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Electric-field-based Poisson-Boltzmann theory: Treating mobile charge as polarization
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Mobile charge in an electrolytic solution can in principle be represented as the divergence of ionic polarization.
After adding explicit solvent polarization a finite volume of an electrolyte can then be treated as a composite
nonuniform dielectric body. Writing the electrostatic interactions as an integral over electric-field energy density
we show that the Poisson-Boltzmann functional in this formulation is convex and can be used to derive the
equilibrium equations for electric potential and ion concentration by a variational procedure developed by
Ericksen for dielectric continua [J. L. Ericksen, Arch. Rational Mech. Anal. 183, 299 (2007)]. The Maxwell
field equations are enforced by extending the set of variational parameters by a vector potential representing
the dielectric displacement which is fully transverse in a dielectric system without embedded external charge.
The electric-field energy density in this representation is a function of the vector potential and the sum of
ionic and solvent polarization making the mutual screening explicit. Transverse polarization is accounted for
by construction, lifting the restriction to longitudinal polarization inherent in the electrostatic potential based
formulation of Poisson-Boltzmann mean field theory.
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I. INTRODUCTION

Poisson-Boltzmann theory continues to be the basis for
the understanding of the properties of nonuniform elec-
trolytes [1–4]. The main reason for the popularity of the
Poisson-Boltzmann (PB) model is that it captures the essence
of the competition between finite temperature entropy and
electrostatic interactions determining the structure and en-
ergetics of electric double layers. However, PB theory is
strictly only valid for dilute solutions. It is missing the short
range correlations due to steric interactions between finite
size ions as well as long range electrostatic correlations.
This has prompted a huge effort to lift some of these lim-
itations by extending and modifying the original functional
[3,5–9]. The shortcomings of PB theory are also the mo-
tivation behind the subsequent development of compact
Landau-Ginzburg type functionals for ionic liquids [10,11].
Of course these issues have also been investigated by methods
at the more fundamental end of theory such as integral equa-
tion based statistical mechanics [12–16], density functional
theory (DFT) [4,17,18], and statistical field theory [19–22].
Activity in this field has recently received a new im-
pulse [8,23–25] by the discoveries made by surface force
measurements showing that long range correlations persist
exceeding the PB (Debye) screening length in high concen-
tration electrolytes and ionic liquids [26].

None of these profound problems are addressed in the
present paper, which focuses instead on a more technical
aspect of classical PB theory, namely, its status as a variational
method. Clearly a mean field functional for an electrolytic so-
lution is variational, being an elementary example of a density
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functional [27]. However, this is of limited help in practical
calculations because of the long range character of the electro-
static interaction between charge densities. The electrostatic
energy can however also be expressed as an integral over the
square of the Maxwell electric field (with proper attention to
surface terms). The Maxwell field in turn can be written as
the gradient of the same electrostatic potential determining the
ion concentration. An option therefore is to convert the energy
functional in a (semi) local functional of electrostatic potential
and ion densities. Treating the electrostatic potential as an
auxiliary variational degree of freedom one would hope that
the Euler-Lagrange equation for the potential is equivalent to
the Poisson equation. Somewhat mysteriously this is not the
case (for a recent review of this issue see Refs. [28,29]). The
proper Poisson equation can be generated by effectively build-
ing it into the mean field energy functional yielding the PB
functional in is conventional form [29]. The extremal energy
is the original mean field energy. Unfortunately the sign of
the field energy has changed from positive to negative and
the stationary solution is no longer a minimum but a saddle
point.

The question of how to restore stability to a field based
formulation of the PB functional is highly relevant for com-
putation relying on iterative methods. An ingenious solution
proposed by Maggs is to impose the Maxwell equations by
means of constraints implemented by the method of unde-
termined Lagrange multipliers (see Refs. [28,30]). The same
conflict of the sign of the electrostatic energy is also encoun-
tered in field based variational methods for pure dielectric
continua [31] and could be resolved using a similar constraint
scheme [32]. This method proved particularly suitable for
implementation in a molecular dynamics framework [33,34]
and has been applied with success in numerical investigations
in colloid science, electrochemistry, and biophysics [35,36].
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Variational electrostatics is pursued in many diverse disci-
plines sometimes with little overlap. A development parallel
to the activity in the physical chemistry of solutions took
place in the field of continuum mechanics of solids [37,38].
Of particular interest is the approach of Ericksen, who re-
considered the use of an extended variational scheme with
the dielectric displacement as basis rather than the electric
field [37]. The divergence of dielectric displacement vanishes
in a dielectric continuum without embedded external charge
and can therefore be represented as the curl of a vector poten-
tial, just as the magnetic induction. Using a convenient form
of the energy functional Ericksen found that under conditions
of stationarity for variation of this vector potential the curl
of the electric field is zero, as required by the conjugate
Maxwell equation [37]. Moreover, being an expression of the
original dielectric functional in different variables, the energy
functional remains convex.

Ericksen developed his method as part of the continuing
effort of merging electrostatics and elasticity theory (for re-
cent reviews see for example Refs. [39] and [40]). A source
of inspiration for some of the recent developments in this
challenging field is a textbook by Kovetz on Maxwell-Lorentz
(ML) continuum theory of electromagnetism [41]. ML con-
tinuum theory makes no assumptions about the microscopic
atomistic nature of polarization. Instead polarization is intro-
duced as the electric component of a vector potential for the
internal (material) charge current (the other component is the
magnetization). This charge-current potential is designed to
satisfy charge conservation by construction and vanishes out-
side the material body (see also Landau and Lifshitz [42]). The
third defining principle is the Lorentz equation (d = ε0e + p)
relating polarization p to the Maxwell field e and dielectric
displacement d. The Lorentz relation is a fundamental equa-
tion and must be considered as an additional field equation
complementing the Maxwell equations for electric and mag-
netic fields. The Lorentz relation has the status of a postulate
in ML continuum theory, a point forcefully and convincingly
made by Kovetz [41].

