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Molecular origin of the heterogeneity in the nematic and smectic liquid crystals:
Elastic constants, gradients of order parameters, and visualization of small objects
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The formation of heterogeneous nematic and smectic liquid crystals in the general case of an arbitrary
geometry is investigated in the framework of molecular-statistical approach [Emelyanenko and Khokhlov,
J. Chem. Phys. 142, 204905 (2015)]. The molecular aspects of the orientational and translational orderings
at the curved surfaces of small solid objects dispersed in liquid crystal are considered, and the differential
equations for gradients of the order parameters in vicinities of the small objects are presented in the general
form. The five elastic constants are obtained within the same approach, from which we were able to predict
that a significant space variations of the order parameters can be observed within the 0.5–0.8 μm area around
any small object, almost independently of its own dimension. Therefore, the liquid crystals can be a simple tool
for the optical visualization of nano-objects. It is also demonstrated that the kind of molecular self-organization
(smectic, nematic or conventionally isotropic) at the surfaces of small solid objects can be different from that in
the bulk of mesogenic material. Totally we predict eight various combinations of simple states at the surfaces and
in the bulk depending on the solid objects’ size and temperature. It is also shown that the surfaces of 10 μm-size
solid objects and larger act almost as flat surfaces, while the surfaces of 1 μm-size solid objects and smaller act
almost as point defects.
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I. INTRODUCTION

One of the most important trends in development of science
today is the creation of new materials that can be applied
for the recognition of the micron and submicron objects in
various liquids or at the surfaces of solids. The submicron
objects, even in a minor quantity being present in the natural
or artificial functional materials, are often capable either of
the enhancement of the principle materials’ functions or, vice
versa, of worsening.

Topological defects in the liquid crystals are frequently
used as the converters of the optical modes of the light beams
[1]. This is important for the formation, the so-called, optical
vortices and other vector beams, which can be used in the
microscopy, nanotechnologies, quantum optics, and informa-
tion technologies [2–4]. The microparticles with the specified
boundary conditions, incorporated into the liquid-crystal ma-
trix, can create different topological structures. The films of
nematic liquid crystals containing the nano- and microparti-
cles, are the composite systems, which can be used for the
electro-, thermo-, or photoinduced modulation of the light [5].
The suspensions of ferromagnetic or ferroelectric nanoparti-
cles in liquid crystals make the LC’s highly sensible to the
electric and magnetic fields [6]. A small amount of ferroelec-
tric nanoparticles is known to reorient and hold liquid crystal
(LC) molecules in a direction of the orientation of nanopar-
ticles even when an external electric field attempts to orient
a liquid crystal in an orthogonal direction [7]. The variable

*http://polly.phys.msu.ru/∼emel/

surface anchoring between LC and particles distributed inside
makes it possible to use these materials for the detection of im-
purities [8]. Addition of the nano- and of microparticles into
the liquid crystals leads to a change in their viscous and elastic
properties [9], and it also improves their luminescent proper-
ties [10], that is important for the modern display technologies
[11] and other optoelectronic and photonic applications. The
use of photosensitive surfactant, adsorbed onto the LC–liquid
border, makes it possible to manipulate by the location of
particles in the space [12,13].

At the same time, it is known that the occasional micro- and
submicron objects can cause the short circuits or destructions
of other kinds both in the household devices (displays, solar
cells) and in the unique and expensive instruments, utilized in
medicine, aviation, power engineering, other areas of human
activity, which require the reliable work of different devices.
Anyway, it is important, by simple methods and without the
loss of time, to recognize the presence and quantity of various
micron or submicron objects in different functional materials,
and also to know how to manipulate by their positions (or
distributions) inside the functional material.

At present, there are no any theories describing the molec-
ular origin of the order parameters variation in the confined
geometries. Meanwhile, these variations appear to be in-
timately related to the elastic constants, because they all
originate from the same molecular properties. Our estimations
show that in the diameter of 0.5–0.8 μm around the defects
or nano- or micro-object related to them, the specific areas
with the lowered orientational order parameter arise. Thus,
theoretically, these areas themselves can be visible in the
optical microscope, even if the nano-objects are located in
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the centers of defects or in the absence of any objects in the
centers of defects (but the defects themselves in these cases
are realized because of the symmetry of the surrounding struc-
ture). Therefore, it is very important to formulate a general
molecular approach capable of prediction of the deformed LC
structures in various phases, in particular, the elastic constants
and the distribution of the orientational and translational order
parameters in the space.

Nematic liquid crystals [14] (including chiral or differently
deformed nematics [15–18]) are the anisotropic substances,
in which the long molecular axes have predominant orien-
tation (locally predominant—in the case when deformation
is present), which is called the director (local director). In
contrast to the solid crystals, the positions of molecules have
no any preference. In other words, the nematic materials have
a long-range orientational order (much longer than the range
of director deformation), but the long-range translational or-
dering is absent.

Smectic liquid crystals are the layered structures, in which
the translational motion of molecules between the smectic
layers is hindered, but there exists a freedom of motion within
each two-dimensional layer. The surfaces of all smectic layers
are parallel to each other (or locally parallel). The molecules
within each smectic layer have a predominant orientation,
which is also called the director (local director). Several kinds
of smectic phases are known. For example, in the orthogonal
smectic Sm-A phase the director is parallel to the smectic layer
normal in each smectic layer, and therefore the structure of
Sm-A is optically uniaxial; no spontaneous polarization arises.
Many tilted smectic phases are also known, in which the direc-
tor is not parallel to the smectic layer normal. Tilted smectic
phases are mostly known for their ferroelectric properties
[19,20]. The anticlinic antiferroelectric phases, and several
intermediate phases were discovered in Refs. [21,22]. Some
lactic acid derivatives [23,24] are known to possess the re-
entrant properties (either orthogonal or the ferroelectric phase
reappears at lower temperatures) [25–29]. Theoretical investi-
gation of various ferroelectric and antiferroelectric phases was
done, for example, in Refs. [30–39].

In Ref. [40] the original translational order parameters
were introduces for the smectic materials. In the present
paper we are going to take into account the director defor-
mations and the order parameters’ gradients. Recently the
double nematic-isotropic phase transition was observed [41]
and explained theoretically [42]. The one of the transitions
was related to the surface and another one was related to
the bulk of LC. It was shown that the orientational order
parameter is larger at a flat solid surface than in the bulk of
LC, and there exists a specific temperature range, at which
the orientational order can be observed only near the surface,
while apart from the surface the isotropic phase should be ob-
served. Later it was shown [43,44] that, at the curved surfaces,
the situation can be opposite because of the deformation of
director field, and, as a result, there can exist a specific tem-
perature range, when the orientational order is observed only
apart from the surface. Quite recently it was shown that the
addition of nanosized fluorinated graphene [45] and shungite
carbon [46] affects the phase transition temperatures of meso-
genic materials and reduces the nematic-isotropic transition
temperature.

Here we present the generalization of our approach to the
description of both translational and orientational orderings
in a liquid crystal media in the presence of an arbitrary
deformation. We are going to follow the idea that smectic
layering is similar to the microphase separation in polymers
[47–51]. In particular, we demonstrate that there can exist a
specific temperature range, at which the translational order
can be observed either near the solid surface or apart from the
surface depending on the surface curvature. The importance of
theoretical consideration of the distorted smectic and nematic
substances is well understood from the appearance of new
LC phases [52–55] in the presence of director deformation,
which cannot be observed in the homogeneous state of LC.
This question, however, requires additional consideration. At
the same time, any deformed structure of LC can be evolved
(or adapted) from basic equations written in the present paper.
In addition, we are going to show, how a simple deformed
structure can be evolved from the general formulas.

II. STATISTICAL DISTRIBUTIONS OF THE ELONGATED
MOLECULES OVER THEIR POSITIONS AND

ORIENTATIONS IN THE GENERAL CASE OF AN
ARBITRARY GEOMETRY OF A LIQUID CRYSTAL

A. Molecular model

Let us consider the inhomogeneous system of uniaxial
elongated molecules having orientational local distribution
function f {(a · n(r)), r} of their long axes a with respect to
the local nematic director n(r). In the general case let us
assume that molecular concentration distribution ρ(r) is also
inhomogeneous. For simplicity let us assume that there is no
direct correlation between the concentration distribution ρ(r)
and the orientational distribution function f {(a · n(r)), r}. In
Ref. [40] the original translational order parameters were in-
troduced for the smectic materials. In the present paper we
are going to take into account the director deformations, and
therefore the definitions for both the local orientational order
parameter and the local translational order parameters will be
based on the director n1 at point 1, where the test molecule
(molecule 1), affected by the mean molecular field, is located
(see Figs. 1 and 2). As a measure of the orientational ordering
one can use the local average Legendre polynomials:

Sm(r1) ≡
∫

f [(a1 · n1), r1]Pm(a1 · n1)d2a1, (1)

where a1 is the orientation of molecule 1 and r1 denotes the
position of molecule 1. In the same manner, let us introduce
the local translational order parameters:

σm(r1) ≡ V0

∫
ρ[(u12 · n1), r1]Pm(u12 · n1)d2u12, (2)

where u12 is the unit intermolecular vector between the test
molecule 1 and a molecule 2 belonging to the surrounding
of molecule 1 and participating in the mean molecular field
acting on molecule 1. Integration in Eq. (2) is done over
the surface of the elementary volume V0 characteristic to any
incompressible media. Here we define the elementary volume
as the volume occupied by molecule 1 itself and its nearest
surrounding molecules (see discussion below).
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FIG. 1. Pair of neighboring molecules in the inhomogeneous LC
(nematic or smectic). The plane perpendicular to director n1 is shown
by dotted line. The projection of intermolecular vector r12 on this
plane is shown by dash arrow. Angle β is the angle between r12 and
its projection on the plane mentioned above.

Let us introduce the shift angle β between the plane, which
is perpendicular to director n1, and the intermolecular vector
u12 (see Fig. 1). Then one can write sin β = (u12 · n1), and,
in correspondence with definition Eq. (2), the average second
and fourth powers of sin β can be written as follows:

〈sin2 β〉 = 2

3

σ2

σ0
+ 1

3
,

〈sin4 β〉 = 8

35

σ4

σ0
+ 4

7

σ2

σ0
+ 1

5
. (3)

(a)

(b)

FIG. 2. Model of a liquid crystal molecule (solid ellipsoid) and
its nearest surrounding: side view (a) and top view (b). The surround-
ing molecules are shown by empty ellipsoids. The contours of the
whole nearest surrounding are shown by dash lines.

