m)

IC on β and γ which suggests that the
sixth-order Landau potential can describe the phase transition.
For different reasons, the accurate description of the phase
transformation and the phase diagram may sometimes require
us to account for the order parameter’s higher-order terms.
On the one hand, even the Landau potential that depends
on the one-component order parameter may have more than
three minima, thus exhibiting isostructural transformations.
On the other hand, the configuration of the Landau potential
may occur slightly different from the one described by the
sixth-order polynomial, as, for instance, in the BaTiO3 case
[112], and thus one needs to account for higher order terms
for its accurate description.

In this latter case, the description of the fracture toughness
with the potential (4) still holds as an approximation, and the
estimates (76) and (77) given below are still approximately
valid.

With these considerations in mind, our estimates can be
applied to many (though not all) process zones.

C. Limitations of our approach

Let us briefly list limitations of our approach.
First, we used the linear elastic theory with the free energy

(3), squared in terms of the strain. This excludes essen-
tially elastically nonlinear materials from the consideration,
such as ferroelastics [94], many martensitic transformations,
stishovite [114], and brittle polyacrylamide gels [95].

The second limitation is related to the assumption that the
symmetries of the mother and daughter phases are subjected
to the group-subgroup relation. This rules out the so-called
reconstructive phase transformations in which such a relation
does not hold. Let us mention that our theory can be gen-
eralized for the reconstructive transformations by using the
approach formulated in [115]. This is, however, outside the
scope of the present paper.

D. Some generalizations

We demonstrated that the surface tension of the zone
boundary itself gives rise to transformation toughness. We did
this within the simplified example of the elastically isotropic
crystal with the process zone described by a one-component
order parameter. Let us now briefly discuss less restricted
cases.

Elastically isotropic versus elastically anisotropic single crystal

Although we only addressed the elastically isotropic sin-
gle crystal for the sake of simplicity, the results qualitatively
also hold for weakly anisotropic crystals, such as most cubic
metals [116]. However, in strongly elastically anisotropic ma-
terials, the curved interface, such as the one shown in Fig. 1,
is energetically unfavorable. In such crystals, one expects the
zone boundary to consist of plane facets that are separated

from one another by either misfit dislocations or the so-called
complexions [117].

E. Relationship to previous results

1. The process zone boundary criterion

The mechanical approach used the plasticitylike criterion
to define the process zone boundary in [48–50,52] and other
papers [13]. The criteria of plasticity are closely related to
the properties of dislocations and other plastic defects. Their
generation or propagation starts upon exceeding some critical
value of the shear stress or some invariant combination of the
stress tensor components [118].

In the inhomogeneous solid, the phase boundary criterion
is more complex depending on the stress field’s interplay,
transformation strain, and the boundary surface tension.
Therefore, the criteria used in [13,48–50,52] do not correctly
describe the phase boundary. Roitburd and Grinfel’d [70]
derived a criterion for a sharp, coherent phase boundary in
crystals. We implemented the account for the boundary sur-
face tension in [71] within the Roitburd-Grinfel’d approach.
Though sometimes useful, their approach [70,71] leads to a
complex integral equation on the phase boundary configura-
tion. In general, this equation is hardly treatable and its use is
difficult.

Let us note that the zone boundaries of monocrystals, ce-
ramics, and composites are substantially different.

In ceramics, the zone boundary forms by the stress field,
consisting of the stress generated by the crack tip and those
generated by the confined grains. The latter exhibit ran-
dom sizes, shapes, and orientations. Therefore, stress exhibits
stochasticity depending on the prehistory of the material and
influences the zone boundary configuration. Without the in-
formation of its prehistory, the latter cannot be found.

In composites, the boundary can lie outside of those grains
that exhibit the phase transformation. In this case, the criteria
such as those formulated in [70,71] do not directly apply.

In these materials, the choice of the boundary criterion is
complicated and is most likely phenomenological.