Tying polarization to internal charge without further atom-
istic specifications has implications for the interpretation of
polarization. This concerns in particular the relation between
internal and bound charge. Internal charge in the ML con-
tinuum view is bound in the sense that it is confined to the
material body but is free to migrate within its boundaries,
which are assumed to be well defined. Mobile charge in
conductors can therefore also be regarded as internal charge.
The distinction between charge bound in polar molecules and
free charge is made at the level of constitutive equations. This
interpretation of internal charge is consistent with the picture
presented in Landau and Lifshitz [42] and is our justification
for treating the ion charge density in electrolytes as the di-
vergence of an ionic polarization. This then allows us to apply
variational methods for the electrostatics of dielectric continua
to electrolytic solutions. If the volume of an electrolyte is
finite and its boundaries are fixed the system should be stable
even if charge redistribution is more drastic compared to a
conventional dielectric.

Summarizing, the main purpose of this paper is to show
that variational methods for determination of equilibrium po-
larization in continuum model systems are not limited to

dielectric material but can also be used for (confined) con-
ducting ionic systems or to a mixture of the two (electrolytic
solutions). This requires a generalization of the concept of
polarization which is already inherent in Maxwell-Lorentz
continuum theory. In this context we can also point out that
abandoning the narrow definition of polarization as a dipole
density is also natural in solid state physics. Partitioning an
ionic solid in dipolar units is artificial in finite pieces of crystal
and impossible in periodic extended systems [43–47]. The
method is tested out on the mean field expression for free
energy underlying Poisson-Boltzmann theory. The result is
a convex functional with the structure of the nonequilibrium
polarization functionals used in the continuum theory of po-
lar solvents [32,48–50] with an additional polarization field
for mobile charge. While not going beyond the mean field
approximation of Poisson-Boltzmann theory, the functional
also accounts for transverse polarization lifting the restriction
of the conventional formulation of Poisson-Boltzmann theory
which assumes that polarization is fully longitudinal.

The emphasis of the paper is on conceptual development.
Sections II and III give a detailed presentation of the method
and a verification that this approach indeed leads to the famil-
iar PB equations for concentration and electrostatic potential.
As an illustration of ionic polarization the method is applied
in Sec. IV to a planar film of a PB electrolyte polarized by a
normal external electric field. We conclude in Sec. V with a
discussion about the potential of this approach in the theory
of electrolytes.

II. FREE ENERGY FUNCTIONAL

A. Poisson-Boltzmann theory

The PB free energy consists of two terms [1,2,4]:

FPB = Fid + Fex. (1)

Fid is the entropic free energy of noninteracting ions and is
referred to as the ideal free energy. Fex is the excess free
energy. The primitive variables in conventional PB theory are
the number densities νν of pointlike ion species distinguished
by the index ν. For the simple binary system considered here
these are the number densities of positive (ν = +) and nega-
tive (ν = −) ions. The corresponding charge density is written
as

ρ(r) =
∑

ν

qνnν (r). (2)

q+ = q > 0 is the charge of the cation and q− = −q is the
charge of the anion. The ionic liquid is overall neutral:

∫
�

ρ(r)dv = 0 (3)

where � is the volume of the “body” of the ionic solution.
dv = dr3 is an elementary volume element.

The ideal free energy Fid is the sum of the (gas phase)
translational free energy of the mixture of ionic species:

Fid =
∫

�

∑
ν

f [nν (r)]dv ≡ Fm[nν] (4)
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with the local free energy density f (n) given by

f (nν ) = kBT [nν ln(nν�
3) − nν] (5)

where kB is Boltzmann’s constant and T is the temperature.
� is the thermal wavelength (the ions have the same mass).
The number densities (“absolute” concentrations) are related
to f (nν ) by the ideal chemical potential:

μc
ν = ∂ f (nν )

∂nν

= kBT ln(nν�
3) (6)

In applications concentrations are usually referred to a conve-
nient standard concentration.

The excess free energy of PB theory is the mean field
electrostatic energy EC:

EC = 1

8πε

∫
�

ρ(r)ρ(r′)
|r − r′| dvdv′ ≡ Eρ[ρ], (7)

which expresses a Coulomb integral of the charge density. ε is
the permittivity of the solvent approximated by a polarizable
continuum. Adding the functionals defined in Eqs. (4) and (7)
gives the well-known Poisson-Boltzmann density functional
Fi[nν] used in the literature:

FPB = Fm[nν] + Eρ[ρ] ≡ Fi[nν]. (8)

B. Mobile charge as polarization

The PB functional Eq. (8) will be modified and extended
for the particular variational treatment proposed here. First we
change variables to total (number) density n,

n = n+ + n−, (9)

and the charge density represented in terms of an ionic polar-
ization pi:

div pi = −ρ. (10)

In this new set of primitive variables the ionic densities are
expressed as

nν (n, pi ) = 1

2

(
n − 1

qν

div pi

)
. (11)

Equation (10) is a formal definition of the polarization associ-
ated with mobile charge. The physical interpretation of pi will
concern us later when applying the transformed PB functional
to the example of a polarized planar layer of electrolytic
solution. It perhaps also should be emphasized that Eq. (11)
is valid only for 1 :1 binary electrolytes.