As a measure of the smectic layering we introduce [40] the
expected value of the squared deviation from the mean sin2 β

(the variance):

Var(sin2 β ) ≡ 〈(sin2 β − 〈sin2 β〉)2〉

= 〈sin4 β〉 − 〈sin2 β〉2 = −4

9

(
σ2

σ0
− 1

)2

− 16

21

(
σ2

σ0
− 1

)
+ 8

35

(
σ4

σ0
− 1

)
, (4)

which should tend to zero at perfect smectic ordering (in both
the orthogonal and the tilted smectic phases).

B. Free energy of a liquid crystal having the orientational
and translational correlations between molecules

Let us apply the Maier-Saupe mean-field theory [56,57] for
the description of both nematic and smectic states with the
presence of director deformation and the order parameter gra-
dients. The free energy of the molecular system generalized
for the case of inhomogeneous liquid crystals (both nematic
and smectic) can be written in the following form:

F = kBT
∫∫

d3r1d2a1ρ(r1) f [(a1 · n1), r1]

× ln{ρ(r1) f [(a1 · n1), r1]}

+ 1

2

∫∫∫∫
d3r1d2a1d3r2d2a2ρ(r1) f [(a1 · n1), r1]

× ρ(r2) f [(a2 · n2), r2]U ef
12(a1, a2, r12), (5)

where ri (i = 1, 2) are the coordinates of points 1 and 2, where
molecules 1 and 2 are located, r12 is the vector connecting
points 1 and 2, kB is the Boltzmann constant, T is the temper-
ature, U ef

12(a1, a2, r12) is the effective pair interaction potential
for two molecules with long axes a1 and a2 located at points
1 and 2, respectively, while n1 is the director at point 1 and
n2 is the director at point 2. The first term in Eq. (5) is the
entropy, and the second term is the internal energy. At any
point r the orientational distribution function f [(a · n), r] in
Eq. (5) satisfies the normalizing constraint:∫

d2a f {(a · n(r)), r} = 1. (6)

Substituting constraint Eq. (6) into Eq. (5) one can write the
free-energy density in the vicinity of point 1 in the following
form:

∂F

∂V

∣∣∣∣∣
r=r1

= kBT ρ(r1) ln ρ(r1) + kBT ρ(r1)

×
∫

d2a f [(a1 · n1), r1] ln f [(a1 · n1), r1]

+ 1

2
ρ(r1)

∫∫∫
d3r12d2a1d2a2ρ(r2)

× f [(a1 · n1), r1] f [(a2 · n2), r12]U ef
12(a1, a2, r12),

(7)
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where location 2 is now counted from location 1. To obtain
the normalizing constraint for concentration ρ(r), and then
to separate functions ρ(r) and f [(a · n), r] in the free energy
Eq. (7), let us take into account that the total average number
of nearest neighbors of molecule 1 is constant in the con-
densed incompressible medium:

V0

∫
d2u12ρ[(u12 · n1), r1] = σ0, (8)

where V0 is the average elementary volume occupied by some
molecule 1 and all its nearest neighbors, vector u12 is the
unit vector between molecule 1 and its nearest neighbor 2
counted from director n1 for simplicity, ρ[(u12 · n1), r1] is
the concentration of neighboring molecules at the surface of
contact with molecule 1, and parameter σ0 is the average

number of the nearest neighbors. Taking into account that all
averages and densities use the elementary volume as a mini-
mal space that cannot be split furthermore without violation of
the local uniformity, but, on the other hand, the V0 volume is
sufficiently large for determination of all local averages and
densities (before consideration of the director deformation
and gradients of the order parameters), let us change over from
ρ(r1) in Eq. (7) to its average Eq. (8) by integrating Eq. (7)
with respect to r1 assuming that molecule 1 is the neighbor
of some other molecule (let us say, molecule 0). Taking into
account that, totally, in the same manner, the energy density
Eq. (7) can be integrated within the same spaces around σ0

different molecules with the same result of integration, one
should divide the result of integration by σ0 to obtain the free
energy V0∂F/∂V per volume V0:

4πσ0V0
∂F

∂V

∣∣∣∣
r=r1

= kBT
∫

d2u12ρ[(u12 · n1), r1]V0 ln{ρ[(u12 · n1), r1]V0} + kBT σ0

∫
d2a1 f [(a1 · n1), r1] ln f [(a1 · n1), r1]

+ 1

2
σ0

∫∫
d2u12d2a1ρ[(u12 · n1), r1] f [(a1 · n1), r1]

∫
d2a2

∫
dr12r2

12 f [(a2 · n2), r2]U ef
12(a1, a2, r12),

(9)

where in the second and third terms we have taken into account the normalizing constraint Eq. (8). Minimizing the free energy
Eq. (9) independently with respect to orientational distribution function f [(a1 · n1), r1] and concentration distribution ρ[(u12 ·
n1), r1] under constraint Eqs. (6) and (8), one obtains the following set of equations:

f [(a1 · n1), r1] = 1

I f
0 (r1)

exp

{
−UMF[(a1 · n1), r1]

kBT

}
,

ρ[(u12 · n1), r1] = σ0

V0

1

Iρ
0 (r1)

exp

{
−Ucorr[(u12 · n1), r1]

kBT

}
, (10)

where UMF[(a1 · n1), r1] is the mean—over all locations r12 and all orientations a2 of the second molecule—molecular field
acting on molecule 1 located at point r1 and having orientation a1 of its long axis:

UMF[(a1 · n1), r1] ≡
∫

d2u12ρ[(u12 · n1), r1]
∫

d2a2

∫
dr12r2

12 f [(a2 · n2), r2]U ef
12(a1, a2, r12), (11)

and correlation function Ucorr[(u12 · n1), r1] is the average over all orientations of molecules 1 and 2 interaction between them at
orientation u12 of the intermolecular vector:

Ucorr[(u12 · n1), r1] ≡ 1

2

σ0

V0

∫
d2a1 f [(a1 · n1), r1]

∫
d2a2

∫
dr12r2

12 f [(a2 · n2), r2]U ef
12(a1, a2, r12), (12)

while integrals I f
m (r1) and Iρ

m(r1) [including the normalizing integrals I f
0 (r1) and Iρ

0 (r1) in Eq. (10)] are defined as follows:

I f
m (r1) =

∫
Pm(a1 · n1) exp

{
−UMF[(a1 · n1), r1]

kBT

}
d2a1,

Iρ
m(r1) =

∫
Pm(u12 · n1) exp

{
−Ucorr[(u12 · n1), r1]

kBT

}
d2u12, (13)

where Pm is the mth Legendre polynomial. Then from Eq. (13), in particular, the recurrent equations for determination of the
order parameters follow:

Sm(r) = I f
m (r)

I f
0 (r)

,
σm(r)

σ0
= Iρ

m(r)

Iρ
0 (r)

, (14)

where σ0 is constant. From analysis of Eqs. (11) and (12) it follows that at any point r1,

V0

∫
d2u12ρ((u12 · n1), r1)Ucorr[(u12 · n1), r1] = 1

2
σ0

∫
d2a1 f ((a1 · n1), r1)UMF[(a1 · n1), r1]. (15)
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Taking this into account and substituting Eqs. (10)–(13) into
Eq. (9), one obtains the following expression for the equilib-
rium free-energy density:

4πV0
∂Feq

∂V

∣∣∣∣∣
r=r1

= −kBT ln Iρ
0 (r1)I f

0 (r1) −
∫

d2a1

× f [(a1 · n1), r1]UMF[(a1 · n1), r1)], (16)

where V0 is the bulk of a molecule and its nearest surrounding.
Approximately, the bulk of a molecule with its surrounding
exceeds the bulk of the molecule itself tree times in each
dimension, and totally 27 times in 3D space (see illustration in

Fig. 2). In particular, for a molecule of cyanobiphenyl having
4.1 × 10−26 m3 bulk, one obtains V0 ≈ 1.1 × 10−24 m3.

C. Gradients of the mean field and of the correlation function

Let us approximate the effective intermolecular interac-
tion U ef

12(a1, a2, r12) by spherical invariants T� L λ(a1, u12, a2)
[40,44]:

U ef
12(a1, a2, r12) = −

∑
�,L,λ

J�Lλ(r12)T�Lλ(a1, u12, a2), (17)

where we take into account the following few spherical invari-
ants, which is enough for the description of inhomogeneous
nematic and smectic states:

T000(a1, u12, a2) = 1,

T202(a1, u12, a2) = P2(a1 · a2) = 3
2 (a1 · a2)2 − 1

2 ,

T404(a1, u12, a2) = P4(a1 · a2)

= 35
8 (a1 · a2)4 − 15

4 (a1 · a2)2 + 3
8 ,

T222(a1, u12, a2) = 9
2 (a1 · a2)(a1 · u12)(a2 · u12) − 3

2 (a1 · a2)2 − 3
2 (a1 · u12)2 − 3

2 (a2 · u12)2 + 1,

T242(a1, u12, a2) = 35
8 (a1 · u12)2(a2 · u12)2 − 5

2 (a1 · a2)(a1 · u12)(a2 · u12) + 1
4 (a1 · a2)2

− 5
8 (a1 · u12)2 − 5

8 (a2 · u12)2 + 1
8 , (18)

and their analogs corresponding to a permutation of the �, L and λ indexes. Here we assume that the ordering of the long
molecular axes is nonpolar (i.e., invariants with odd indexes � and λ are absent) and neglect the small chirality terms (i.e.,
spherical invariants with odd indexes L). One notes that the average of any spherical invariant T�Lλ(a1, u12, a2) with respect to
any of its arguments is proportional to the order parameter of kinds (14) (�th for a1, Lth for u12, and λth for a2) with appropriate
distribution function. For both vectors a1 and a2 the distribution function is f [(a · n), r], while for vector u12 the distribution
function is ρ[(u12 · n), r]. Let us also note that implementation of the higher order spherical invariants will not bring us any new
information about the structure of a liquid crystal considered here. In other words, let us take into account only those spherical
invariants, which result in the appearance of the S2 and S4 orientational order parameters and σ2/σ0 and σ4/σ0 translational order
parameters in the free energy. Introducing coefficients

