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Particle size segregation in two-dimensional circular granular aggregates
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Although many previous studies have focused on the Brazil nut effect, segregation in a self-gravitating
circular aggregate remains relatively unexplored. In this paper, size segregation in a two-dimensional assembly
of grains in a circular geometry is studied through discrete element method (DEM) numerical simulations. We
show that radial segregation within an asteroid submitted to periodic perturbations is not limited to the surface
but also occurs in its core. The characteristic time and the overall efficiency of the segregation mechanism are
studied as the intensity of the perturbation, the frictional properties, and rotational freedom of individual grains
are varied.
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I. INTRODUCTION

In the last decade, the space missions Hayabusa and, more
recently, Hayabusa 2 have focused on so-called rubble-pile
asteroids which consist of a loose assembly of dry grains held
together by their mutual (weak) gravitational attraction [1,2].
The OSIRIS-REx mission is currently going on to study as-
teroid (101955) Bennu [3] and has already lead to interesting
results about its surface properties by imaging and thermal
analysis [4]. In October 2020, it successfully collected a sam-
ple of asteroid (101955) Bennu, and its arrival on Earth for
analysis is expected in 2023. These past and current missions
show a strong interest by the scientific community in rubble-
pile asteroids, and significantly increase our knowledge of
these small bodies. As a consequence, they have piqued in-
terest of the granular matter community as well.

Although many asteroids have a monolithic nature, rubble-
pile asteroids consist of a granular aggregate, at least in
a surface layer [5]. Concerning their cores, no exploration
has been done yet, and their nature and composition remain
not well known. However, some studies have addressed the
problem of their core constitution by using the external me-
chanics and cohesion properties of the aggregates [6]. The
best known examples of these rubble-pile asteroids are aster-
oids (25143) Itokawa, (162173) Ryugu, and also Bennu which
is currently under study by the OSIRIS-REx mission. These
are of particular interest because their surfaces, especially
that of Itokawa, show a strong presence of large boulders,
reaching one tenth of the asteroid typical size. This concentra-
tion of the largest components of the granular medium at its
surface, with respect to local gravity, suggests that a particle-
size segregation phenomenon might occur in the asteroid [7].
Rubble-pile asteroids are not immutable and can rearrange
due to a number of phenomena. They may undergo collisions
with a smaller body, be submitted to tidal forces near larger
objects, or experience an increase in spin rate due to the solar
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radiation pressure, known as the YORP (Yarkovsky-O’Keefe-
Radzievskii- Paddack) effect [8,9]. For all these reasons, the
eventuality of a segregation process on asteroids requires
further examination. This can reasonably be done by using
numerical experiments, as they enable one to easily control all
the relevant physical parameters of the aggregate. The results
of the corresponding simulations bring a lot of information
about the mechanics of segregation in this original geometry.
Moreover, they are of great help to establish predictions about
the granular composition of the aggregate below the surface
of the asteroid, as this information is not accessible through
direct measurements yet.

Previous numerical studies have focused on granular seg-
regation in asteroids. Maurel et al. [10] have simulated the
dynamics of a large intruder inside a granular bed, under
vertical vibration and in a low gravity field. Although they
show that friction plays an important role into this problem,
the geometry used in this study hardly applies to asteroids, as
the perturbation is nonisotropic. Perera et al. [11] simulated
a spherical granular aggregate and observed an incomplete
size segregation, as the core of the aggregate remained mixed
after several perturbations. This may be due to the number of
grains implemented (a few hundred), which may be low for a
three-dimensional (3D) aggregate. A segregation mechanism
was also proposed by Shinbrot et al. [7]: They suggest a
differential accretion of smaller grains, whether they collide
on a large grain or on a group of small grains.

Granular segregation mechanisms have been studied in
the terrestrial environment, both experimentally [12–14] and
numerically [15]. Although the granular medium was often
vertically vibrated, the influence of horizontal vibration [16]
and the case of a rotating drum [17] have also been inves-
tigated. All these studies highlighted the roles of convection
[14], percolation, and rearrangements [18,19] in the size seg-
regation process, commonly named the “Brazil nut effect.”