Treating mobile charge as internal charge has immediate
implications for the dielectric displacement field d inside the
electrolyte. Without embedded external charge (as distinct
from free charge) d is transverse:

div d = 0. (12)

This property, characteristic of dielectrics, will be exploited
to design a field based variant of PB theory. The Maxwell
electric field e of course still satisfies the general Maxwell
equation for (static) electric fields,

curl e = 0, (13)

and can, as usual, be represented as (minus) the gradient of an
electrostatic potential. Dielectric displacement and Maxwell

field are related to the ionic polarization by the Lorentz
relation

d = ε0e + pi. (14)

Note that curl pi = curl d may be finite. As in dielectric the-
ory we expect the transverse component of pi to be determined
by constitutive (material) relations.

Substituting Eq. (11) in Eq. (4) we obtain our alternative
expression for Fid:

Fid =
∫

�

∑
ν

f [nν (n, pi )]dv ≡ Fpi[n, pi], (15)

which will take over the role of ideal free energy.
Having written the ideal free energy in terms of total

density n and polarization pi we next cast the electrostatic
interaction energy EC in a similar form. Following Ericksen
we do this by switching to a field representation [37]:

EC =
∫

V

ε0e2

2
dv ≡ EF (16)

where e is the Maxwell electric field. EF is the total field
energy of Maxwell-Lorentz continuum theory [41]. This is
why the dielectric constant in Eq. (16) is the permittivity ε0

of vacuum. A further comment concerns the system geometry.
The ionic solution is assumed to be a finite volume of material
placed in a container of total volume V much larger than
the body volume �. While the induced charge density ρ is
confined to the body, the electric field generated by the excess
charge spills out into the surrounding region of the container
(assumed to be vacuum). The integral over � in Eq. (7) had
therefore to be extended to an integral over V in Eq. (16). This
raises the infamous issue of surface terms in electrostatics to
which we return in Sec. II C.

The field energy EF represents the sum total of all electro-
static interactions, ion-ion, ion-solvent, solvent-solvent, and
the interaction with the external polarizing device. Even the
self energy of the external field is included (which will be
taken out in Sec. II C). However, EF does not account for the
polarization energy of the solvent which will have to be added
as a separate contribution Fpd to the excess free energy:

Fpd =
∫

�

(
p2

d

2χ

)
dv (17)

where pd is the polarization of the solvent and χ is the solvent
susceptibility. Fpd of Eq. (17) is a constitutive free energy
quantifying the cost in energy of polarizing the solvent other
than the electrostatic energy which is part of the field energy
Eq. (16). For a simple polar fluid consisting of rigid dipoles
centered on atoms (Stockmayer fluid) Fpd is partly entropic.
This suggests that Fpi of Eq. (15) can be interpreted as a
similar constitutive energy for polarization of the ionic fluid.
Added together these energies define a constitutive energy:

FS = Fpi[n, pi] + Fpd [pd ], (18)

which in solid mechanics is often referred to as the stored
energy. However, where it concerns the electrostatics there
is no fundamental difference between pi and pd . Both are
polarizations and are therefore superimposed in the Lorentz
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relation. Hence instead of Eq. (14) we have

d = ε0e + pi + pd . (19)

As a consequence the field energy EF of Eq. (16) is deter-
mined by the sum of ionic and solvent polarization (EC =
EF [pi + pd ]). This is a central feature of our approach and
will be demonstrated in detail in Sec. II C.

Summarizing, the statement we make is that the standard
expression Eq. (8) for the Poisson-Boltzmann functional can
be rewritten in “pseudo” dielectric form:

Fd [n, pi, pd ] = FS[n, pi, pd ] + EF [pi + pd ] (20)

where FS is the constitutive energy functional of Eq. (18).
The precise expression for the electrostatic field energy EF

will be given below. Total density n and ionic and solvent
polarization pi and pd are treated as independent variational
degrees of freedom. The dielectric displacement d and electric
field e again must satisfy the Maxwell equations (12) and (13),
respectively, but now with Eq. (19) acting as the third field
equation. The functional Eq. (20) with its extended set of
variables describes strictly the same PB electrolyte as Eq. (8).
A possible dependence of susceptibility on the solvent density
has therefore been ignored. The volume of the solution is
assumed to be kept in shape by a rigid electrically inert wall.
Jump conditions for d and e of course apply.

C. Pseudo dielectric-field energy

The electrostatic field energy EF of Eq. (16) was converted
by Ericksen [37] into an expression appropriate and conve-
nient for a finite body of dielectric material subject to an
external electric field e0. The system responds with a self field
ê (indicated by the hat). The two add up to the Maxwell field

e = e0 + ê, (21)

which is the field determining the electrostatic energy EF of
Eq. (16). EF includes the self energy of the vacuum field e0.
Separating this energy out we can write

EF =
∫

V

ε0e2
0

2
dv + UF . (22)

UF is the system energy we are interested in. It should vanish
when the electrically active system is removed. Similar to
Eq. (16) the internal energy UF can be written as an integral
over a field energy density

UF =
∫

V
eE(p)dv ≡ EE[p] (23)

with eE given by

eE(p) = −p · e0 + ε0ê2

2
. (24)

Note that the dielectric constant is still the permittivity of
vacuum as in Eq. (16).