The field-theoretical approach [68,76–82] solves the prob-
lem of the boundary criterion differently: it formulates the
process zone problem in terms of the order parameter. The
latter originates from a set of the microscopic coordinates of
the atoms inherently involved in the phase transformation: that
is, their displacements control the variation of crystal struc-
ture during the transformation. These coordinates after coarse
graining obey the Ginzburg-Landau equation of state (26).
The latter also describes the spatial distribution of the intrinsic
degrees of freedom of the solid in the inhomogeneous spatial
environment. Let us note that the field-theoretical approach
automatically accounts for the zone boundary surface tension
due to the term ∼ g(∇η)2 in (4).

Within this approach, the solution η(R) exhibits a kink, and
one describes the zone boundary as the kink configuration. An
example of such a kink and its configuration can be seen in
Figs. 4(a) and 4(b), and in multiple images of [72].

Within the model developed in this paper, it is the surface
tension that gives rise to the zone setback and, thus, to the
transformation toughness. Consequently, one observes that
(K (m)

IC − KIC )/KIC ∼ g1/8 (69). In addition to single crystals,
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our results can be applied to polycrystals and crystals with
mosaic structure, provided that the zone size R is smaller or
comparable to the characteristic dimension of the crystallite d .
In the opposite limit R � d , the crystal exhibits the features
of ceramics.

2. Coincidence of the mechanical and field-theoretical approaches

In some materials (referred to as those with manifested
first-order transition), the order parameter exhibits a strong
discontinuity in the transition point, the order parameter jump
being close to its saturated value ηs. The dependence η =
η(T ) closely resembles a step function: η ≈ ηs at (T � Tb)
and η = 0 at (T > Tb). In such cases, the use of the Lan-
dau theory of phase transitions (if still applicable) brings no
advantage to the theory. One can instead exhaustively char-
acterize the transition by the discontinuity ηs in the binodal
point Tb or, equally, by the transformation strain ε0. The next
important characteristic determining the zone is the criterion
of its phase boundary. If the latter accounts for the zone sur-
face tension, the mechanical and field-theoretical approaches
coincide.

3. Irreversibility of the phase transformation

(a) Irreversibility due to long characteristic time. In the
papers [2,27,28,30,48–50,52] and many others [13] the phase
transformation into the metastable daughter phase was as-
sumed to be irreversible. Let us note that the metastable
daughter phase corresponds to the less pronounced minimum
of the free energy than the mother phase. Therefore, the
metastable phase is always out of equilibrium. In equilibrium,
the daughter phase vanishes and, in principle, the transforma-
tion is always reversible.

However, one can indicate at least two mechanisms making
the daughter to mother transformation irreversible from the
practical point of view.

The first mechanism occurs if the daughter to mother trans-
formation is of the so-called order-disorder or reconstructive
types when the transition mechanism involves overcoming
an energetic barrier. Provided that the barrier considerably
exceeds kBT in the unloaded crystal, the characteristic trans-
formation time τ by far exceeds the time of fracture. In this
case, once having arisen, the wake persists for the time t ∼ τ .
In such cases, the mechanism described in the papers [48,49]
applies.

The well-known example of such a case is the recon-
structive graphite-diamond transition, where the diamond is
metastable under the room conditions [107], although it never
transforms into the graphite. Cracking of diamond may give
rise to the graphite process zone and the persisting wake, as
reported in [119].

However, transitions exhibiting huge characteristic times τ

are rare. In the case of the transitions of the order-disorder
type, the atoms jump between different minima of the local
molecular potential overcoming barriers. The characteristic
time may be as short as τ ∼ 10−12 s as in Rochelle salt,
triglicine sulphate, and KD2PO4. One finds an order of mag-
nitude larger characteristic time τ ∼ 10−11 s as in KNO3 and
NaNO2. The characteristic time achieves as high a value as τ

∼10−7 s in the case of AgNa(NO2)2 [120]. These values are,

however, by far not enough to regard such transformations as
irreversible.