In this paper we propose to show that the classical re-
sults from the granular physics literature can reproduce the
observations made on rubble-pile asteroids. To this aim, we
present results from numerical simulations of an assembly
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FIG. 1. Two grains in contact: Illustration of the overlap and rel-
ative speeds in the simplified case where the grains have no rotational
motion.

of grains (submitted to a central gravitational force) which
undergoes regular mechanical taps (see details in Sec. II).
Our simulations therefore aim at extending the classical Brazil
nut segregation results (in a uniform gravitational field) to a
circular (and spherical) geometry, with a nonuniform gravity
(both in intensity and direction). The paper is organized as
follows. The numerical methods are described in Sec. II. In
Sec. III quantities that help quantify the segregation dynamics
are defined. Section IV presents the effect of physical param-
eters, among which are the intergrain friction coefficient, the
inelasticity of the collisions, and the intensity of the periodic
perturbations.

II. NUMERICAL METHODS

In the present paper, the asteroid is modeled using a largely
simplified system, which consists of a 2D assembly of disks
(see Fig. 2). Individual grains are free to rotate and the forces
and torques acting on each individual grain are determined
using Newton’s laws in order to compute their position, speed,
and rotation speed in a time-driven simulation scheme, using
a soft-spheres discrete element method (SSDEM) [20].

The gravitational field within the asteroid pulls each grain
toward the overall center of mass, and is assumed to remain
linear, which corresponds to a round asteroid. Therefore, the
only interactions that exist between the grains are frictional
history-dependent contact forces [21]. In order to mimic the
well-known segregation experiments in which a container is
submitted to periodic taps on its bottom, the gravitational field
is reversed for a short time period, which briefly pushes the
grains away from the center, causing the asteroid to dilate (by
up to 5%). In the following, this will be referred to as a quake.
Let T be the period and TS the duration of a perturbation
(TS < T ). During each interval of time [NT, NT + TS] (N be-
ing an integer � 1), the imposed gravitational field is reversed,
meaning that the grains are suddenly pushed outwards. This
lasts for a short time TS , before the grains collapse to form the
aggregate again. The duration of this phase allows one to con-
trol the intensity of the perturbation. The period T = 12.5 s is
chosen so that the grains have come to a complete rest before
experiencing the next quake.

Note that the radial expansion induces no shear since
the medium is freely expandable, as individual grains can

(a)

(b)

(c)

(d)

FIG. 2. Snapshots of a simulated aggregate at different times.
(a) Initial state. (b) After 500 quakes. (c) After 1000 quakes. (d) After
2000 quakes. The color of the grains depends on their size, globally
resulting in blue large grains and red small grains. These data were
obtained for a friction coefficient μ = 0.8, a perturbation duration
TS = 1.25 s, and a dimensionless momentum of inertia J∗ = 104

(meaning that the rotation is largely hindered).

easily detach from one another. Again, it should be noted that
this procedure is not intended to mimic any actual source of
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rearrangements in actual asteroids, but should be seen as a
controlled isotropic perturbation.

The granular medium is composed of two main popula-
tions of grains: The “large grains” (radii Ri ∈ [0.8, 1.2]) and
the “small grains” Ri ∈ [0.4, 0.6], both distributions being
uniform. The ±20% polydispersity is intended to avoid crys-
tallization. These distributions are of course much simpler
than the one measured on granular asteroids surfaces [22,23],
but they enable simple simulations and already lead to a good
understanding of segregation in asteroid-like aggregates. A
total number of 1000 grains is implemented: 200 large grains
and 800 small grains, ensuring that both populations cover the
same area.