In Ref. [37] Ericksen derived Eq. (24) for a piece of di-
electric solid with a possibly nonuniform polarization p(r).
For the application to PB theory p will be generalized to the
composite electrolyte polarization appearing in the Lorentz
relation Eq. (19). Therefore, p in Eq. (24) is set equal to

p = pi + pd . (25)

In molecular physical chemistry Eq. (24) is the ubiquitous
expression for the energy of a dipole distribution in an applied
field. The reason that the generalization Eq. (25) is allowed
is that ML continuum theory does not discriminate between
different types of polarization [41]. This distinction is made
by constitutive relations, Eqs. (15) and (17) for our system.
The ultimate justification for this dielectric view of an elec-
trolyte is that we are able to reproduce the established results
for PB theory. However, it is instructive to briefly repeat the
derivation of Ref. [37] to emphasize that Eq. (24) is also valid
for a conductor, provided the material system is finite.

Expanding the square of e = e0 + ê in the field energy
density Eq. (16),

ε0

2
e2 = ε0

2
e2

0 + ε0e0 · ê + ε0

2
ê2, (26)

and comparing to Eq. (24) we see that the difference is in the
cross term ε0e0 · ê. This term is converted using the property
Eq. (12) of the displacement field of a pure dielectric. Instead
of an external charge distribution the system is polarized by
the applied vacuum field e0 with again div e0 = 0. The self
displacement field d̂ associated with the self field

d̂ = ε0ê + p (27)

is therefore also transverse:

div d̂ = 0. (28)

Equation (28) together with the Maxwell equation for the self
field

curl ê = 0 (29)

is therefore equivalent to Eqs. (12) and (13).
Substituting Eq. (27) in the cross term integral

∫
V

ε0e0 · ê dv =
∫

V
e0 · d̂ dv −

∫
�

e0 · p dv (30)

and applying the divergence theorem we obtain for the first
term with e0 = −∇ φ0∫

V
e0 · d̂ dv = −

∫
∂V

φ0 d̂ · n∂V ds +
∫

V
φ0div d̂ dv (31)

where ∂V is the boundary of V with normal n∂V . Because the
system carries no net charge [Eq. (3)] the self displacement
can be assumed to decay to zero sufficiently fast so it can
be neglected at the boundary of the container. The surface
integral in Eq. (31) vanishes. So does the volume integral
because of Eq. (28). What is left of Eq. (30) is only the second
term which becomes the coupling between the external field
e0 and the polarization p in Eq. (24). Note that we have arrived
at this result bypassing multipole expansions, both locally in
the form of a dipole density and globally. The minimal condi-
tion that the electrically responsive material occupies a finite
volume and is neutral was sufficient. This brings us finally to
the question of stability. The original full field energy EF of
Eq. (16) is manifestly convex. Because the field energy EE of
Eq. (23) differs from EF , for the body in container geometry,
by the fixed energy of the applied field, EE is also convex.
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D. Vector potential for displacement

The charge redistribution of an electrolyte in response to
applied electric fields e0 is nonuniform. However, if the sys-
tem is finite, the currents should eventually relax to zero with
the system reaching an equilibrium state. For a good conduc-
tor this might mean that essentially all induced charge will
accumulate at the surface. The equilibrium state is found by
minimizing the free energy Eq. (20) in n and pi and pd under
constraints of the two Maxwell equations Eqs. (28) and (29)
in combination with the Lorentz relation Eq. (27). As argued
earlier, from a technical point of view, there should in prin-
ciple be no difference between an inhomogeneous dielectric
and an electrolyte and we can proceed using the variational
method of Ref. [37] for dielectric systems. Ericksen imposes
Eq. (28) by writing the self displacement d̂ as the curl of a
vector potential â:

d̂ = curl â. (32)

The vector field â is treated as a further independent electric
variational parameter in addition to polarization.

The electrostatic energy density Eq. (24) becomes a
two-variable function ẽE(p, â) and is found by substituting
Eq. (32) using Eq. (27),

ẽE(p, â) = −p · e0 + (curl â − p)2

2ε0
, (33)

with the corresponding extended electrostatic energy func-
tional

ẼE[p, â] =
∫

V
ẽE(p, â) dv. (34)

The polarization p in Eqs. (33) and (34) is understood to
be the composite electrolyte polarization pi + pd of Eq. (25).
This is how p must be read whenever it appears in the
following.

The three variable energy functional Eq. (20) is extended
to a four variable functional:

F̃d [n, pi, pd , â] = FS[n, pi, pd ] + ẼE[p, â]. (35)

pi, pd , and â are independent variational degrees of freedom.
The constitutive function FS is therefore independent of â and
is still given by Eqs. (15) and (17) (so no tilde). The central
idea of the Ericksen procedure is that the Euler-Lagrange
equation for the vector potential â will generate the Maxwell
equation Eq. (29) for the self field, which will be verified in
the next section.

III. VARIATIONAL PROCEDURE

A. Varying the vector potential

Changing â to â + δâ keeping n and p fixed yields a first
order change in the field energy:

δẼE = 1

ε0

∫
V

(curl â − p) · curl δâ dv (36)

where we have used that δ(curl â) = curl δâ. Rewriting the
integrand using the vector identity

div (u × v) = v · (curl u) − u · (curl v) (37)

we can apply the divergence theorem and obtain

δẼE = 1

ε0

∫
V

curl (curl â − p) · δâ dv

+ 1

ε0

∫
∂V

n∂V × (curl â − p) · δâ ds. (38)