J (i)
�Lλ ≡ 1

V0

∫ ∞

0
dr12ri+2

12 J�Lλ(r12), (19)

using the gradient expansion for the orientational order parameters and director:

Sλ(r2) ≈ Sλ(r1) + 1
2 (r12·∇)2Sλ(r1),

n2 ≈ n1 + (r12·∇)n1 + 1
2 (r12·∇)2n1, (20)

and considering only up to the square gradients either in S or in n, one obtains from Eqs. (11) and (12) the following expressions
for the mean field and correlation function:

UMF[(a1 · n1), r1] = U (0)
MF[(a1 · n1), r1] + 	U S

MF[(a1 · n1), r1] + 	U n
MF[(a1 · n1), r1], (21)

Ucorr[(u12 · n1), r1] = U (0)
corr[(u12 · n1), r1] + 	U S

corr[(u12 · n1), r1] + 	U n
corr[(u12 · n1), r1], (22)

where the first terms in both Eqs. (21) and (22) are expressed in the same form as in the homogeneous state:

U (0)
MF[(a1 · n1), r1] = −

∑
�,L,λ

J (0)
�LλσL(r1)Sλ(r1)P�(a1 · n1), (23)

U (0)
corr[(u12 · n1), r1] = −1

2
σ0

∑
�,L,λ

J (0)
�LλS�(r1)Sλ(r1)PL(u12 · n1), (24)

the second terms reflect the gradients of the orientational order parameters [see Appendix A]:

	U S
MF[(a1 · n1), r1] = −1

2
V0

∑
�Lλ

J (2)
�LλP�(a1 · n1)

∫
d2u12ρ[(u12 · n1), r1]PL(u12 · n1)(u12 · ∇)2Sλ(r1)

= −1

2

∑
�Lλ

J (2)
�LλP�(a1 · n1)ĝL({σk})Sλ(r1), (25)
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	U S
corr[(u12 · n1), r1] = −1

4
σ0

∑
�Lλ

J (2)
�LλS�(r1)PL(u12 · n1)(u12 · ∇)2Sλ(r1)

= −1

4
σ0

∑
�Lλ

J (2)
�LλS�(r1)ĝL({Pk (u12 · n1)})Sλ(r1), (26)

where operators ĝL({σk}) and ĝL({Pk (u12 · n1)}) acting on the orientational order parameters Sλ(r1) are expressed as follows
[either translational order parameters σk in the case of Eq. (25) or Legendre polynomials Pk (u12 · n1) in the case of Eq. (26)
should be substituted instead of xk]:

ĝ0({xk}) ≡ 1
3 (x0 − x2)∇2 + x2(n1 · ∇)2,

ĝ2({xk}) ≡ (− 1
15 x0 + 5

21 x2 − 6
35 x4

)∇2 + (
1
5 x0 + 2

7 x2 + 18
35 x4

)
(n1 · ∇)2, (27)

while consideration of L = 4 yields the appearance of σ6/σ0 translational order parameter in the free energy, which is beyond our
agreement made above. The third terms in both Eqs. (21) and (22) are responsible for the deformation of director [see Appendix
B]:

	U n
MF[(a1 · n1), r1] = −V0

∑
�Lλ

J (2)
�LλP�(a1 · n1)Sλ(r1)

∫
d2u12ρ[(u12 · n1), r1][T�Lλ(n1, u12, n2) − T�Lλ(n1, u12, n1)]

= 1

2
k11(∇ · n)2 + 1

2
k22(n · [∇ × n])2 + 1

2
k33[n × [∇ × n]]2 + k13∇ · {n(∇ · n)}

− k24∇ · {n(∇ · n) + [n × [∇ × n]]}, (28)

	U n
corr[(u12 · n1), r1] = −1

2
σ0

∑
�Lλ

J (2)
�LλS�(r1)Sλ(r1)[T�Lλ(n1, u12, n2) − T�Lλ(n1, u12, n1)]

= 1

2
σ0

(
1

2
k̃11(∇ · n)2 + 1

2
k̃22(n · [∇ × n])2 + 1

2
k̃33[n × [∇ × n]]2 + k̃13∇ · {n(∇ · n)}

− k̃24∇ · {n(∇ · n) + [n × [∇ × n]]}
)

, (29)

where coefficients ki j = ki j[(a1 · n1), r1] are similar to the elastic constants and are expressed in terms of the interaction
symmetry constants J (2)

�Lλ and order parameters Sλ = Sλ(r1) and σL = σL(r1) as follows (the expressions take into account the
commutation of indexes � and λ, since the interacting molecules are indistinguishable):

k11 = 9
14 (σ2 − σ4)

[
J (2)

220P2(a1 · n1) + J (2)
022S2

] + [
(σ0 − σ2)J (2)

202 + (
1
5σ0 + 4

7σ2 − 27
35σ4

)
J (2)

222

]
× P2(a1 · n1)S2 − (

1
2σ0 − 29

14σ2 + 11
7 σ4

)[
J (2)

422P4(a1 · n1)S2 + J (2)
224P2(a1 · n1)S4

]
,

k22 = 3
14 (σ2 − σ4)

[
J (2)

220P2(a1 · n1) + J (2)
022S2

] + [
(σ0 − σ2)J (2)

202 − (
2
5σ0 − σ2 + 3

5σ4
)
J (2)

222

]
× P2(a1 · n1)S2 − (

1
6σ0 − 7

6σ2 + σ4
)[

J (2)
422P4(a1 · n1)S2 + J (2)

224P2(a1 · n1)S4
]
,

k33 = (
9

14σ2 + 12
14σ4

)[
J (2)

220P2(a1 · n1) + J (2)
022S2

] + [
(σ0 + 2σ2)J (2)

202 + (
1
5σ0 + 10

7 σ2 + 48
35σ4

)
J (2)

222

]
×P2(a1 · n1)S2 + (

2
3σ0 + 137

42 σ2 + 18
7 σ4

)[
J (2)

422P4(a1 · n1)S2 + J (2)
224P2(a1 · n1)S4

]
,

k13 = −(
1

10σ0 + 1
14σ2 − 6

35σ4
)[

J (2)
220P2(a1 · n1) + J (2)

022S2 + J (2)
222P2(a1 · n1)S2 + J (2)

422P4(a1 · n1)S2 + J (2)
224P2(a1 · n1)S4

]
,

k24 = 1
2 (σ0 − σ2)J (2)

202P2(a1 · n1)S2 − (
1

20σ0 − 5
28σ2 + 9

70σ4
)[

J (2)
220P2(a1 · n1) + J (2)

022S2 + 2J (2)
222P2(a1 · n1)S2

]
− (

13
60σ0 − 65

84σ2 + 39
70σ4

)[
J (2)

422P4(a1 · n1)S2 + J (2)
224P2(a1 · n1)S4

]
, (30)

while coefficients k̃i j[(u12 · n1), r1] should by written in a similar way as coefficients ki j[(a1 · n1), r1] [Eq. (30)], where, however,
all polynomials P�(a1 · n1) should be replaced with the corresponding orientational order parameters S�(r1) and all translational
order parameters σL should be replaced with the corresponding polynomials PL(u12 · n1).
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D. Gradients of the orientational and translational order parameters

Substituting Eqs. (23)–(26) and (28)–(29) into Eqs. (21)–(22), and then Eq. (21)–(22) into Eq. (13), one obtains the following
expressions for the integrals I f

� (r) and Iρ

� (r) participating in the recurrent Eq. (14) for the order parameters:

I f
m (r) =

∫ 1

−1
dtPm(t ) exp

{
1

kBT

∑
�Lλ

[
J (0)
�LλP�(t )σL(r)Sλ(r) + 1

2
J (2)
�LλP�(t )ĝL({σk (r)})Sλ(r)

]
−	U n

MF(t, r)

kBT

}
,

Iρ
m(r) =

∫ 1

−1
dtPm(t ) exp

{
σ0

2kBT

∑
�Lλ

[
J (0)
�LλS�(r)PL(t )Sλ(r) + 1

2
J (2)
�LλS�(r)ĝL({Pk (t )})Sλ(r)

]
−	U n

corr (t, r)

kBT

}
, (31)

where t ≡ (a1 · n1) in the first line of Eq. (31), t ≡ (u12 · n1) in the second line of Eq. (31), r ≡ r1. Equations (14) and
(31) determine the equilibrium equation of state for any complex nematic or smectic LC, including the director deformation
and the order parameters gradients. One notes that differential Eqs. (14) and (31) are difficult to solve directly, because the
gradients are in the power of exponents. For this purpose, let us expand the exponents in the first line of Eq. (31) in Taylor
series with respect to the small gradients in Sλ. Then one obtains the following simple differential equation from the first part
of Eq. (14):

1

2kBT

∑
�Lλ

J (2)
�Lλ[I0�(r)Sm(r) − I�m(r)]ĝL({σk (r)})Sλ(r) ≈ −I00(r)Sm(r) + I0m(r), (32)

where

Inm(r) =
∫ 1

−1
dtPn(t )Pm(t ) exp

{
1

kBT

∑
�Lλ

J (0)
�LλP�(t )σL(r)Sλ(r) − 	U n

MF(t, r)

kBT

}
. (33)

Let us introduce the following functions:



(0)
2 ({Sk}, {σk}) ≡ 2

(
J (2)

422 + J (2)
224

)−1 I22(S4I00 − I04) − I24(S2I00 − I02) − I02(S4I02 − S2I04)

I24(S4I02 − I24) − I44(S2I02 − I22) − I04(S4I22 − S2I24)
,

(34)



(0)
4 ({Sk}, {σk}) ≡ 2

(
J (2)

422 + J (2)
224

)−1 I24(S4I00 − I04) − I44(S2I00 − I02) − I04(S4I02 − S2I04)

I24(S4I02 − I24) − I44(S2I02 − I22) − I04(S4I22 − S2I24)
,

Then the solution of differential Eq. (32) can be written as follows:

ĝ2({σk (r)})S2(r) = 2kBT 
2({Sk (r)}, {σk (r)}),
(35)

ĝ2({σk (r)})S4(r) = 2kBT 
4({Sk (r)}, {σk (r)}),

where


2({Sk}, {σk}) ≡ 

(0)
2

[
1 − (

J (2)
220 + J (2)

022

)



(0)
2 /2

]−1
,


4({Sk}, {σk}) ≡ −{



(0)
4 + 2

(
J (2)