The two-dimensional model of an asteroid is obtained by
first placing 1000 grains on a series of circular rings of center
O. This point is also chosen as the center of mass of the
asteroid. Rather than computing each gravitational interaction
between all grains, each grain is submitted to a central force
directed towards O, proportional to its mass mi and distance
to O. It is thus intuitive to work in the polar coordinates
associated with O. Denoting as Mi the location of a given
grain i, ri = OMi, the central force

−→
Fi applied to this grain

reads:
−→
Fi = −mig

ri

Rast
r̂. (1)

where Rast is the estimated radius of the circular 2D asteroid
once all the grains have collapsed and g is the surface gravity
of the asteroid. The expression of

−→
Fi is obviously inspired by

the gravitational field inside a self-gravitating body. Imposing
this central force on each grain instead of computing the
gravitational forces between all the grains results in a strong
improvement of the simulation’s efficiency.

In the present paper, the overall radius of the asteroid is
kept constant but its influence on the segregation process
would certainly deserve further investigation. Note, however,
that even for large values of Rast the system would differ from
the standard tapping problem since the gravitational field is
never uniform in our study.

When in contact, two grains i and j apply on each
other both a normal force and a history-dependent tan-
gential friction force (see Fig. 1). In this study, for the
normal force a linear-dashpot model [24,25] with a stiff-
ness constant kn = 104 N m−1 and a damping constant γ =
30 kg s−1 is used. Moreover, the tangential displacement−→
δt (t ) of i with respect to j is computed. This displace-
ment is integrated over all the duration of the contact. The
friction coefficient between the grains is μ. We use the
Cundall model [21] to compute the tangential contact force:
At a given time t , kt ||−→δt (t )|| is compared to μ||−→FN (t )||. If
kt ||−→δt (t )|| < μ||−→FN (t )||, the contact is not sliding and the tan-
gential force behaves as a linear spring:

−→
FT = −kt

−−→
δt (t ), with

kt = 2kn/7 [20,21]. In contrast, if kt ||−→δt (t )|| � μ||−→FN (t )||,
then we consider a sliding contact with ||−→FT || = μ||−→FN ||.
To summarize, the norm FT of the tangential force is
given by

FT = max[ktδt (t ), μFN (t )]. (2)

This models the Amontons-Coulomb laws of solid friction.

A standard radius R∗ = 1 and a standard mass m∗ = 1 are
defined. The mass of grain i is given by mi = m∗(Ri/R∗)2 and
its moment of inertia is Ji = J∗miR2

i /2. Note that m∗ (kept
constant) implements the density of the grains, and the intro-
duction of J∗ (variable) enables us to artificially increase the
moment of inertia, in order to reduce the rotational moment of
the grains.

From the normal and tangential forces of each contact, the
resulting force and torque applied on each grain are computed
at time t , and Newton’s laws are numerically integrated using
the Verlet algorithm in order to simultaneously compute all
new positions of the grains at time t + dt . The time increment
value is fixed at dt = 5 × 10−4 s, such that dt � √

m/k for
every grain, entailing a reasonable description of the contacts.

III. DEFINITION OF SEGREGATION CHARACTERISTICS

In order to quantify the segregation in a given aggregate,
one can define a segregation degree based on the positions of
individual grains. As a reminder, Ri denotes the radius and
ri = OMi the position of grain i. The segregation degree ψ is
defined, at any time, as

ψ = 〈rlarge〉
〈rall〉 =

∑
i∈large Ri

2ri
/ ∑

i∈large Ri
2

∑
i∈all Ri

2ri
/ ∑

i∈all Ri
2

. (3)

This means that the distances to the center O are weighed
by the surface area of the grains. This is justified, as the
physical meaning of 〈rlarge〉 is the average distance to O of the
area covered by the large grains. Note that, in a completely
mixed state, this average distance is the same for all the
grains and thus the segregation degree takes the value ψ = 1.
A completely segregated state would be obtained if all the
small grains were resting in a disk of radius Rs and all the
large grains resting in a ring between Rs and the radius of
the asteroid Rast; the bottom panel of Fig. 2 gives a good
illustration of this kind of state. If αA is the area fraction
that is covered by the large grains, then Rs = √

1 − αARast.
By approximating the aggregate with a continuous medium,
one can evaluate 〈rlarge〉 and 〈rall〉, which leads to a maximum

value ψmax = 1−(1−αA )3/2

αA
.