While p is strictly zero beyond the periphery of a finite dielec-
tric body the vector potential â, similar to ê, is not. However,
similar to the surface integral in Eq. (31) we can expect that
â decays to zero with increasing distance from the dielectric
body and can be neglected at the vacuum boundary ∂V leaving
only the spatial integral over V . From Eq. (35) we know that
δF̃d = δẼE for variation in â. Hence, we can apply the usual
argument in variational theory and require that the integral
Eq. (38) must vanish for arbitrary δâ. This is only possible
if

curl (curl â − p) = 0 (39)

validating the identification

ê = (curl â − p)/ε0 (40)

with ê satisfying Eq. (29).
Similar to the vector potential for magnetic induction,

Eq. (32) leaves us with the freedom of choosing a convenient
gauge for â. The double curl in Eq. (39) suggests an even
closer parallel to magnetic induction [37]. Using another rela-
tion from vector analysis this equation can also be written as

∇div â − �â = curl p (41)

where � is the Laplacian differential operator. We have there-
fore the option of setting div â = 0 making the vector potential
fully transverse. Note that in this gauge �â = 0 for systems
with only longitudinal polarization. Transverse polarization
acts as a source for â.

B. Varying polarization

Variation in the ionic polarization pi → pi + δpi is carried
out at fixed vector potential â and solvent polarization pd .
Holding â constant greatly simplifies the expression for the
first order change of the electrostatic energy:

δẼE =
∫

�

(
−e0 − (curl â − p)

ε0

)
· δpi dv. (42)

Integration can be limited to � because the polarization re-
mains confined to the body. With no further differentials to
determine we can substitute Eq. (40). This gives together with
Eq. (21) for the variation in the field energy

δẼE = −
∫

�

e · δpi dv. (43)

The electric-field conjugate to pi is the full Maxwell field.
To this we must add the first order change in the con-

stitutive function Fpi keeping total number density n fixed.
Expanding Eq. (15) in variations of the separate species den-
sities yields

δFpi =
∫

�

∑
ν

μc
νδnνdv (44)
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where we have substituted Eq. (6). The variations in ion densi-
ties nν at constant overall density n = n+ + n− are according
to Eq. (11)

δnν = − 1

2qν

div δpi. (45)

Inserting we find

δFpi = −
∫

�

1

2q
(μc

+ − μc
−)div δpi dv. (46)

To balance δFpi against variation in field energy Eq. (43) for
arbitrary δpi we apply partial integration. This gives, assum-
ing again that the surface term can be made to vanish by
extending it into the vacuum container,

δFpi =
∫

�

1

2q
∇(μc

+ − μc
−) · δpi dv, (47)

leading with Eq. (43) to the Euler-Lagrange equation

1

2q
∇(μc

+ − μc
−) = e (48)

or in terms of concentrations

kBT

2q
∇ ln

[
n+
n−

]
= e (49)

where we have used Eq. (6).
Varying solvent polarization pd → pd + δpd at fixed â, pi,

and n proceeds along the same line. Since, for electrostatic
considerations, ionic and solvent polarizations are additive
[Eq. (25)] the first order difference is the same as Eq. (43)
with δpd replacing δpi:

δẼE = −
∫

�

e · δpd dv. (50)

The variation in the solvent polarization constitutive energy is
straightforward:

δFpd =
∫

�

pd

χ
· δpd dv. (51)

The resulting Euler-Lagrange equation is the susceptibility
relation for linear dielectrics:

pd = χe. (52)

Note that e in Eqs. (48) and (52) is the same. While polariza-
tions are partial, there is only a single Maxwell field.

C. Varying total density

The final step is the variation of total density n → n + δn
carried out at fixed pi, pd , and â. In addition we must ensure
that the total number of particles is conserved. This adds a
Lagrange multiplier μ to the Euler-Lagrange equation for n.
Omitting an external one-particle potential we therefore have
the equilibrium condition

∂Fd

∂n
= μ. (53)

The electrostatic energy density of Eq. (24) is not affected by
changes in n. Neither is the stored polarization energy Fpd of

Eq. (17) (this will change if we admit electrostriction). δFd is
therefore entirely determined by the differential of the ionic
constitutive energy δFpi of Eq. (15). Keeping ionic polar-
ization constant the change in species densities is according
to Eq. (11) simply δnν = δn/2, the same for both species.
Substituting we find

δFpi =
∫

�

1

2
(μc

+ + μc
−)δn dv (54)

yielding the equilibrium equation

1

2
(μc

+ + μc
−) = μ. (55)

Substituting Eq. (6) this is equivalent to

√
n+n− = �−3 exp

[
μ

kBT

]
. (56)

As expected μ can be identified with the uniform (absolute)
mean activity.

Since μ is a constant another implication of Eq. (55) is that
∇μc

+ = −∇μc
−. With Eqs. (48) and (6) this yields

kBT

qν

∇ ln[�3nν] = e. (57)

Setting e = −∇φ, integrating, and exponentiating we find for
the equilibrium concentrations

nν = n0

2
exp

[
− qvφ

kBT

]
. (58)

n0 is the total density of ions at locations of zero potential. Us-
ing Eq. (56) we can write Eq. (58) in the more thermochemical
form

nν = �−3 exp

[
− (qvφ − μ)

kBT

]
. (59)

Equation (58) is the crucial result necessary to verify
consistency between the conventional formulation of Poisson-
Boltzmann theory and the polarization based approach
developed here.

The final check is reproducing the PB equation for the
electrostatic potential φ. Starting from the Lorentz relation
Eq. (19) we insert the constitutive Eq. (52) for the solvent
polarization. The differential equation for the potential is
obtained from the divergence of this equation. This is the
usual procedure. However, in our “pseudodielectric” div d =
0 because we have represented the free charge by the ionic po-
larization pi. We end up with effectively the identical equation

div (ε e) = −div pi (60)

where we have set ε0 + χ = ε. The right hand side is accord-
ing to the definition of the ionic polarization [Eq. (10)] the
mobile charge density ρ. Substituting the Boltzmann relation
Eq. (58) in Eq. (2) for the density yields the familiar PB
equation for the potential.