422 + J (2)
224

)−1[
J (2)

202ĝ0({σk})/ĝ2({σk}) + J (2)
222

]



(0)
2

}[
1 − (

J (2)
220 + J (2)

022

)



(0)
2 /2

]−1
, (36)

where the differential operators ĝ0({σk (r)}) and ĝ2({σk (r)}) acting on S2(r) or S4(r) are determined by Eq. (27). In the same
manner, one could expand the second line of Eq. (31) in Taylor series with respect to the small gradients in Sλ. However, taking
into account that Eqs. (31) do not contain any explicit gradients in {σk}, one can farther simplify the second line of Eq. (31)
neglecting gradients in {Sk} as well:

σm(r)

σ0
= 1

Iρ
00(r)

∫ 1

−1
dtPm(t ) exp

{
σ0

2kBT

∑
�Lλ

J (0)
�LλPL(t )S�(r)Sλ(r) − 	U n

corr (t, r)

kBT

}
, (37)

where Iρ
00(r) is the normalizing integral in the same approximation:

Iρ
00(r) =

∫ 1

−1
dt exp

{
σ0

2kBT

∑
�Lλ

J (0)
�LλPL(t )S�(r)Sλ(r) − 	U n

corr (t, r)

kBT

}
, (38)

where, however, the orientational order parameters at each
coordinate r should be substituted from differential Eqs. (35).
Functions 
2({Sk}, {σk}) and 
4({Sk}, {σk}) defined in
Eq. (36) describe the capability of propagation of the order pa-
rameters through the inhomogeneous LC. One notes, that both

of them are inversely proportional to coefficients J (2)
422 = J (2)

224,
which are themselves proportional to the difference between
the bend and splay elastic constants KN

33 − KN
11 in the nematic

state in the absence of positional correlations of molecules
(i.e., at σ2 = σ4 = 0), see Eq. (30).
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E. Equilibrium free energy of the deformed liquid
crystal and elastic constants

Substituting Eq. (21) for the mean field energy into Eq. (16)
and introducing the normalizing integrals for the orientational
and translational distribution functions disregarding any gra-
dients (either in the order parameters or in the director):

I f
000(r) =

∫ 1

−1
dt exp

{
σ0

kBT

∑
�Lλ

J (0)
�LλP�(t )Sλ(r)σL(r)/σ0

}
,

Iρ
000(r) =

∫ 1

−1
dt exp

{
σ0

2kBT

∑
�Lλ

J (0)
�LλPL(t )S�(r)Sλ(r)

}
,

(39)

one obtains the following expression for the equilibrium free-
energy density:

∂Feq(r)

∂V
= ∂F0(r)

∂V
+ ∂FS (r)

∂V
+ ∂Fn(r)

∂V
, (40)

where

4πV0
∂F0(r)

∂V
= −kBT ln Iρ

000(r)I f
000(r)

+
∑
�,L,λ

J (0)
�LλS�(r)σL(r)Sλ(r) (41)

is the equilibrium homogeneous free-energy density multi-
plied by 4πV0,

4πV0
∂FS (r)

∂V
= −1

2

∑
�Lλ

J (2)
�LλS�(r)ĝL({σk (r)})Sλ(r) (42)

is the equilibrium free-energy density (multiplied by 4πV0) related to the inhomogeneity of the order parameters, and

∂Fn(r)

∂V
= 1

2
K11(r)(∇ · n)2 + 1

2
K22(r)(n · [∇ × n])2 + 1

2
K33(r)[n × [∇ × n]]2 + K13(r)∇ · {n(∇ · n)}

− K24(r)∇ · {n(∇ · n) + [n × [∇ × n]]} (43)

is the equilibrium free-energy density related to the inhomogeneity of director, where the elastic constants Ki j (r) should be
obtained from the functions ki j[(a1 · n1), r1] [Eq. (30)] by replacements of polynomials P�(a1 · n1) with the corresponding order
parameters S�(r):

4πV0K11 = 9
14 (σ2 − σ4)

[
J (2)

220 + J (2)
022

]
S2 + [

(σ0 − σ2)J (2)
202 + (

1
5σ0 + 4

7σ2 − 27
35σ4

)
J (2)

222

]
S2

2

− (
1
2σ0 − 29

14σ2 + 11
7 σ4

)[
J (2)

422 + J (2)
224

]
S2S4,

4πV0K22 = 3
14 (σ2 − σ4)

[
J (2)

220 + J (2)
022

]
S2 + [

(σ0 − σ2)J (2)
202 − (

2
5σ0 − σ2 + 3

5σ4
)
J (2)

222

]
S2

2

− (
1
6σ0 − 7

6σ2 + σ4
)[

J (2)
422 + J (2)

224

]
S2S4,

4πV0K33 = (
9

14σ2 + 12
14σ4

)[
J (2)

220 + J (2)
022

]
S2 + [

(σ0 + 2σ2)J (2)
202 + (

1
5σ0 + 10

7 σ2 + 48
35σ4

)
J (2)

222

]
S2

2

+ (
2
3σ0 + 137

42 σ2 + 18
7 σ4

)[
J (2)

422 + J (2)
224

]
S2S4,

4πV0K13 = −(
1

10σ0 + 1
14σ2 − 6

35σ4
){[

J (2)
220 + J (2)

022

]
S2 + J (2)

222S2
2 + [

J (2)
422 + J (2)

224

]
S2S4

}
,

4πV0K24 = 1
2 (σ0 − σ2)S2

2 − (
1

20σ0 − 5
28σ2 + 9

70σ4
){[

J (2)
220 + J (2)

022

]
S2 + 2J (2)

222S2
2

}
− (

13
60σ0 − 65

84σ2 + 39
70σ4

)[
J (2)

422 + J (2)
224

]
S2S4. (44)

One notes from Eq. (44) that each elastic constant essentially
depends on the orientational and translational order parame-
ters, and thus, can be different in various geometries of the
same material, where the gradients of the order parameters
takes place. They also vary essentially with the variation of
temperature. The temperature dependencies of all five elastic
constants in the case of the homogeneous LC are presented
in Fig. 3. All the elastic constants are different from zero in
the nematic (N) and smectic (Sm) phases. Initially, the values
of J (2)

�Lλ (totally four constants) were taken so that the elastic
constants fit the experimental data (solid lines in Fig. 3). In
particular, at T = 342.74 K, the data for K11 ≈ 5 pN, K22 ≈
3 pN, and K33 ≈ 8 pN fit well the experimental data for the
same parameters measured in 5CB material at T ≈ TNI − 5 K
in Refs. [58–60], while the K13/K11 ratio in the nematic phase
is about −0.2 (solid lines in Fig. 3) similar to that in [61]. Here

we are using the experimental data for the elastic constants in
5CB for tuning the J (2)

�Lλ constants because of the two reasons.
The first one is that the data for K11, K22, and K33 in 5CB
are the most familiar in the scientific community and are well
reproduced by different experimental methods. The second
reason is that the value of K13 is measured only in 5CB to our
best knowledge. What concerns the K24 elastic constant, at the
first glance it appears about twice lower than that observed ex-
perimentally (we have already taken into account that in many
publications the corresponding term in the elastic energy is
written with 1/2 multiplier, differently from presentation here
and in Ref. [61]). However in all publications, where the
K24 elastic constant is measured, the splaybend elastic term
(proportional to K13) is not written explicitly. Meanwhile, for
instance, in the case of a pure splay, the disregarded splaybend
term would contribute with positive sign into the saddle-splay
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FIG. 3. The temperature dependencies of the elastic
constants in the homogeneous LC at σ0J (0)

202/kB = 1100 K,
σ0J (0)

220/kB = σ0 J (0)
022/kB = 1023 K, σ0J (0)

222/kB = −1122 K,
σ0J (0)

242/kB = −3080 K, σ0 J (0)
404/kB = −55 K, σ0J (2)

202/kB = 51 K μm2,
σ0J (2)

222/kB = 39 K μm2, σ0J (2)
422/kB = σ0J (2)

224/kB = 35 K μm2,
σ0J (2)

220/kB = σ0J (2)
022/kB = 9 K μm2 (solid lines) or σ0J (2)

220/kB =
σ0J (2)

022/kB = 0 K μm2 (dash lines), and all other constants
participating in approximation Eq. (17) equal to zero. Here
V0 ≈ 1.1 × 10−24 m3 (see discussion at the end of Sec. II B).

term. Taking this into account one ascertains the quantitative
correspondence of our theoretical value of the K24 elastic term
to the experimental observations [68–71]. At the same time,
any reasonable values of the elastic constants (positive K11,
K22, K33, K24 and negative K13 within the piconewton range;
K22 < K11 < K33) can be obtained by a slight variation of
parameters J (2)

�Lλ. In particular, we can easily model the elastic
constants in 8CB or different LC materials, and the results will
be automatically in a good correlation with experimental mea-
surements [62–65]. Our results are also in a good agreement
with different molecular modeling approaches [66,67].

Why it is important to know the values of the J (2)
�Lλ con-

stants? One notes from comparison of Eqs. (34)–(36) and
(44) that the same J (2)

�Lλ constants are responsible for the
gradients of order parameters, which are considered below,
and this is the prime target of the present paper to find out
these gradients. We would also like to mention that, in our
theory, the temperature ranges of all phases and the values
of order parameters {Sk} and {σk} are regulated by J (0)

�Lλ con-
stants [with zero upper index, see definition in Eq. (19)],
while the direct correlation between J (0)

�Lλ and J (2)
�Lλ constants

is not evident. Therefore we consider some typical J (0)
�Lλ con-

stants from Refs. [40,72], at which both the smectic and
nematic phases can exist, and both the smectic-nematic and
nematic-isotropic phase transitions are the well-pronounced
first-order phase transitions. This does not automatically mean
that this particular combination of J (0)

�Lλ and J (2)
�Lλ constants

corresponds to any particular material. At the same time,
consideration of some model material with well-pronounced
nematic and smectic phases gives us an opportunity to an-
swer the question, how large the typical elastic constants
and the gradients of the order parameters should be in the
smectic phase in comparison with the same characteristics

in the nematic phase, while different phase sequences (in
particular, without smectic phase or without nematic phase)
are considered in Refs. [40,72]. At given choice of parameters,
all the elastic constants change step-wise at the transition
from nematic to smectic (at T ≈ 342.17 K, see Fig. 3). The
splay elastic constant K11 immediately changes from 7.17
to 15.02 pN, and farther increases within the smectic phase.
In particular, at T = 340 K it already reaches 21.57 pN. The
twist elastic constant K22 immediately changes from 4.46 to
9.62 pN, and farther increases within the smectic phase. In
particular, at T = 340 K it reaches 14.05 pN. The bend elastic
constant K33 immediately changes from 11.83 to 24.65 pN,
and farther increases within the smectic phase. In particular,
at T = 340 K it reaches 33.86 pN. The same order of increase
is characteristic to the absolute values of the splaybend and
saddle-splay elastic constants, K13 and K24, respectively.