It is simpler to use a segregation degree which ranges from
0 for a perfectly mixed state to 1 for a completely segregated
state, as one can define a normalized segregation degree:

� = ψ − 1

ψmax − 1
. (4)

A typical evolution of � is shown by Fig. 3.
Four snapshots of the corresponding asteroid are displayed

in Fig. 2 and show a very clear size segregation. After 500
quakes, the segregation is not complete but after 2000 there
remains no large grain in the core of the simulated aster-
oid. The evolution of the corresponding segregation degree
� is given in Fig. 3. The initial state is perfectly mixed
(� 	 0) while the asteroid is entirely segregated after 2000
quakes (� � 1). Note that the segregation occurs after the
first few quakes with no delay, and slowly tends towards a
steady state at longer times. The use of an exponential fitting
curve �(t ) = �∞[1 − exp (− t

τ
)] to fit �(t ) enables one to

define two characteristic quantities: The steady segregation
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FIG. 3. Plot of the segregation degree � as a function of time
(in number of quakes), computed for μ = 0.8, TS = 1.25 s, and J∗ =
104, corresponding to the aggregate shown in Fig. 2. The red curve
corresponds to an exponential fit: �(t ) = �∞[1 − exp (− t

τ
)]. The

inset is a semilogarithmic plot of �∞ − � in for the same data and
fit.

degree, �∞, and the characteristic segregation time, τ . It
should be emphasized that the exponential law is not de-
rived from any theoretical considerations but is only a simple
mathematical function used to fit the data. The evolution
of �∞ and τ with the different physical parameters of the
aggregate is therefore a useful tool to study the segregation
mechanism.

IV. INFLUENCE OF THE PHYSICAL PARAMETERS

A. Strength and intensity of the perturbation

As described above, the quakes that are applied to the as-
teroid consist of an inversion of the central gravitational field
during a time interval TS , which therefore sets the intensity of
the perturbation.

We investigate the influence of the perturbation’s strength
by varying TS below or above the standard value TS = T/10 =
1.25 s. However, the time TS is not the only parameter that
affects the strength of the perturbations. Indeed, the surface
gravity g that is imposed also plays an important role, due
to the fact that inverting the gravitational field during a fixed
time TS will result in larger displacements of the grains if g is
larger. The energy injected into the system per quake is given
by E = 3/2 Mast gRast sinh2 (Ts

√
g/Rast ), where Mast = � mi

is the overall mass of the asteroid. Ts
√

g therefore appears
as a relevant parameter, but plotting �∞ and τ as functions
of T s

√
g (as in Fig. 4) is not expected to lead to a col-

lapse on a master curve. The investigated values range from
TS = 1 s to TS = 1.75 s. For each value of TS , three different
values of friction coefficient were used (except when g �= 1,
in which case only μ = 0.5 is plotted). The explored values
of g and TS are never large enough to permit percolation of the
small grains between the large ones, as two neighboring large
grains are never pulled far enough from each other to let a

1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5
10 1

10 2

10 3

10 4

FIG. 4. Plot of �∞ (top) and τ (bottom) as functions of the
perturbation strength TS

√
g with g ranging from 0.5 to 2, and μ from

0.3 to 0.8 (details in the legend). We note a monotonic decrease of τ

as the perturbation becomes stronger. In contrast, the quality of the
segregation reaches an optimal value for a given strength.

small grain pass. Consequently, only local rearrangements can
occur.