If the solid exhibits a barrierless transformation of the
displacive type, its characteristic time is still much shorter,
τ ∼ 10−13 s, as in BaTiO3, Pb(TixZi1−x)O3, and SrTiO3 [120].

The reversibility of tetragonal to monoclinic phase trans-
formation in ZrO2 has been also reported [55] and, therefore,
cannot explain the transformation toughness phenomenon in
this material.

(b) Irreversibility due to pinning. The second mechanism
is related to the transformation induced plastic deformation.
The zone formation may give rise to considerable shear stress
on its boundary. It may rearrange plastic defects, such as dislo-
cations, that already exist in the material as observed in NiTi
[121], or the new plastic defects may be generated, as those
observed in a nanostructured Fe alloy [122]. After the zone
advancement, these plastic defects can pin the daughter phase
down, forming an irreversible wake. In this case, the wake is
stable rather than metastable: the stress field generated by the
pinning objects stabilizes it. This stabilized wake contributes
to the fracture toughness. One should expect, however, that
the contribution of the pinning defects is comparable to that
of the wake. Hence, one must also take the latter into account
when determining the transformation toughness. Let us note
that such a contribution has never been accounted for within
the mechanical approach.

(c) A quasistatic crack propagation. The key point of early
approaches [27–30] as well as those developed by McMeek-
ing and Evans, Rose, and Budiansky et al. [48–50,52–54]
was the requirement of a quasistatic crack propagation. The
reason for such a requirement was that one could not explain
the transformation toughness without the wake. It was hy-
pothesized that the latter emerges following the propagating
crack-zone complex. Thus, it was assumed that the crack is
not truly motionless but propagating with a negligibly small
velocity.

As we discovered in [72] in the reversible cases, during
the quasistatic crack propagation, the wake completely melts
down. The wake can only form as soon as the crack velocity
exceeds a certain value. Thus, the mechanism of the persisting
wake following the crack that propagates quasistatically does
not apply.

4. Fracture toughness outside of the hysteresis

It is generally accepted that the transformation toughness
phenomenon only occurs within the hysteresis region of the
phase diagram, where the daughter phase is metastable. It is
for this reason that so far its only explanation was the forma-
tion of the persistent metastable wake during the quasistatic
crack propagation [2,27–30,48–50,52–54].

This paper has demonstrated that the transformation tough-
ness phenomenon exists for a motionless crack due to the zone
boundary’s surface tension. Provided the process zone occurs
at the crack tip, its boundary exhibits the surface tension inside
and outside the hysteresis. Let us recall that the bifurcation
line (line 4 in Fig. 3) lies above the upper spinodal (line 1
in Fig. 3) on the phase diagram. The transformation tough-
ness phenomenon occurs everywhere between lines 3 and 4
of the phase diagram Fig. 3, in the regions IV and V. Note
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that among these two regions, only region IV belongs to the
hysteresis.

In this paper, we focused on the first-order transitions.
However, in the second-order ones, the transformation tough-
ness phenomenon also occurs due to the surface tension.

5. The resonance phenomenon

At certain conditions, the zone size diverges. This phe-
nomenon discovered by Rose [50] was referred to as a
resonance [52] and studied in detail by Stump and Budiansky,
who argued that the resonance takes place as soon as a param-
eter ∼ σT/σm achieves a critical value [52]. Here, σm is the
stress spur at the zone boundary and σT is the transformation
stress in the unconstrained solid.

Our approach reveals the physical origin of such a res-
onance. It takes place as soon as the state of the solid
approaches the binodal (35).

F. Estimates of the transformation toughness perturbation

1. General estimates

First, let us observe that as long as Eq. (26) describes the
first-order transformation, all of its terms are of the same
order of magnitude. Indeed, if some of them are much smaller
than the others, they should be neglected. The same statement
holds for the potential (4). Thus, one finds the estimate:

α0�Thη
2 ∼ |β|η4 ∼ γ η6 (71)

where �Th = Tup − Tb is three-quarters of the hysteresis
width, the temperature difference between the upper spinodal
and the binodal.