At the same time, all tendencies related to the choice of
the J (0)

�Lλ constants also correlate with the experimental ob-
servations. In particular, the temperature range of nematic
phase in a material, where the smectic phase is also observed,
is usually not as large as in a material, where the smectic
phase is not observed (compare, for example, the data for 7CB
and 8CB materials in Ref. [62]). Comparison of the phase
sequences at various combinations of the J (0)

�Lλ constants in
Refs. [40,72] leads to a conclusion that the smectic phase
arises rather instead of a part of nematic phase than in addition
to it, while the smectic phase itself does not look as something
completely different from nematic phase, but rather as a phase
with much better translational and orientational order. This
also correlates with speculations about the close translational
order in nematics and long-range translational order in smec-
tics, because the range of the order obviously depends on its
magnitude.

F. How many elastic constants are independent
and what is their molecular origin?

One notes from Eq. (30) [and it is discussed in a more
detailed in Appendix B] that there exists the following rela-
tion between the elastic constants, reducing their independent
number:

K24(r) = 1
2 K13(r) + 1

4 K11(r) + 1
4 K22(r), (45)

and thus, only four elastic constants appear to be independent
on the molecular level. One can outline the meaning of each
J (2)
�Lλ constant on the macroscopic level in the idealized case of

the homogeneous nematic (where σ2 = σ4 = 0):

1

4πV0
J (2)

202S2
2 = K

N
, K

N ≡ (
KN

11 + KN
22 + KN

33

)/
3,

1

4πV0
J (2)

222S2
2 = 25

21
(KN

11 − KN
22) + 10

21

(
KN

33 − KN
22

)
,

1

4πV0
J (2)

422S2S4 = 1

4πV0
J (2)

224S2S4 = 3

7

(
KN

33 − KN
11

)
,

1

4πV0
J (2)

220S2 = 1

4πV0
J (2)

022S2 = −5KN
13 − 1

6

(
KN

11 − KN
22

)

− 2

3

(
KN

33 − KN
22

)
. (46)
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From Eq. (46), in particular, it follows that the J (2)
202 constant

describes only the so-called one-constant approximation, the
J (2)

222 constant describes the difference between the bend/splay
constants and the twist constant, the J (2)

422 and J (2)
224 constants

describe the difference between the bend and splay elastic
constants, and, finally, the J (2)

220 and J (2)
022 constants mostly de-

termine the splaybend elastic constant (compare also the solid
and dash lines in Fig. 3).

III. APPLICATION OF THEORY TO THE CASE OF
RADIAL DISTRIBUTION OF THE DIRECTOR

FIELD IN THE SPHERE

A. Change over from the differential equations of the second
order to the ones of the first order

One notes that spherical droplet with spherical particle
in the center can model the low concentration of impurity
particles in the bulk (see Fig. 4). As a simple example of
application of our theory, let us therefore consider the radial
distribution of director in the sphere with a small spherical
solid particle of radius r0 placed in the center (see Fig. 4). Let
us also suppose that mesogenic material has a homeotropic
anchoring at the surface of solid particle. In the limit case
of r0 = 0 there will be a point defect in the center of the
sphere (see Ref. [44]), so that the geometry is not restricted
by the presence of the spherical particle. In this geometry

FIG. 4. Liquid crystal media with solid particles dispersed in-
side; spherical LC droplet with radial director distribution (shown by
dotted lines) and solid spherical particle in the center; an illustration
of the orientational order parameter variation with distance from a
small particle. Here the radius of each particle is r0; LC exhibits
homeotropic anchoring at each sphere.

(n1 · ∇)2 = ∇2, and one obtains instead of Eq. (27):

ĝ0({xk}) ≡ 1
3 (x0 + 2x2)∇2,

ĝ2({xk}) ≡ (
2
15 x0 + 11

21 x2 + 12
35 x4

)∇2, (47)

and only three elastic deformations (square splay (∇ · n)2 =
4/r2

1 , the splaybend ∇ · {n(∇ · n)} = 2/r2
1 and the saddle-

splay −∇ · {n(∇ · n) − (n · ∇)n} = −2/r2
1 ) are present in

Eqs. (28), (29), and (43).
In a number of simple geometries (including the one

considered in the present section) it is possible to change
over from the second order differential Eq. (35) to the
first-order differential equations. For this purpose let us con-
sider the complete differential of the order parameters S2(r)
and S4(r):

dS(r) = ∂S

∂x
dx + ∂S

∂y
dy + ∂S

∂z
dz = dr · ∇S, (48)

where either S2(r) or S4(r) can be substituted instead of S(r).
Here and below let us agree that the dot means the scalar
product of the two vectors, while vector ∇ acts only on S,
which is written just after the ∇ symbol. Applying Eq. (48)
twice (after each equality sign in the line below), one obtains∫

∇2SdS(r) =
∫

∇2S∇S · dr =
∫

∇S · d (∇S)

= 1

2
[∇S(r)]2. (49)

Thus, integrating both parts of the first expression in Eq. (35)
with respect to S2 and integrating both parts of the second
expression in Eq. (35) with respect to S4, one obtains

∂S2(r)

∂r
=±

{
4kBT

σ0

[
2

15
+ 11

21

σ2(r)

σ0
+ 12

35

σ4(r)

σ0

]−1

×
∫ S2(∞)

S2(r)

2(S2(r), S4(r), σ2(r), σ4(r))dS2

}1/2

,

∂S4(r)

∂r
=±

{
4kBT

σ0

[
2

15
+ 11

21

σ2(r)

σ0
+ 12

35

σ4(r)

σ0

]−1

×
∫ S4(∞)

S4(r)

4(S2(r), S4(r), σ2(r), σ4(r))dS4

}1/2

,

(50)

where functions 
2 and 
4 are determined by Eq. (36). Here
we also assume that at the outer sphere (which is the border of
LC droplet) the structure is already homogeneous, therefore
the infinity sign is used in the upper limits in Eqs. (50). Thus,
knowing also the orientational order parameters S2(r0) and
S4(r0) on the particle’s surface (at r0), one can evolve Eqs. (50)
step by step to any larger distance r. The solutions S2(r)
and S4(r) [and therefore σ2(r) and σ4(r), in correspondence
with Eqs. (37)–(38)] will obviously depend on the particle’s
size r0.

B. Orientational and translational order parameters of LC
at the particle’s surface and in the homogeneous bulk of LC

To solve the differential Eqs. (50), one needs to know
the values of the orientational {Sk (r0)} and the translational

022709-10



MOLECULAR ORIGIN OF THE HETEROGENEITY IN THE … PHYSICAL REVIEW E 103, 022709 (2021)

{σk (r0)} order parameters at the inner border (at the surface
between the solid particle in the center of the sphere and the
surrounding LC), and also the values of the order parameters
in the homogeneous LC (in the infinity). To determine the

order parameters at the particle’s surface, one should take
explicitly into account the anisotropic interaction of the LC
molecules with the surface, for instance, in the form of a
sequence of Legendre polynomials:

UMF{(a · n(r0)), r0} −→ UMF{(a · n(r0)), r0} −
∑

�

Jsurf
� P�(a · k), (51)

where k is the surface normal coinciding with director n(r0) in the case of homeotropic anchoring at the surface of a particle.
In order to provide the sharp radial distribution at the particle’s surface, let us consider positive Jsurf

2 and Jsurf
4 constants and

neglect the higher order terms in approximation Eq. (51). At r0 one obtains in the mean field approximation neglecting the small
gradients in order parameters [compare to Eq. (14)]:

Sm(r0) = I f
m (r0)/I f

0 (r0), σm(r0)/σ0 = Iρ
m(r0)/Iρ

0 (r0), (52)

where

I f
m (r0) =

∫ 1

−1
dtPm(t ) exp

{
1

kBT

[∑
�Lλ

J (0)
�LλP�(t )Sλ(r0)σL(r0) +

∑
�

Jsurf
� P�(t ) − 2

k11(t, r0) + k13(t, r0) − k24(t, r0)

r2
0

]}
,

Iρ
m(r0) =

∫ 1

−1
dtPm(t ) exp

{
σ0

2kBT

[∑
�Lλ

J (0)
�LλPL(t )S�(r0)Sλ(r0) − 2

k̃11(t, r0) + k̃13(t, r0) − k̃24(t, r0)

r2
0

]}
, (53)

where parameters k11(t, r0), k13(t, r0) and k24(t, r0) are deter-
mined in the first, fourth and fifth line of Eq. (30), respectively,
while the explanations how to obtain parameters k̃11(t, r0),
k̃13(t, r0) and k̃24(t, r0) is presented in the paragraph following
Eq. (30). Similar to that in Eq. (31), t = (a1 · n1) in the first
line of Eq. (53), while t = (u12 · n1) in the second line of
Eq. (53). The first expression in Eq. (52) is the recurrent
equation for determination of the orientational order param-
eters at r0, while the second expression in Eq. (52) should be
used for the calculation of the translational order parameters
at each turn of recurrence. After an appropriate number of
recurrences, one obtains {Sk (r0)} and {σk (r0)} with particular
accuracy. In the infinity (at the outer border of LC droplet) the
following equations, analogous to Eqs. (52) and (53) can be
obtained (in the absence of the anchoring at the outer border):

Sm(∞) = I f
m (∞)/I f

0 (∞), σm(∞)/σ0 = Iρ
m(∞)/Iρ

0 (∞), (54)

where

I f
m (∞) =

∫ 1

−1
dtPm(t )

× exp

{
1

kBT

∑
�Lλ

J (0)
�LλP�(t )Sλ(∞)σL(∞)

}
,

Iρ
m(∞) =

∫ 1

−1
dtPm(t )

× exp

{
σ0

2kBT

∑
�Lλ

J (0)
�LλPL(t )S�(∞)Sλ(∞)