�φ = qn0

ε
sinh

[
qφ

kBT

]
. (61)
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Perhaps it is appropriate to conclude this section with the
warning that the self field ê determining the electrostatic
energy in Eq. (24) cannot be replaced by −∇φ because φ

is the total electric potential including the potential for the
applied field e0. In fact e0 nowhere explicitly appears in the
equilibrium equations. We will come back to this issue in the
application presented in the next section.

IV. PLANAR POLARIZED FILM

A. Linearized Poisson-Boltzmann theory

The example discussed in every textbook is a semi-infinite
volume of solution in contact with a charged wall [1]. This is
the original Gouy-Chapman (GC) model of an electric double
layer. We will investigate a different system more suitable for
illustrating the nature of ionic polarization. This a planar film
of finite width l subject to a normal external electric field.
Choosing the z axis as the direction perpendicular to the layer
the boundary planes are at z = ±l/2. The layer of electrolyte
is polarized by an external electric field of magnitude e0 point-
ing along the positive z axis (e0z = e0, e0x = e0y = 0). As the
polarization p = pz in the one-dimensional (1D) geometry is
strictly longitudinal, the self field ê = êz is equal to −p/ε0 and
therefore vanishes in the vacuum outside the film. There is no
spill-out. The system is equal to an electrolyte inside a parallel
plate capacitor with fixed charge density σ0 = ε0e0.

The response of the electrolyte will be studied solving the
linearized PB equation Eq. (61):

d2φ∗(z)

dz2
= k2

Dφ∗(z) (62)

where φ∗(z) = qφ(z)/(kBT ) is the dimensionless potential
and kD is the inverse Debye screening length [1]:

k2
D = q2n0

εkBT
. (63)

The normal external electric field breaks the symmetry of the
layer. However charge neutrality [Eq. (3)] imposes φ∗(−z) =
−φ∗(z) symmetry on the linear system, because if the poten-
tial is odd under z → −z reflection the electric field e(z) =
−dφ(z)/dz) is even and therefore∫ l/2

−l/2
ρ(z)dz = e(l/2) − e(−l/2) = 0 (64)

where we have simplified the notation for the z component of
the electric field to ez(z) = e(z). To appreciate the difference
with the GC electric double layer model it is instructive to
compare to the neutrality condition for the GC system which
is usually written as ∫ ∞

0
ρ(z)dz = −σ (65)

where the wall with surface charge σ is located at z = 0. σ is
fixed and the net excess charge density on the electrolyte side
of the GC double layer is bound. The film neutrality condition
Eq. (64) places no such restriction on the excess charge. The
charge induced in a half layer

σ =
∫ l/2

0
ρ(z)dz (66)

can in principle take arbitrarily large values for strong enough
fields e0 or a wide enough layer.

These symmetry considerations lead us to a solution for the
linearized PB Eq. (62) of the simple form

φ(z) = A

(
kBT

q

)
sinh (kDz) (67)

with a corresponding electric field:

e(z) = −AkD

(
kBT

q

)
cosh (kDz). (68)

The dimensionless coefficient A is to be determined by relat-
ing it to the applied field e0. The boundary at z = l/2 is not
helpful here because e(l/2) is not simply equal to e0. Note
however that the field at the center is finite. This field must
persist even in the absence of ions (n0 = 0). What is left in this
limit is the pure polarized solvent with uniform field (ε0/ε)e0.
This suggests to impose the limiting condition

lim
n0→0

e(0) =
(

ε0

ε

)
e0 (69)

which is satisfied for the potential

φ(z) = −ε0e0

εkD
sinh (kDz) (70)

and therefore

e(z) = ε0e0

ε
cosh (kDz). (71)

For a very dilute solution we can Taylor expand φ(z) in kD,
giving

φ(z) = −
(

ε0e0

ε

)
z −

(
kDε0e0

2ε

)
z2 + . . . . (72)

The leading term is indeed the potential in a uniformly polar-
ized linear dielectric continuum, being our solvent.

B. Ionic polarization and electrostatic energy

What can we learn about ionic polarization from the pla-
nar polarized film of an electrolyte solved in the linear PB
approximation in the previous section? The one-dimensional
geometry is clearly a restrictive special case because all fields
are either longitudinal or constant. In particular the 1D dis-
placement field d (the z component) must be uniform across
the layer and equal to its value ε0e0 in the vacuum outside
the film. This means that the Lorentz relation Eq. (19) can be
written as

ε0e0 = ε0e(z) + pi(z) + pd (z). (73)

This relation must hold everywhere inside the film, which
has been made explicit by displaying the z dependence of the
fields.

Using the constitutive relation Eq. (52) for pd which re-
mains valid at finite ion concentration Eq. (73) implies

pi(z) = −[εe(z) − ε0e0]. (74)

Without solvent (ε = ε0) Eq. (74) reduces to pi(z) = −ε0ê(z).
This is the expected behavior of polarization in a nonuniform
dielectric. Comparing ionic polarization to dipolar polariza-
tion is justified in this case. Trivially this also makes sense in
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the opposite limit of zero ion concentration because εe = ε0e0

for a pure uniform slab of dielectric and Eq. (74) sets pi(z)
to zero. At finite concentration and solvent susceptibility pi

evidently makes up the mismatch between εe(z) and ε0e0

which is at least consistent with the interpretation pi as a
polarization.