The process zone has its internal scale, R0 (30):

R0 ∼
( gE

AKIC

)2/3

. (72)

Within the narrow transition region of the kink, the expression
g(∇η)2 also becomes of the same order of magnitude as the
terms (71), and one can estimate it as g(∇η)2 ∼ gη2/R2

0 which
yields the following relation:

gη2

R2
0

∼ |β|η4. (73)

One can associate the striction constant A to the slope of
the phase transition line ∂Tb/∂ p in the phase diagram, which
is known for most materials. Indeed, by using the Tc(p) ex-
pression (7) one finds A ∼ −α0E (∂Tc/∂ p). If the hysteresis is
narrow enough, which is true for most dielectrics [107], one
finds ∂Tc/∂ p ∼ ∂Tb/∂ p yielding

|A| ∼ α0E

∣∣∣∣∂Tb

∂ p

∣∣∣∣. (74)

The estimate of the transformation strain ε0 reads

ε0 ∼ Aη2

E
. (75)

Making use of (71)–(75) we find a simple estimate for the
parameter �:

� ∼ Eε0

�Th

∣∣∣∣∂Tb

∂ p

∣∣∣∣. (76)

Let us mention here that in this paper we focused on the case
A > 0 corresponding to ∂Tb/∂ p < 0. In this case, the process
zone of the daughter phase forms within the matrix of the
mother phase above the temperature Tb of the bulk phase
transition. Below the bulk phase transition temperature, no
zone takes place. If A < 0 and, thus, ∂Tb/∂ p > 0, the zone
of the mother phase forms within the matrix of the daughter
phase below the bulk transition line, but no zone exists at
T > Tb. Further details can be found in [77]. With this in
mind, one can apply the estimate (76) in both cases Tb/∂ p > 0
and ∂Tb/∂ p < 0.

Let us further observe that the product Eε0(∂Tb/∂ p) is
the shift of the binodal temperature under the effect of the
hydrostatic pressure p0 ∼ Eε0 equal to the spur of the trans-
formation stress. Let us denote it by �Tb = Eε0(∂Tb/∂ p).
Thus,

� ∼ �Tb

�Th
. (77)

2. Numerical estimates

The typical value of the transformation strain during phase
transitions is ε0 ∼ 10−3; the typical Young’s modulus value
is E ∼ 1011 Pa. The phase transition line Tb(p) on the phase
diagram can have any slope. However, its typical value is
∂Tb/∂ p ∼ 1 ÷ 10 K / kbar = 10−8 ÷ 10−7 K / Pa, while the
hysteresis width is typically �Th ≈ 1 ÷ 10 K [107]. One finds
the estimate � ∼ 0.1 to 10.

Taking into account that s � 0.92, such estimates show
that the measured fracture toughness K (m)

IC can achieve values
comparable with the original, KIC as well as considerably
exceed it.

IX. SUMMARY

We formulated a self-consistent field-theoretical descrip-
tion of the process zone at the tip of a motionless crack. In
this approach, we describe the process zone by the spatial
distribution of the order parameter. First, we derived a com-
plete system of equations describing the crack-zone complex.
We then rigorously reduce this system to a single Ginzburg-
Landau equation that is imposed on the order parameter. The
latter equation self-consistently describes the first-order local
phase transformation, forming the process zone. Its size and
properties depend on the position of the solid in its phase
diagram. Furthermore, we derived the effective stress inten-
sity factor exerted on the crack depending on the externally
applied load and the stressed state generated by the zone.
This expression is controlled by a single dimensionless pa-
rameter ζ0 that we determined in quadratures. We then used
the previously reported solution [72] and obtained ζ0 from
simulations. The latter enabled us to obtain the transformation
toughness numerically. We finally derived accurate analytical
expressions both for ζ0 and the transformation toughness.