}
. (55)

Several temperature dependencies of the orientational order
parameter S2 and of the variance of sin2 β [see definitions
in Eqs. (1) and (4)] are presented in Fig. 5. The black thick
lines correspond to the temperature dependencies of the men-
tioned parameters in the homogeneous LC, while the thin
lines of various colors and with different numbers correspond

to the temperature dependencies of the same parameters of
LC at the surfaces of the particles of various radii (from
1.25 to 10 μm). The molecular parameters are chosen so
that the two first-order phase transitions (smectic-nematic and
nematic-isotropic) are realized in each case. It was discussed
in Refs. [40,72] that one or both transitions can be of the
second order or continuous, or a direct smectic-isotropic phase
transition can be realized at different choice of the molecular
parameters. The smectic phase (Sm) is characterized by a low
variance of sin2 β tending to farther decreasing down to zero
with the temperature tending to zero, which means that the
molecules tend to be located within the planes (see Fig. 1).
The Var(sin2 β ) parameter is not sensitive to the molecular
tilt in smectic layers, so that we cannot predict, whether the
smectic phase is tilted or not within the framework of a model
considered in this paper. The orientational order parameter in
the smectic phase appears to be rather high and tends to one
with the temperature tending to zero. In the homogeneous me-
dia (far from any particles) the isotropic phase (I) corresponds
to S2 = 0 and Var(sin2 β ) = 4/45, and these two parameters
describe the equiprobable distribution over the sphere as for
the molecular axes, as for the intermolecular vectors. In the
presence of the particles (or any surfaces at all), the phase with
very small S2 and Var(sin2 β ) close to 4/45 at these surfaces
arises at high temperatures. Let us call this phase “conven-
tionally isotropic.” The nematic phase (N) arises between the
smectic phase and the isotropic (or conventionally isotropic)
phase in the temperature scale. The prime orientational order
parameter S2 in the nematic phase is also high, but can be
several times smaller than that in the smectic phase. The main
parameter distinguishing the nematic phase from the smectic
phase is Var(sin2 β ), which does not have any pronounced
tendency to decrease with the decreasing temperature in the
nematic phase. Usually Var(sin2 β ) is even larger than 4/45 in
the nematic phase. This is a well-known property of variance,
which increases first, when a distribution function becomes
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FIG. 5. The temperature dependencies of the prime
orientational order parameter (a) and of the variance of sin2 β

(b) at σ0J (0)
202/kB = 1100 K, σ0J (0)

220/kB = σ0J (0)
022/kB = 1023 K,

σ0J (0)
222/kB = −1122 K, σ0J (0)

242/kB = −3080 K, σ0J (0)
404/kB = −55 K,

Jsurf
2 /kB = 0.55 K, Jsurf

4 /kB = 5.5 K, σ0J (2)
202/kB = 51 K μm2,

σ0J (2)
222/kB = 39 K μm2, σ0J (2)

422/kB = σ0J (2)
224/kB = 35 K μm2, and all

other constants participating in approximation Eqs. (17) and (51)
equal to zero. The black thick line corresponds to the homogeneous
LC (far from any particles), while the thin lines with different
numbers correspond to the LC at the surfaces of spherical particles
of various radii: (1) r0 = ∞ [flat surface]; (2) 10; (3) 3; (4) 2.5; (5)
1.9; (6) 1.55; (7) 1.25 μm.

nonuniform (a broad maximum of the distribution function
arises), and then decreases again, when the distribution func-
tion maximum becomes higher and narrower. That is the
reason why the value of Var(sin2 β ) exhibits some maximum
in the nematic phase. One notes from Fig. 5 that generally
the more ordered phases exist up to the higher temperatures at
larger radii particles, while, on the contrary, the less ordered
phases exist down to the lower temperatures at lower radii
particles. The r0-T phase diagram is presented in Fig. 6
at the same molecular parameters [constants participating in
approximation Eqs. (17) and (51)] as in Fig. 5. The blue
thick vertical lines correspond to the structure transitions in
the bulk of LC, while the red thin lines correspond to the
structure transitions at the surfaces of particles of diameter
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FIG. 6. The r0-T phase diagram at the same molecular parame-
ters [constants participating in approximation Eqs. (17) and (51)] as
in Fig. 5. The blue thick lines correspond to the structure transitions
in the bulk of LC, while the red thin lines correspond to the structure
transitions at the surfaces of particles of diameter r0. The dash lines
correspond to the structure transitions at a flat surface. The triangles
correspond to the points in the diagram, at which the r-dependence
of the S2 and Var(sin2 β ) parameters is presented in Figs. 7 and 8.
The color of each triangle corresponds to the color of particular lines
in Figs. 7 and 8.

r0. The dash lines correspond to the structure transitions at
a flat surface (the limits of red curves in Fig. 6 at r0 → ∞).
One notes that the 10 μm and higher-radii particles affect the
LC media almost as a flat surface, while the 1 μm and lower-
radii particles affect the LC media rather as point defects,
because both the smectic-nematic and the nematic-isotropic
phase transition borders of a liquid crystal at the particle’s
surface shift dramatically to the lower temperatures when r0

farther decreases. In particular, in the case of a point defect,
the isotropic liquid will arise in the center of sphere. Eight
different phases are present in the diagram, and each solid
line corresponds to the first-order phase transition border.
Each phase is characterized by a combination of particular
structure kinds [smectic (Sm), nematic (N) or isotropic (I or
I∗)] in the bulk of LC and at the surfaces of spherical par-
ticles. Here I∗ designates the conventionally isotropic phase
arising at the particles’ surfaces. At a given choice of molec-
ular parameters the smectic structure arises in the bulk of
LC at T � 342.17 K. At T ≈ 342.17 K, the smectic structure
arises also at the particles’ surfaces at r0 � 2.67 μm, while
the nematic and conventionally isotropic structures arise at
the particles’ surfaces at 1.31 μm � r0 � 2.67 μm and r0 �
1.31 μm, respectively. The nematic structure arises in the
bulk of LC at 342.17 � T � 345.31 K. At T � 343.67 K,
the smectic structure cannot arise at the particles’ surfaces
anymore at any particles’ size. The T ≈ 343.67 K temperature
corresponds to the limit smectic-nematic transition border at
r0 → ∞. At T ≈ 343.67 K, the nematic structure arises at
the particles’ surfaces at r0 � 1.53 μm, while the convention-
ally isotropic phase arises at the particles’ surfaces at r0 �
1.53 μm. Finally, the isotropic structure arises in the bulk of
LC at T � 345.31 K. At T ≈ 345.31 K, the nematic structure
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arises at the particles’ surfaces at r0 � 2.00 μm, while the
conventionally isotropic phase arises at the particles’ surfaces
at r0 � 2.00 μm. At T � 347.68 K, the nematic structure can-
not arise at the particles’ surfaces anymore at any particles’
size, and only conventionally isotropic structure arises. The
T ≈ 347.68 K temperature corresponds to the limit nematic-
isotropic transition border at r0 → ∞. Below we are going
to consider the dependencies of the prime orientational order
parameter S2 and the main parameter Var(sin2 β ) characteriz-
ing the layering of molecules on the distance r–r0 from the
particle’s surface at several particular points in the diagram
presented in Fig. 6, which are shown by triangles.

C. Variation of the LC order parameters in the space near the
spherical particles with homeotropic boundary conditions

Once both the orientational and translational order param-
eters are obtained at r0 from Eqs. (52)–(53) and in the infinity
from Eqs. (54)–(55), they can be substituted into the differen-
tial Eq. (50) as the integration limits at zero step, from where
the whole {Sk (r)} and {σk (r)} dependencies could be obtained
using a simple numerical scheme. The plus or minus signs
in Eq. (50) should be chosen from comparison of the order
parameters at r0 and in the infinity, to fulfill the increasing
or decreasing orientational order parameters in an appropriate
way. The only new problem arising in this scheme (which
does not arise in the case of the uniform LC), is that both S2(r)
and S4(r) dependencies participate now in both functions 
2

and 
4 in Eq. (50). More exactly, it is not known from the
beginning, how S2(r) and S4(r) are correlated. As a simple
approximation, since the explicit correlation is not too much
important, we are using a model where S2(r) and S4(r) are
linearly dependent of each other.

Knowing the orientational and translational order parame-
ters at the surface of a particle r0, one obtains the gradients of
the orientational order parameters at the surface of a particle
from Eq. (50), and thus, the orientational and translational or-
der parameters at the next step of integration [the translational
order parameters at the next step of integration should be
directly substituted from Eqs. (37)–(38) after the substitution
of the orientational order parameters at the same step into
them]. Step by step, one can find out the whole evolution of
the orientational and translational order parameters up to any
distance from the spherical particle.

Since all the gradients of the orientational and transla-
tional order parameters are intimately related to the elastic
constants (because they depend on the same coefficients J (2)

�Lλ

[see Eqs. (19), (34)–(36), and (44)] of the expansion of the
pair intermolecular potential in spherical invariants), and since
all the elastic constants are believed to be known from the
experiment, one can evolve all possible variations of the LC
orientational and translational order parameters in the space
near the spherical particles with homeotropic boundary con-
ditions. Several dependencies of the prime orientational order
parameter S2 and of the main parameter Var(sin2 β ) charac-
terizing the smectic layering on the distance r–r0 from the
particle’s surface are presented in Figs. 7 and 8. Molecular pa-
rameters [constants participating in approximation Eqs. (17)
and (51)] are the same as in Figs. 5 and 6. Let us first con-
sider the structures just below (at T = 342.0 K, solid triangles
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FIG. 7. The dependencies of the prime orientational order pa-
rameter (a) and of the variance of sin2 β (b) on the distance r − r0

from the particle’s surface just below (at T = 342.0 K, solid trian-
gles in Fig. 6) and just above (at T = 342.2 K, hollow triangles in
Fig. 6) the smectic-nematic transition temperature in the bulk of LC
at various sizes of the particles: (1) r0 = ∞ [flat surface]; (2) 10;
(3) 3; (4) 2.5; (5) 1.9; (6) 1.55; (7) 1.25 μm. Molecular parameters
[constants participating in approximation Eqs. (17) and (51)] are the
same as in Figs. 5 and 6. The color of each curve corresponds to the
color of particular triangle in Fig. 6.