Combining Eq. (74) with Eq. (68) we find for the ionic
polarization profile

pi(z) = −ε0e0[cosh (kDz) − 1]. (75)

The ionic polarization is canceled midway between the two
surfaces [pi(0) = 0] in contrast to the electric field, which is
finite due to solvent polarization. Going out to the boundary
the ionic polarization increases exponentially with the char-
acteristic length of 1/kD. Reassuringly the ionic polarization
shows similar behavior as the excess charge density as it
should according to its definition Eq. (10). In fact inserting
Eq. (75) and integrating gives for the total charge Eq. (66)
induced in a half layer of a width well exceeding the Debye
length:

σ = pi(0) − pi(l/2) = ε0e0 cosh (kDl/2). (76)

The induced charge is unbound contrary to the GC electric
double layer [Eq. (65)].

The physical significance of ionic polarization is also re-
flected in the way it controls the electrostatic energy. The
expression for electrostatic energy is particularly simple for a
system with longitudinal polarization only. The self displace-
ment field is strictly zero (d̂ = 0) and the dielectric vector
potential introduced in Sec. II D is not needed. This eliminates
the derivative term in Eq. (33):

eE(pi, pd ) = −(pi + pd ) · e0 + (pi + pd )2

2ε0
. (77)

The electrostatic field energy density is a quadratic function
of the net polarization. It has the elementary form of a Drude
oscillator in an external field. This expression is generally
valid for all systems without transverse polarization (also note
again that the dielectric response is, conforming to Maxwell-
Lorentz theory, that of vacuum). Of course the dependence
of free energy on spatial derivatives has not been eliminated.
It now appears in the constitutive energy. The ionic concen-
trations vary with the divergence of polarization [Eq. (11)]
coupling the ideal free energy of Eq. (15) to the electrostat-
ics in the first order change of total energy [Eq. (46)]. This
is how in this polarization based formalism the equilibrium
populations Eq. (58) emerge.

Let us now check whether the equilibrium electrostatic
energy as computed from Eq. (77) agrees with the familiar PB
result. This exercise is instructive for an appreciation of the
difference between the proposed polarization based formula-
tion of PB theory and the conventional electrostatic potential
based formulation. Substituting Eq. (73) in Eq. (77) we find
(switching back to 1D notation)

eE = ε0

2

(
e2 − e2

0

)
. (78)

The second term on the right hand side is the energy of the
applied electric field we had discarded (see Sec. II C). How-
ever, the first term is not quite the expected εe2/2 of PB theory.

The difference is the dielectric constant multiplying the square
of the Maxwell field. Indeed, as explained in Sec. II C, the
Ericksen energy eE is the generic electrostatic field energy
density. To obtain the full electrostatic energy we must add
the constitutive energy stored by the solvent polarization pd .
Using the equilibrium relation pd = χe = (ε − ε0)e we can
write this energy as

p2
d

2χ
= (ε − ε0)

2
e2. (79)

Adding Eqs. (78) and (79) and also making up for the energy
density of the applied field yields

p2
d

2χ
+ eE + ε0e2

0

2
= εe2

2
, (80)

which is the PB energy density.
The point we want to make with this simple example is

the following. Separation between field energy and stored
energy is considered essential in dielectric theory. Polarization
based PB theory enables us to extend such a separation to
electrolytes. We will return to this issue in the conclusion,
where we will argue that this extension might be not only
helpful but also necessary for more complex systems.

V. SUMMARY AND OUTLOOK

In the conventional picture of the electrostatics of Poisson-
Boltzmann theory the divergence of the dielectric displace-
ment field is equal to the density of mobile charge which is
treated as external charge. This is however not the only option.
Mobile charge can also be regarded as internal charge which is
allowed in Maxwell-Lorentz continuum theory. In this picture
the ionic charge density is (minus) the divergence of ionic
polarization. Accounting for the dielectric response of the sol-
vent by explicit solvent polarization the Poisson-Boltzmann
continuum can be regarded as a composite dielectric fluid with
two partial polarizations (ionic and solvent). The dielectric
displacement in this representation is fully transverse. Ex-
ploiting this parallel we have applied a variational method
developed for pure dielectric material [37] to the Poisson-
Boltzmann continuum and were able to reproduce the familiar
equilibrium equations for electrostatic potential and charge
densities from the corresponding dielectric Euler-Lagrange
equations.

The free energy functional has the structure of the convex
nonequilibrium free energy functionals of polarization as used
in the continuum theory of polar solvents [32,48–50]. A dis-
tinctive feature of these functionals is the separation between
electrostatic field energy and constitutive (stored) polarization
energy. In the extension to electrolytic solutions proposed
here the ideal translational free energy of Poisson-Boltzmann
theory plays the role of a constitutive energy for the mobile
charge. All electrostatic interactions are taken care of by a
single field energy density coupling the sum of ionic and sol-
vent polarization to the dielectric displacement [Eq. (24)]. The
unified treatment of the electrostatic interaction in terms of a
superposition of ionic and solvent polarization recognizes that
the screening between ions and solvent polarization is mutual.
This may give insight into the distribution of excess charge
hidden in a theory without explicit solvent polarization.
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Including explicit solvent polarization degrees of freedom
is even more pertinent for system geometries inducing trans-
verse polarization. The appearance of transverse polarization
is a signature of shape dependence. This is a notorious prob-
lem making computation of polarization in pure dielectrics
(no mobile charge) a nontrivial task. The derivation in Sec. III
shows that the PB equation for the potential is shape invariant.
This is consistent with the relation between solvent polar-
ization and Maxwell field which is also a material property.
However, total energy will vary with geometry. This is true for
a pure dielectric and the opposite limit of a perfect conductor
and can be expected to persist in the intermediate case of an
electrolytic solution.