In contrast to the common opinion, our results show that
the crack in a crystal does not need to propagate to form the
transformation toughness. On the contrary, motionless cracks
already exhibit this phenomenon. We revealed that this phe-
nomenon originates from the surface tension of the process
zone interface. Our results demonstrate the dependence of
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the transformation toughness on the solid’s position in its
phase diagram: the closer the material is to the binodal, the
higher the effect. We show that the transformation toughness’s
impact is proportional to the slope of the phase transformation
line in the phase diagram of the solid and the transformation
stress. At the same time, it is inversely proportional to the
hysteresis width.

APPENDIX A: DETAILS OF THE NUMERICAL APPROACH

1. Simulation details

We simulated the problem by the relaxation method. We
formally introduced an artificial time, τ , referred to as the
pseudotime, and assumed that u = u(x, y, τ ). Instead of sim-
ulating the static equation (31), we simulated the following
pseudo-time-dependent dynamic equation:

∂u

∂τ
= �u − [a − U (x, y)]u + bu3 − u5 (A1)

with some initial conditions. It is important that the initial
conditions are nonzero: u(x, y, 0) �= 0. At τ → ∞ the solu-
tion u(x, y,∞) of (A1) automatically converges to the solution
of the static equation (31). Let us note that the closer is the
initial condition to the final solution, the faster the process
converges.

A detailed discussion on the application of the relaxation
method to equations like (31) as well as its pitfalls one finds
in [123] and in Appendix B of the paper [72].

We simulated Eq. (A1) using COMSOL 5.5 . Most settings
of this program coincide with those reported in our previous
paper [72] to which we refer the reader for details. The latter
paper, however, reports the results obtained with the 5.3 ver-
sion of COMSOL. Version 5.5 exhibits a handy new feature in
the so-called Adaptive Mesh Refinement properties. It enabled
us to obtain the solution in the points close to the binodal
marked by the diamond and asterisk in Fig. 3.

Indeed, the sizes of the zones studied in [72] were up to
r � 1 × 103 of the dimensionless units. This sets the domain’s
size in which the problem is solved to be somewhat larger than
r. The zone interface’s width is about a few dimensionless
units, as demonstrated in Fig. 12 of the paper [72]. To resolve
the zone structure of the interface such that the integrals (47)
could be reliably calculated numerically (see the next section),
one needs the mesh size of at least ≈0.1 unit. The application
of a homogeneous mesh with such a mesh size leads to the
≈108 degrees of freedom, making the simulation impossible.

In [72], we coped with this problem by using the Adaptive
Mesh Refinement option of COMSOL 5.3. Namely, we started
the simulation with a rather rough homogeneous mesh. The
program estimated the value of the solution’s squared gradient
(∇u)2, refined the mesh locally in the domain parts where
(∇u)2 is higher than in the other places, and restimulated it
on the new mesh. Thus, we obtained the mesh which is finer
inside the zone interface but rougher outside it. We proceeded
with the refinement up to 250 times until we obtained the
desired mesh size within the zone boundary. This typically led
to � 105 degrees of freedom, making the simulation plausible.
Details one finds in Appendix B of the paper [72].

However, the zone size in the point indicated by the di-
amond in Fig. 5 is r ≈ 1.2 × 104 dimensionless units. The

FIG. 9. Mesh obtained for the case a = 0.20 using the settings
described in the text. (a) The mesh of the whole simulation domain.
It exhibits a rough mesh far from the kink, the mesh density dra-
matically increasing in the kink region. The bar corresponds to 1000
dimensionless units. (b) A blown-up fragment of the same mesh from
the middle of the kink. The bar shows five dimensionless units.

methods available to COMSOL 5.3 were not enough to make
the solution good for numerical integration.