in Fig. 6) and just above (at T = 342.2 K, hollow triangles
in Fig. 6) the smectic-nematic transition temperature in the
bulk of LC. The corresponding r-dependencies of parame-
ters S2 and Var(sin2 β ) are presented in Fig. 7. At a flat
surface r0 = ∞ [curve (1)] and at the surfaces of large par-
ticles [r0 = 10 and 3 μm; curves (2) and (3), respectively] the
smectic structure is realized, which is characterized by the
high orientational order parameter S2 and low Var(sin2 β ). At
the surfaces of smaller particles [r0 = 2.5, 1.9 and 1.55 μm;
curves (4), (5), and (6), respectively] the nematic structure
is realized, which is characterized by the lower orientational
order parameter S2 and sufficiently higher Var(sin2 β ). Fi-
nally, at the surfaces of very small particles [1.25 μm, curve
(7)] the conventionally isotropic structure is realized, which
is characterized by the orientational order parameter S2 close
to zero, while the value Var(sin2 β ) does not differ from that
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FIG. 8. The dependencies of the prime orientational order pa-
rameter (a) and of the variance of sin2 β (b) on the distance r–r0 from
the particle’s surface just below (at T = 345.3 K, half up triangles
in Fig. 6) and just above (at T = 343.4 K, half down triangles in
Fig. 6) the nematic-isotropic transition temperature in the bulk of LC
at various sizes of the particles: (1) r0 = ∞ [flat surface]; (2) 10;
(3) 3; (4) 2.5; (5) 1.9; (6) 1.55; (7) 1.25 μm. Molecular parameters
[constants participating in approximation Eqs. (17) and (51)] are the
same as in Figs. 5 and 6. The color of each curve corresponds to the
color of particular triangle in Fig. 6. The 4/45 level of Var(sin2 β ),
corresponding to the uniform distribution of the intermolecular vec-
tors, is shown by the dash line.

in the nematic phase very much, because the distribution
of the intermolecular vectors in both isotropic and nematic
phases is close to random. When the distance from the particle
increases, all the structures evolve continuously either into
the smectic structure [at T = 342.0 K] or into the nematic
structure [at T = 342.2 K]. In particular, the conventionally
isotropic phase [curve (7) at T = 342.0 K] can first evolve into
the nematic structure, and then into the smectic structure. The
information about that can be withdrawn from the fact that
the value of Var(sin2 β ) grows first and then decreases, while
the value of S2 monotonously increases with the increasing
distance r, similarly to the evolution of S2 and Var(sin2 β ) [but
continuously] with the decreasing temperature (Fig. 5).

Let us now consider the structures just below (at T =
345.3 K, half up triangles in Fig. 6) and just above (at T =
345.4 K, half down triangles in Fig. 6) the nematic-isotropic
transition temperature in the bulk of LC. The corresponding r-
dependencies of parameters S2 and Var(sin2 β ) are presented
in Fig. 8. At a flat surface r0 = ∞ [curve (1)] and at the
surfaces of large particles [r0 = 10, 3, and 2.5 μm; curves (2),
(3), and (4), respectively] the nematic structure is realized,
which is characterized by the moderate orientational order
parameter S2. At the surfaces of smaller particles [r0 = 1.9,
1.55 and 1.25 μm; curves (5), (6), and (7), respectively] the
conventionally isotropic structure is realized, which is charac-
terized by the very low orientational order parameter S2. The
value of Var(sin2 β ) does not differ in the nematic and conven-
tionally isotropic structures very much [compared to that in
the smectic structure, see Fig. 7(b)], because the distribution
of the intermolecular vectors in both isotropic and nematic
phases is close to random. However, in the nematic structure,
it appears to be a little bit higher than in the convention-
ally isotropic structure. When the distance from the particle
increases, all the structures evolve continuously either into
the nematic structure [at T = 345.3 K] or into the isotropic
structure [at T = 345.4 K]. A part of the curves in Fig. 8(b)
reach their maxima at some distance r, when a pronounced
broad intermolecular vectors distribution function peak arises,
similarly to that in Fig. 5(b) and curve (7) in Fig. 7(b). The
level 4/45 corresponding to the perfect random distribution
of the intermolecular vectors is presented by the dash line in
Fig. 8(b).

IV. CONCLUSION

The molecular-statistical theory reflecting both the orien-
tational and translational order parameters inhomogeneity, as
well as the director inhomogeneity, was derived in the present
paper. An arbitrary configuration of the heterogeneous liquid
crystal (LC) was considered. Our previous approach published
in Ref. [40] was generalized for the case of inhomogeneous
director distribution and inhomogeneous distribution of the
order parameters. The self-consistent equations for determi-
nation of the orientational and translational order parameters
have been obtained in the form of specific Boltzmann distri-
butions, where the mean molecular field is in the exponent
indicator of the orientational distribution function of the prin-
cipal molecular axes a with respect to the local director n,
while the correlation function is in the exponent indicator of
the translational distribution function of the unit intermolecu-
lar vectors u12 with respect to the local director n. The local
orientational and translational order parameters are introduced
as Sm ≡ 〈Pm(a · n)〉a and σm/σ0 ≡ 〈Pm(u12 · n)〉u12 , where σ0

is the average number of the nearest neighbors of a liquid
crystal molecule, which is constant in the case of incompress-
ible media. For the description of space inhomogeneity in
both nematic and smectic states it is enough to consider the
S2 and S4 orientational order parameters and the σ2/σ0 and
σ4/σ0 translational order parameters. As a measure of smectic
layering, the Var(u12 · n)2 parameter was introduced that can
be written in terms of the σ2/σ0 and σ4/σ0 order parameters.
One readily notes that Var(u12 · n)2 should tend to zero when
all the u12 intermolecular vectors tend to be oriented within
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their plains. At random distribution of the u12 vectors over
the sphere, Var(u12 · n)2 is equal to 4/45. From our equations
for the order parameters it follows that Var(u12 · n)2 is exactly
equal to 4/45 in the isotropic phase, and it is close to 4/45 in
the nematic phase. At the nematic to smectic phase transition,
Var(u12 · n)2 reduces dramatically and further tends to zero,
when the temperature further decreases.

The molecular pair potential was approximated by
a set of spherical invariants T�Lλ(a1, u12, a2), which is
complete orthogonal set of functions. The average of
T�Lλ(a1, u12, a2) over the a1, u12 and a2 vectors is equal to
S�(r1)σL(r1)Sλ(r2)Pλ(n1 · n2), where n1 is director at point
r1 and n2 is director at point r2, and therefore the gradient
expansions of the orientational order parameter Sλ(r2) and
of director n2 at point r1 have been used to obtain the self-
consistent equations for the orientational and translational
order parameters. The gradient expansion of director results
in the appearance of the Frank elastic terms in the free energy,
molecular field and correlation function, with the detailed
molecular information about all five Frank elastic constants,
while the gradient expansion of the orientational order param-
eter results in the differential equations of the second order for
S2 and S4. Both expansions are expressed in terms of the same
constants of approximation of the pair potential in spherical
invariants. Knowing the values of elastic constants from the
experiments, we have estimated the approximation constants,
and thus, all quantitative characteristics participating in dif-
ferential equations for the orientational order parameters have
been fully defined.

The differential equations for the orientational order pa-
rameters have been solved numerically in the case of the
radial distribution of director in spherical droplet with the
solid particle placed in the center, which can be considered
as a simple model of a liquid crystal composite with addi-
tion of low concentration of solid particles. As a result, the
dependencies of the orientational S2 and S4 order parameters
and of the translational σ2/σ0 and σ4/σ0 order parameters
on the distance from spherical particles have been obtained
at various temperatures and various sizes of the particles.
Generally, the order parameters at the surface of a particle
and on the periphery of a droplet (in the bulk of mesogenic
material) are different, because of the two competing effects.
The first effect is the direct anisotropic interaction of the LC
molecules with solid surface. This effect enlarges the orien-
tational (and thus, the translational) order parameters in the
vicinity of the surface. The second effect is the deformation
of director field in the vicinity of the curved surfaces, which

diminishes the order parameters. As a result of this competi-
tion, the orientational and translational order parameters either
appear to be higher than in the bulk (in the case of the large
particles), or they appear to be lower than in the bulk (in
the case of the small particles). It is also demonstrated that
the kind of molecular self-organization (smectic, nematic or
conventionally isotropic) at the surfaces of solid particles can
be different from that in the bulk of mesogenic material. In
the case of the large particles, the lower symmetry structures
can be observed within particular temperature ranges at the
surfaces of solid particles than those in the bulk of mesogenic
material (the nematic areas near the surfaces of particles inside
of the isotropic bulk, or the smectic areas near the surfaces
of particles inside of the nematic bulk). On the contrary, in
the case of the small particles, the higher symmetry structures
can be observed within particular temperature ranges at the
surfaces of solid particles than those in the bulk of mesogenic
material (the almost isotropic areas near the surfaces of par-
ticles inside of the nematic or smectic bulk, or the nematic
areas near the surfaces of particles inside of the smectic bulk).
In these two cases, a significant space variations of the order
parameters is observed within the 0.5–0.8 μm area around
each particle, and the dimensions of these specific areas are
almost independent of the particles’ size. In any case, the ma-
terial exhibits the double smectic-nematic phase transition and
the double nematic-isotropic phase transition. The one of each
duplet is related to a structure transition near the surfaces of
particles, while another one is related to a structure transition
in the bulk of mesogenic material. Totally we have found eight
various combinations of states at the surfaces and in the bulk
depending on the solid particles’ size and temperature. It is
also shown that the surfaces of 10 μm-radii solid particles and
larger act almost as flat surfaces, while the surfaces of 1 μm-
radii solid particles and smaller act almost as point defects.
Therefore, the liquid crystals can be a simple tool for the
optical visualization of nano-objects, around which the almost
micrometer-size isotropic area should be observed inside of
the nematic or smectic media.
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APPENDIX A: MEAN FIELD AND CORRELATION FUNCTION CONTRIBUTIONS RESPONSIBLE
FOR THE GRADIENTS OF ORDER PARAMETERS

The same specific (u12 · ∇)2 operator acts on the orientational order parameters under the integrals in both Eqs. (25) and (26).
Let us average this term over the azimuthal orientation of vector u12 and then collect the projections on the director n1 and on
the xy-plane perpendicular to director:

1

2π

∫ 2π

0
dϕu12 (u12 · ∇)2 = 1

2π

∫ 2π

0
dϕu12

[
(u12)2

n∇2
n + (u12)2

x∇2
x + (u12)2

y∇2
y

]
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= 1

2π

∫ 2π

0
dϕu12

{
(u12 · n1)2∇2

n + [1 − (u12 · n1)2]
[

cos2 ϕu12∇2
x + sin2 ϕu12∇2

y

]}

= 1

2
[1 − (u12 · n1)2]∇2 +

[
3

2
(u12 · n1)2 − 1

2

]
(n1 · ∇)2

= 1

3
[1 − P2(u12 · n1)]∇2 + P2(u12 · n1)(n1 · ∇)2. (A1)

Multiplication of Eq. (A1) by Legendre polynomials PL(u12 · n1) yields Eqs. (26) and (27) for the part of the correlation function
related to the gradients of order parameters. If one further integrates the obtained expressions over zenithal orientation of vector
u12 with ρ [(u12 · n1), r1] weight using definition (2) for the translational order parameters, then one obtains Eq. (25) for the
mean field related to the gradients of order parameters.