In particular, we notice a monotonic decrease of τ as the
perturbation strength increases. This decrease is very strong,
as τ vanishes by almost 3 orders of magnitude when TS

√
g

only increases by a factor 2.5. Stronger perturbations enable
larger movements during the perturbation, which lead to more
rearrangement when the aggregate collapses again at the end
of the perturbation. As these rearrangements are the main
source of segregation in our study, we conclude that this will
cause an acceleration of the segregation process. Considering
the quality of the segregation �∞, we observe an optimum
for each value of μ. For μ = 0.8, this optimum is above 0.7
and is reached for TS

√
g = 1 m1/2. For μ = 0.3 and μ = 0.5,

the optimum is reached for TS
√

g = 1.25 m1/2 and TS
√

g =
1 m1/2 respectively. This is also explained by the rearrange-
ment mechanism: If there is no perturbation (TS

√
g = 0 m1/2),

there will be no rearrangement and no segregation will hap-
pen. Then, as one increases TS

√
g, rearrangements will happen

and naturally lead to a segregation. However, if one increases
TS

√
g too much, the perturbation will be too strong for the

system to reach a steady segregated pattern.
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B. Friction coefficient

The friction coefficient μ is expected to play a role in the
segregation process. Indeed, the rearrangements of the grains
after each perturbation are the source of segregation in our
simulations. These rearrangements involve a large number
of contacts between the grains, and the associated friction
forces certainly have a strong influence on the mechanical
state in which the aggregate stabilizes after a perturbation. To
investigate this effect, and to emphasize the essential role of
the rearrangements, we propose to study the mean absolute
displacement of individual grains between two consecutive
quakes. This absolute value, d , is the displacement in the
2D space, taking into account both radial and azimuthal
movements. The value of d is then averaged over the τ first
perturbations. We also compute the mean displacement ds

taking into account the small grains only, and dl with the
large grains only. Figure 5 shows the evolution of this mean
displacement d as a function of μ, for different values of TS

and g = 1.
Two main observations can be made. First, a minimum in

mean displacement appears for each value of TS .
The corresponding value μmin seems to increase slightly

with TS , and to remain in the range [0.2, 0.4] for the explored
range of TS . Second, we obtain ds � dl for μ � μmin and
ds � dl for μ � μmin (except for the lowest value TS = 1 s,
for which we observe ds � dl in the complete range of μ).
This means that when the friction coefficient is smaller than
μmin, the small grains are more mobile whereas the large
grains become more mobile for a friction coefficient greater
than μmin. Physically, and from the observations that were
made regarding the strength of the perturbation, one expects
that the more the grains move during one perturbation, the
faster the segregation is. Mathematically, one expects τ to be
a decreasing function of d . Figure 6 is a plot of τ as a function
of 1/d , which shows a dramatic growth of three orders of
magnitude for 1/d increasing in the range [0,30]. Thus, our
results confirm the interpretations in terms of rearrangements
made in the study of the perturbation strength.

Concerning the quality of the segregation, one can observe
a clear correlation between �∞ and the difference of mobility
between the large and the small grains, quantified by dl − ds.
The evolution of �∞ as a function of dl − ds is plotted in
Fig. 7, which shows a clear increase in �∞ with increasing
dl − ds. Note that for the highest perturbation intensity (TS =
1.75 s) the segregation quality is lower. This corresponds to
the previous observation that at high TS it is more difficult to
reach a segregated steady state of good quality. In contrast,
one can notice a high quality segregation for the simula-
tions with an artificially increased moment of inertia of the
grains. The study of this parameter is the topic of the next
section.