COMSOL 5.5 introduced a useful feature. It makes possible
in time-dependent problems both the mesh refinement in the
regions where (∇u)2 is high accompanied by its roughening
where (∇u)2 is low. To achieve this, in the Adaptive Mesh
Refinement Settings page, we selected the General modifica-
tion as the Adaptation method, checked the Allow coarsening
checkbox, and defined both the Maximum number of refine-
ments as well as Maximum coarsening factor to be 10. The
latter considerably decreased the number of degrees of free-
dom, enabling us to solve the problem in case a = 0.20 and
0.21. The mesh obtained using these settings for a = 0.20 is
shown in Fig. 9(a).

It exhibits a rough mesh far from the kink. Close to the
domain boundary, where the order parameter is close to zero,
the mesh size is about 1000 dimensionless units. The mesh
gradually becomes dense close to the kink, and inside the kink
region the mesh size is about 1 unit [Fig. 9(b)].

The other settings were the same as reported in the paper
[72].

2. Numerical calculation of the integrals

a. Estimates of the integrals of the Green function approach

We simulated Eq. (31) using COMSOL 5.5, which enables
us to determine the derivatives ∂u2/∂x and ∂u2/∂y as a post-
process starting from the simulation results u = u(x, y).

Figure 10 shows the lateral behavior of these derivatives
in the case a = 0.24. For each distribution we chose a per-
spective enabling one to best see its details. We obtained the
analogous distributions for all of the other a values, which
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FIG. 10. The lateral behavior of ∂u2/∂x (a) and ∂u2/∂y (b) at
a = 0.24 and b = 1.

have the same forms differing from one another by their sizes.
The derivatives exhibit the configurations of sharp crests lo-
calized along the zone boundary. One part of each crest lies in
the upper, and the other part is situated in the lower semispace.
A portion of each distribution is, thus, positive, while the
rest is negative. The detailed inspection of the distribution
on a small scale shows that across the zone boundary the
distribution is bell shaped, as we have shown in Fig. 12 of our
previous paper [72]. A sawtooth appearance of the distribution
is related to the errors introduced during the numerical deter-
mination of the derivatives ∂u2/∂x and ∂u2/∂y on the mesh of
the data for u.

We imported the data for ∂u2/∂x and ∂u2/∂y into
MATHEMATICA 12.1 and interpolated them. Furthermore, we
calculated the integral (47) at ν = 1/3. In this case, the func-
tions P1(ξ, x, y) and P2(ξ, x, y) (48, 49) take the following
forms:

P1(ξ, x, y) = − (x + ξ )[5y2 − (x + ξ )2]

(2π )3/2[(x + ξ )2 + y2]2 ,

P2(ξ, x, y) = − y[7y2 + (x + ξ )2]

(2π )3/2[(x + ξ )2 + y2]2 . (A2)

With the obtained interpolation functions for ∂u2/∂x and
∂u2/∂y as well as with P1(ξ, x, y) and P2(ξ, x, y) (A2), we
numerically estimated the integral (47) using the built-in
numerical routine NIntegrate of MATHEMATICA 12.1. The in-
tegral exists; however, because the functions P1(ξ, x, y) and
P2(ξ, x, y) are singular at x = −ξ and y = 0, one needs
to use a specific strategy yielding the numeric conver-
gence. We selected the strategy with sampling the points
according to the 3D Cartesian rule, and applied the Gauss-

FIG. 11. (a) The lateral distribution of (∇u)2 for a = 0.24.
(b) The coordinates of the points of its crest transformed to cylin-
drical coordinates r = r(θ ). The dots indicate the boundary points
obtained form the simulation data, while the solid line shows its
fitting.