APPENDIX B: MEAN FIELD AND CORRELATION FUNCTION CONTRIBUTIONS
RESPONSIBLE FOR THE DIRECTOR DEFORMATION

To obtain the mean field Eq. (28) and correlation function Eq. (29) contributions responsible for the director deformation,
one should substitute the second part of expansion from Eq. (20) into all spherical invariants T�Lλ(n1, u12, n2) Eq. (18). In the
case of the mean field [Eq. (28)] one should also integrate the result over the unit intermolecular vector u12 with ρ [(u12 · n1), r1]
weight using definition Eq. (2) for the translational order parameters. Let us make these calculations for each spherical invariant.
Integrations will result in the appearance of the following four independent values in various combinations:

−nα ∇2nα = (∇αnβ )2 = (∇ · n)2 + (n · [∇ × n])2 + [n × [∇ × n]]2−∇ · (n(∇ · n) − (n · ∇)n),

(∇ · n)2 + (∇βnα )(∇αnβ ) + (∇αnβ )2 = 3(∇ · n)2 + (n · [∇ × n])2 + [n × [∇ × n]]2 − 2∇ · (n(∇ · n) − (n · ∇)n),

−nα∇α∇βnβ = (∇ · n)2 − ∇ · (n(∇ · n)),

−nαnβnγ ∇α∇βnγ = [n × [∇ × n]]2. (B1)

One notes that the square splay (∇ · n)2, the square twist (n · [∇ × n])2, the square bend [n × [∇ × n]]2, the saddle-splay −∇ ·
(n(∇ · n) − (n · ∇)n) and the splaybend ∇ · (n(∇ · n)) can be written in terms of the four independent values Eq. (B1). Using
constraint Eq. (8), let us define for any function Q(n2) its average increment 〈	Q(n2)〉 ≡ V0/σ0

∫
d2u12ρ[(u12 · n1), r1]{Q(n2) −

Q(n1)}. The following universal rules for the averages of multiplications of projections of vector u12 on the Cartesian axes should
be used:

〈uαuβ〉 = 1

3
δαβ (1 − σ2/σ0) + nαnβσ2/σ0, (B2)

〈uαuβuγ uδ〉 = (δαβδγ δ + δβγ δαδ + δβδδαγ )

{
1

15
− 2

21

σ2

σ0
+ 1

35

σ4

σ0

}
+ 1

7
(nαnβδγ δ + nαnγ δβδ

+ nαnδδβγ + nβnγ δαδ + nβnδδαγ + nγ nδδαβ )(σ2 − σ4)/σ0 + nαnβnγ nδσ4/σ0, (B3)

where δ is the Kronecker symbol. Using Eqs. (B1)–(B3) and expansion Eq. (20) up to the square term in ∇, one obtains

〈	(n1 · n2)2〉 = 〈n1 · (u12 · ∇)2n1〉 = 〈nαuβ∇βuγ ∇γ nα〉

= 1

3
(1 − σ2/σ0)nα∇2nα + σ2/σ0nαnβnγ ∇α∇βnγ

= −1

3

(
1 − σ2

σ0

)
{(∇ · n)2 + (n · [∇ × n])2 − ∇ · (n(∇ · n)

− (n · ∇)n)} − 1

3
(1 + 2σ2/σ0)[n × [∇ × n)]]2, (B4)

〈	(n1 · u12)2〉 = 0, (B5)

〈	(n2 · u12)2〉 = 〈(u12 · (u12 · ∇)n1)2 + (u12 · n1)(u12 · (u12 · ∇)2n1)〉
= 〈(uαuβ∇βnα )(uγ uδ∇δnγ ) + uαnαuβuγ ∇γ uδ∇δnβ〉

=
(

1

15
− 2

21

σ2

σ0
+ 1

35

σ4

σ0

)
[(∇ · n)2 + (∇αnβ )2 + (∇βnα )(∇αnβ )]
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+
(

1

15
+ 1

21

σ2

σ0
− 4

35

σ4

σ0

)
(nα∇2nα + 2nα∇α∇βnβ ) + 2σ2 + 5σ4

7σ0
nαnβnγ ∇α∇βnγ

= −σ2 − σ4

7σ0
{3(∇ · n)2 + (n · [∇ × n])2} − 3σ2 + 4σ4

7σ0
[n × [∇ × n]]2

−
(

1

15
− 5

21

σ2

σ0
+ 6

35

σ4

σ0

)
∇ · (n(∇ · n) − (n · ∇)n) +

(
2

15
+ 2

21

σ2

σ0
− 8

35

σ4

σ0

)
∇ · (n(∇ · n)), (B6)

〈	{(n1 · n2)(n1 · u12)(n2 · u12)}〉
= 〈(u12 · n1)(u12 · (u12 · ∇)2n1) + (u12 · n1)2(n1 · (u12 · ∇)2n1)〉/2

= 〈uαnαuβuγ ∇γ uδ∇δnβ + uαnαuβnβnμuγ ∇γ uδ∇δnμ〉/2

=
(

1

15
+ 1

21

σ2

σ0
− 4

35

σ4

σ0

)
(nα∇2nα + nα∇α∇βnβ ) +

(
1

15
+ 10

21

σ2

σ0
+ 16

35

σ4

σ0

)
nαnβnγ ∇α∇βnγ

= −
(

1

15
+ 1

21

σ2

σ0
− 4

35

σ4

σ0

)
{2(∇ · n)2 + (n · [∇ × n])2 − ∇ · (2n(∇ · n) − (n · ∇)n)}

−
(

2

15
+ 11

21

σ2

σ0
+ 12

35

σ4

σ0

)
[n × [∇ × n]]2, (B7)

〈	{(n1 · n2)2(n1 · u12)2}〉 = 〈(u12 · n1)2(n1 · (u12 · ∇)2n1)〉
= 〈uαnαuβnβnμuγ ∇γ uδ∇δnμ〉

=
(

1

15
+ 1

21

σ2

σ0
− 4

35

σ4

σ0

)
nα∇2nα +

(
2

15
+ 11

21

σ2

σ0
+ 12

35

σ4

σ0

)
nαnβnγ ∇α∇βnγ

= −
(

1

15
+ 1

21

σ2

σ0
− 4

35

σ4

σ0

)
{(∇ · n)2 + (n · [∇ × n])2 − ∇ · (n(∇ · n) − (n · ∇)n)}

−
(

1

5
+ 4

7

σ2

σ0
+ 8

35

σ4

σ0

)
[n × [∇ × n]]2, (B8)

〈	{(n1 · n2)2(n2 · u12)2}〉 = 〈(u12 · (u12 · ∇)n1)2 + (u12 · n1)2(n1 · (u12 · ∇)2n1) + (u12 · n1)(u12 · (u12 · ∇)2n1)〉
= 〈(uαuβ∇βnα )(uγ uδ∇δnγ ) + uαnαuβnβnμuγ ∇γ uδ∇δnμ + uαnαuβuγ ∇γ uδ∇δnβ〉

=
(

1

15
− 2

21

σ2

σ0
+ 1

35

σ4

σ0

)
((∇ · n)2 + (∇αnβ )2 + (∇βnα )(∇αnβ ))

+
(

2

15
+ 2

21

σ2

σ0
− 8

35

σ4

σ0

)
(nα∇2nα + nα∇α∇βnβ ) +

(
2

15
+ 17

21

σ2

σ0
+ 37

35

σ4

σ0

)
nαnβnγ ∇α∇βnγ

= −
(

1

15
+ 10

21

σ2

σ0
− 19

35

σ4

σ0

)
(∇ · n)2 −

(
1

15
+ 4

21

σ2

σ0
− 9

35

σ4

σ0

)
(n · [∇ × n])2

−
(

1

5
+ σ2

σ0
+ 4

5

σ4

σ0

)
[n × [∇ × n]]2 + 2

7σ0
(σ2 − σ4)∇ · (n(∇ · n) − (n · ∇)n)

+
(

2

15
+ 2

21

σ2

σ0
− 8

35

σ4

σ0

)
∇ · (n(∇ · n)). (B9)

One notes that Eqs. (B5), (B6), (B8), and (B9) appeared to
be nonsymmetrical with respect to the replacement of indexes
1 and 2. This happened, because we selected molecule 1 as
a test molecule and molecule 2 belonging to the “molecular
surrounding” affecting molecule 1. Obviously, we could do
just in an opposite way, while, in fact, molecules 1 and 2 are
in the same conditions. Therefore the final expressions for
the gradients of spherical invariants T�Lλ(a1, u12, a2) should
be symmetrical with respect to replacement of indexes 1 and
2. Since the replacement of indexes 1 and 2 in spherical
invariants Eq. (18) is equivalent to the replacement of indexes
� and λ, the final expressions for the gradients should be

averaged with respect to this replacement. Taking this into
account, substituting Eqs. (B4)–(B9) into the definitions of
spherical invariants Eq. (18) and collecting the similar terms,
one obtains mean field energy Eq. (28) responsible for the di-
rector deformation. To obtain the correlation function Eq. (29)
one should take into account that all the averages with respect
to the azimuthal orientation of vector u12 are the same as in
Eqs. (B5)–(B9), while all the translational order parameters σL

(L = 0, 2, and 4) should be replaced with the corresponding
Legendre polynomials PL(u12 · n1) (which are the correspond-
ing expressions before integration with respect to vector u12

over the sphere).
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