C. Moment of inertia

The observation that there exists a friction coefficient μmin

for which the mean displacement of the grains reaches a
minimum appears nonintuitive. To elucidate this fact the frac-
tion αS of grain-grain contacts that are in a sliding regime is
computed. Figure 8 shows that αS is a decreasing function
of μ which can be empirically fitted by αS (μ) = 1 − μ/μ0,

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8

-0.02

-0.01

0

0.01

FIG. 5. Plot of the mean displacements: dl computed over the
large grains only (top, blue), ds computed over the small grains only
(middle, red), and the difference dl − ds (bottom, green) as functions
of the friction coefficient, μ. �: TS = 0.5 s; : TS = 1 s; ◦: TS =
1.25 s; +: TS = 1.5 s; ×: TS = 1.75 s. The � correspond to the mean
displacements for monodisperse aggregates containing large grains
only (top, blue) or small grains only (middle, red), with TS = 1.25 s.

at least in the range μ ∈ [0, 1], with μ0 	 1.3. This is more
intuitive: Indeed, in the nonfrictional case all contacts are
sliding, but the more friction there is, the more difficult it is
for individual contacts to enter the sliding regime. For each
individual sliding contact the tangential force is given by FT =
μFN , where FN is the normal force, while, for a nonsliding
contact, 0 � FT < μFN . As an assumption, one can consider
in the latter case that, on average, FT = 1

2 μFN . Given these
aspects and (2), we deduce that the average tangential force
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FIG. 6. Plot of the segregation time τ as a function of the mean
displacement. The red ticks correspond to the different values of TS .
The blue ticks correspond to different values of the moment of inertia
of the grains, which are discussed in Sec. IV C. The inset is a plot of
the same data on a log-log scale.

FT between two grains reads

FT = αSμFN + (1 − αS )μ
FN

2
= FN

2
μ

(
2 − μ

μ0

)
. (5)

Given this expression, it appears that there is a value of μ

that maximizes the average tangential force in one grain-grain
contact, and consequently minimizes the mean displacement
of one grain between two consecutive quakes. This explains
the observation of a value μmin, but it predicts μmin 	 1.3.
However, this predicted value is larger than the one observed
in Fig. 5 (μmin 	 0.3). The difference may come from the fact
that the tangential force not only reduces the translational mo-
tion of the grains, but it also produces a rotational motion of

-0.02 -0.01 0 0.01 0.02
0

0.2

0.4

0.6

0.8

1

FIG. 7. Plot of the segregation quality �∞ as a function of the
difference of mean displacement between the large grains and the
small grains, dl − ds. Each tick refers to the same data set as in Fig. 6.
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FIG. 8. Plot of the fraction αS of contacts in the sliding regime
as a function of the friction coefficient μ. The fraction αS decreases
linearly with μ in the explored range.

the grains. To investigate the specific effects of μ on the trans-
lational and rotational degrees of freedom of the grains, their
moment of inertia was artificially modified (while all other
parameters were kept constant). As a reminder, the moment
of inertia of a grain i with radius ri and mass mi is given by
Ji = J∗miR2

i /2. A simulation with J∗ = 1 corresponds to the
realistic situation of the grains’ rotation. By varying J∗, one
can investigate situations where the rotation is either enhanced
(J∗ � 1) or is hindered (J∗ � 1).

Changing the value of J∗ also impacts the quality of the
segregation. As can be seen in Fig. 9, �∞ increases with J∗,

10 -1 10 0 10 1 10 2 10 3 10 4
0

0.2

0.4

0.6

0.8

1

FIG. 9. Plot of the segregation quality �∞ as a function of the
reduced moment of inertia J∗. The dashed line corresponds to the
value of �∞ if the rotation is entirely blocked, which corresponds
to J∗ → +∞. The friction coefficient is the same for all the data:
μ = 0.5.
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FIG. 10. Plot of the segregation time τ as a function of the
reduced moment of inertia J∗. The dashed line corresponds to the
value of τ if the rotation is artificially frozen, which corresponds
to J∗ → +∞. The friction coefficient is the same for all points:
μ = 0.5.

exceeding 0.9 for J∗ = 104. The highest values of J∗ corre-
spond to the blue circles in Fig. 7. This monotonic evolution
requires an explanation.