Kronrod approach with additional Gauss points. The options
used are Points→ 3, MinRecursion→ 3, MaxRecursion→ 7,
Exclusions→ {0, 0, 0}. In the integral with respect to ξ , we
took a finite upper limit equal to the coordinate x of the left
boundary of the domain � instead of infinity. This does not
influence the result, because at this value of ξ the deriva-
tives ∂u2/∂x and ∂u2/∂y are practically zero. With these
parameters, we achieved the error within a few percent and
a reasonable calculation time below 10 min, depending on the
size of the integration domain.

b. Integration within the approach using the weight functions

On the basis of the COMSOL simulation we obtained the
distribution of (∇u)2 = (∂u/∂x)2+ (∂u/∂y)2 and imported it
into MATHEMATICA 12.1. This distribution always represents
a sharp crest along the zone boundary with a bell-shaped
cross section. (∇u)2 is always positive. Figure 11(a) displays
the example of such a distribution for a = 0.24. The (∇u)2

distributions at other a values have qualitatively the same
configurations and only differ from one another by their sizes.

As in the previous case, the sawtooth shape is due to errors
introduced by numerical differentiation. The height of the
crest points varies along the zone contour. In the list yielding
this distribution, we selected points lying in the close vicinity
of the crest in the Cartesian coordinates by requiring (∇u)2

to be greater than a certain value. The latter was chosen by
trial and error in the range from 0.005 to 0.02. These points
accurately represent the zone boundary contour. Examples of
the zone contour obtained by such a procedure are shown
in Figs. 4(b) and 4(c). We transformed these lists to show
the points of the boundaries in the cylindrical coordinates
r = r(θ ) [shown by dots in Fig. 11(b)].
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FIG. 12. (a) The cardioid contour (i), its casp (ii), and the contin-
uous, smooth continuation of the cardioid contour by the circular arc
(iii). The curvature radius ρ and the setback l are indicated. (b) The
blown-up fragment of the image shown in (a) with the geometrical
notations used in the derivation below. (c) Dependence of l/r on ρ/r.
The dots are obtained with (B4) while the solid line shows it fitting
with Eq. (B5).

We further divided the interval 0 � θ � π into three over-
lapping intervals: 0 � θ � θ1 + 0.1, θ1 − 0.1 � θ � θ2 +
0.1, and θ2 − 0.1 � θ � π . Within each interval, we fitted the
curves by a fourth-order polynomial in terms of the angle θ

using the standard FindFit routine of MATHEMATICA. By trial
and error, we varied the boundaries θ1 and θ2 of the intervals,
which allowed us to achieve continuous and piecewise smooth
curves. Given that we then used the fitting functions for the
integration, the existence of two kink points introduces a
negligible error to the result. The fitting result is shown by
the solid line in Fig. 11(b). We obtained analogous results for
all a values.

We substituted the obtained analytical functions fitting r(θ )
into the integral I (59) and numerically estimated the integral
using the standard NIntegrate routine of MATHEMATICA 12.1.
In this case, the integration was straightforward.

APPENDIX B: THE SETBACK

Our simulations [72] demonstrate that for the motionless
crack, most of the zone boundary closely resembles the car-
dioid, as shown in Fig. 12(a) i. Here the boundary curvature
radius Rc is of the same order of magnitude as the zone

width r. Because r �1, the boundary surface tension almost
everywhere plays a negligible role.

The situation is different in the vicinity of the beak-shaped
part of the cardioid shown in Fig. 12(a) ii. Due to its surface
tension, this configuration of the boundary is energetically
unfavorable. Instead, the backward zone part forms an invagi-
nation with the bottom in the form of an arc of a circle, as
we show schematically in Fig. 12(a) iii. The derivation of the
exact expression for its curvature radius ρ we reported in [82].
The expression for ρ takes the following form:

ρ =
√

6
∣∣b2 − 2a + b

√
b2 − 4a

∣∣1/2

8a − b2 − b
√

b2 − 4a
. (B1)

It is this mechanism that forms the setback observed in our
simulations.

Let us derive the analytical approximation for the contact
length l [also indicated in Fig. 12(a)]. We approximate the
boundary invagination by a portion of the circle with the
radius ρ. This circular arc must pass into the cardioid contour
continuously and smoothly [Fig. 12(a) iii].