The proof given in Sec. IV B that the pseudodielectric
energy is equal to the conventional PB energy computed
from the electrostatic potential is for longitudinal polarization
only and cannot be carried over to arbitrary geometries. The
shape dependence of finite volumes of an electrolytic solution
is clearly not an easy problem and will require numerical
methods. The composite dielectric picture presented in this
paper offers a method for analyzing numerical results or could
possibly even be the basis for novel computational methods.
This might be particularly relevant for nanosystems. Here it
should of course be mentioned that there is already a sizable
literature on introducing explicit solvent polarization in PB
theory. These methods, such as dipolar Poisson-Boltzmann
[21,51–53] and Langevin-Poisson-Boltzmann [54], tend to
focus on atomistic detail (for a review see Ref. [55]). Problems
of shape dependence have received less attention [21].

Similar issues of electrostatic consistency arise for the
modification and extension of PB theory aiming to remediate
some of its deficiencies which become dominant at higher
concentration. An example is the modeling of steric repul-
sion which is particularly important at the interface of room
temperature ionic liquids with charged surfaces. One option
is to adapt the short range configurational energy competing
with the long range electrostatic interactions. In the frame-
work of the extended dielectric continuum theory used in this
paper these contributions to the free energy are viewed as
constitutive energies. As noted in Ref. [6] a stable (convex)
representation of the electrostatic energy is convenient or even
necessary for this operation. In Ref. [6] this is achieved by
using the dielectric displacement as primitive electrostatic
field degree of freedom rather than the gradient of the po-
tential (see also Ref. [7]). The work presented here suggests
that a functional based on ionic polarization is an interesting
alternative with the added advantage of a natural match with
solvent polarization.

Regarding more remote applications, one area where the
dielectric perspective could be of use is electromechanics. As
already mentioned in the introduction, the Ericksen scheme
used here was developed for the derivation of stress tensors
of dielectric continua. In a recent publication [56] the author
repeated this derivation employing the systematic Lagrangian
electromagnetic formalism of Dorfmann and Ogden [40,57].
Stress tensors in continuum mechanics are obtained as (non-
linear) strain derivatives of an energy functional. In contrast,
the stress tensors in most studies based on density functional
theory are integrals of the force density [27]. The electric part
of the PB stress tensor obtained by this route is essentially the

Maxwell stress tensor formed from the Maxwell field [1,17].
It would be of interest to verify whether the stress tensor
formally derived from the PB functional using the methods
of continuum mechanics is indeed equal to the DFT stress
tensor. For example, one of the questions concerns the effect
of solvent stress (the Korteweg-Helmholtz stress tensor or a
variant thereof [37,39,42,56]) which is nontrivial even in the
simple polarizable continuum model used in PB theory [11].
The reformulation in terms of a functional of ionic and sol-
vent polarization should make the PB theory of electrolytes
amenable to the established continuum mechanics methods of
electroelasticity.

A further potential application is nonequilibrium ther-
modynamics. The point of departure for transport theory
and nonequilibrium thermodynamics for electrolytes is the
Poisson-Nernst-Planck (PNP) formalism. This is a huge field
with many important practical applications [3,25,58,59] (to
mention just a very small selection). Polarization can be
equated to the time integral of electric current in the quasi-
electrostatic limit. This relation was the vital ingredient for
defining uniform electronic polarization [45,47] in periodic
systems. Equilibrium polarization in this picture is the re-
mainder of transient current. The corresponding definition of
global ionic polarization in classical systems under periodic
boundary conditions [60,61] was used in a recent molecular
simulation of a bulk electrolyte (aqueous NaCl) [62]. The
generalization to local ionic polarization may seem artificial
in static systems, but is more natural in time dependent sys-
tems. The resulting PB functional, while equivalent to the
original, seems closer to the structure of PNP theory [25]
and may therefore be more suitable for a time dependent
generalization of the PB functional. In this context it should
also be pointed out that the issues of the correct form of the
stress tensor and the transport properties of the PB electrolyte
are linked by continuum thermomechanics. The stress tensor
enters in the balance laws for energy and the second law for
local entropy production. However, the continuum thermome-
chanics of electroactive systems remains a controversial issue
raising a number of fundamental questions. In fact it was
here that the renewed focus on Maxwell-Lorentz continuum
theory promoted in the Kovetz book had a most stimulating
impact [41,63,64].

In this theoretical exploration of polarization based PB
functionals, a detailed discussion of numerical aspects seems
premature. The method may offer advantages when spatial
variation of the solvent dielectric constant is important as has
been argued for the modeling of colloidal and macromolecular
systems [35,36,65,66]. The functional is convex, allowing for
iterative finite element implementation. The introduction of a
vector potential as an auxiliary variational degree of freedom
is certainly a complication. As explained in Sec. IV determi-
nation of the vector potential can be avoided in systems with
longitudinal polarization only. However, without extensive
application in computations involving complex systems it is
not clear how efficient this method will be compared to other
schemes [33–36,66] and this paper is making no claims in this
regard.

In conclusion, the judgment is still pending whether the
“dielectric” view of PB theory proposed in this paper is
more than a theoretical exercise. However, from a conceptual
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perspective, this development can be of interest as a way of
gaining better insight into both the fundamental assumptions

underlying the venerable Poisson-Boltzmann theory of elec-
trolytes as well as its extensions.
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