A good segregation quality means having wide quasi-
monodisperse areas: A core of mostly small grains surrounded
by a ring a mostly large grains (see Fig. 2). In these quasi-
monodisperse areas, the grains tend to self-organize in a
hexagonal lattice, in spite of the ±20% dispersity in size
within both species of grains. In a hexagonal lattice of disks,
the rotation of the disks is frustrated, meaning that any rotation
will dissipate a large quantity of energy through solid friction.
Thus, for a given amount of energy injected in a quake, quasi-
monodisperse areas (with quasi-hexagonal packing) will have
a much lower energetic cost if the 2D grains are not able to
rotate. This will enable a much better segregation quality for
the same set of perturbations.

The rotational degree of freedom also impacts the char-
acteristic segregation time τ ; see Fig. 10. From the physical
value J∗ = 1, τ first increases with increasing J∗ (up to
J∗ = 102), after which τ decreases. The increase in the range
J∗ ∈ [1, 102] can be well understood since the grains require
longer times to rearrange as their rotational motion becomes
more restricted. However, for J∗ > 102, the slowing effect
of J∗ is dominated by the energy savings discussed above
when the grains tend to form quasi-monodisperse areas. The
explanation is similar to the one discussed for �∞: When
frictional losses decrease, the energy injected during a quake
can be more efficiently used to rearrange the grains, causing
the segregation to occur more quickly.

V. CONCLUSION AND FUTURE WORK

In this paper, the segregation dynamic of a 2D asteroid
submitted to regular quakes was investigated. The influence
of the frictional properties of individual grains and the effect
of grain rotation on the segregation time and efficiency were
studied. A number of parameters were kept constant and their

FIG. 11. Illustrations of a simulated 3D aggregate. On top: Half-
cut view of the aggregate in its initial mixed state (left) and after
90 perturbations (right). Below: Outside view of the aggregate in its
initial mixed state (left) and after 90 perturbations (right). The radial
segregation is very clear and occurs after only a small number of
quakes.

influence on the segregation mechanisms clearly deserve fur-
ther attention. Namely, it would be interesting to vary both
the size ratio of the two species (only a factor 2 was used) as
well as their fraction of total surface of the asteroid (1/2 large
and 1/2 small grains in our study). The study of a single large
intruder in an assembly of small grains might also shed some
light on the segregation mechanisms. Future work should also
focus on a more realistic perturbation method. Inverted gravity
was used to mimic the classical “shaken granular media”
experiments but simulating tidal forces, the YORP effect, or
collisions between the asteroid and small bodies should be
more relevant to the astrophysical community.

With the aim of simulating more realistic asteroids, our
2D results should be extended to 3D assemblies of grains.
Preliminary simulations were performed (see Fig. 11) and
show a very clear segregation. Moreover, the segregation time
τ is apparently much lower than in 2D, for a comparable set
of parameters. Indeed, the segregation is well advanced as
early as after 50 quakes. We intuitively link this preliminary

FIG. 12. Illustrations of the angular segregation in a 2D aggre-
gate. Left: View of the asteroid after 2300 perturbations; four lobes
are formed. Right: Picture of the same aggregate after 5000 pertur-
bations, presenting only three lobes.
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observation to the fact that each grain has six degrees of
freedom in 3D, instead of three in 2D.

Finally, one observation in 2D asteroids clearly deserves
further investigation. For some physical parameters, a sec-
ondary segregation pattern may appear. Indeed, after a clear
radial segregation, the large grains eventually gather into lobes
at the surface of the aggregate (see Fig. 12). This angular or
orthoradial segregation displays an interesting dynamics, as

the lobes may sometimes merge or split (see Fig. 12). This
effect may also occur in 3D. Indeed, the half-cut view in
Fig. 11 shows a clear symmetry breaking in the thickness of
the layer of large grains, which can be seen as the formation
of one unique lobe. These patterns are reminiscent of the
surface aspect of rubble-pile asteroids, and a detailed study
of this secondary segregation might shed new light on results
obtained from space missions.
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