Figure 12(b) shows the blown-up part of the image
Fig. 12(a) in the vicinity of the casp with a detailed view of the
circular arc EBG inscribed into the cardioid OBF such that the
zone contour is continuous-smooth. The sketch indicates the
sizes in terms of the dimensionless units that we introduced
earlier. The zone interface consists of the circular arc EB
[Fig. 12(a) iii] followed by the portion of the cardioid BF
[Fig. 12(a) i]. Both parts of the interface are shown by the solid
lines. The dashed line BG is the continuation of the circle,
while the dotted one, OB, is the continuation of the cardioid
from the point B to the coordinate origin O corresponding to
Fig. 12(a) ii. They do not correspond to the zone boundary.

The arc GBE touches the contour OBF of the cardioid in
the point B, where they have a common tangent BC. The latter
has a slope angle α. The distance between the cardioid origin
O and the point E, where the circular arc hits the x axis, is
the contact length, l . The angle subtended at A by B is β, and
that at O by B is θ . Furthermore, h is the height BD (dot-
dashed line) of the triangle ABC. AB and AE are equal to the
arc curvature radius ρ. Let us denote AD as x1, while DO is
denoted as x2. The cardioid can be parametrically described
as

r(θ ) = r cos2 (θ/2)(cos θ, sin θ ) (B2)

where r is the dimensionless zone width. By using (B2) one
finds the slope, tan(α), of the tangent BC as follows: tan(α) =
− cot(3θ/2). Let us introduce the angle ϕ = π − α. One finds
β = (π − 3ϕ)/2.

From the triangle, ABC h = ρ sin(β ) = ρ cos(3ϕ/2).
Meanwhile, h is equal to the Y coordinate in point B. In terms
of the angle ϕ one finds h = r sin2(ϕ/2) sin(ϕ). Equating the
two latter expressions for h one derives the following equa-
tion:

ρ

r
= sin2(ϕ/2) sin(ϕ)

cos(3ϕ/2)
. (B3)

Let us determine the values x1, x2, and l . It is easy to
see that x1 = ρ cos(β ) = ρ sin(3ϕ/2). One finds the value
of x2 as the projection of the cardioid point, B, onto the X
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axis yielding x2 = r sin2(ϕ/2) cos(ϕ). Finally, the dimension-
less contact length expresses as l = x1 + x2 − ρ. It follows
that l/r = (ρ/r)[sin(3ϕ/2) − 1] + cos(ϕ) sin2(ϕ/2). By sub-
stituting here the expression for ρ/r Eq. (B3) we obtain

l

r
= sin2(ϕ/2)

1 + 2 sin(ϕ/2)
. (B4)

Together, Eqs. (B3) and (B4) determine the dependence l/r
on ρ/r in the parametric form.

During our simulations we observed that the inequality
ρ/r <0.1 typically holds. Therefore, we only regard this case.
The dependence l/r on ρ/r, according to Eqs. (B3) and (B4),
we display by dots in Fig. 12(c). At ρ/r <0.1 one can accu-
rately fit these points by the following relation:

l ≈ 0.2(ρ r)1/2. (B5)

The fitting by (B5) is shown by the solid line in Fig. 12(c).
One expresses the dimensionless zone size r at the tip of the
motionless crack using (38). By combining (B5) and (B1)
one finds the analytical expression for the dimensional contact
length expressed by the relation (39) with l0 ≈ 6.69.

Let us note that due to the surface tension, the concave
meniscus [Fig. 12(a) iii] deforms the zone at its back, exerting
a configurational force on the boundary. The latter is directed
against the x axis. In the present derivation, we disregarded its
effect. Thus, this result underestimates the correct value of the
contact length. Indeed, the curve (39) with l0 ≈ 6.69 lies sys-
tematically slightly below the values obtained by simulations
and shown by dots. We corrected it by fitting the numerical
parameter l0 to the points taken from the simulations yielding
l0 ≈ 10.42. The run of this curve is shown by the solid line in
Fig. 5(b).
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