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Nematic tactoid population
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Tactoids are pointed, spindlelike droplets of nematic liquid crystal in an isotropic fluid. They have long been
observed in inorganic and organic nematics, in thermotropic phases as well as lyotropic colloidal aggregates.
The variational problem of determining the optimal shape of a nematic droplet is formidable and has only been
attacked in selected classes of shapes and director fields. Here, by considering a special class of admissible
solutions for a bipolar droplet, we study the prevalence in the population of all equilibrium shapes of each
of the three that may be optimal (tactoids primarily among them). We show how the prevalence of a shape is
affected by a dimensionless measure α of the drop’s volume and the ratios k24 and k3 of the saddle-splay constant
K24 and the bending constant K33 of the material to the splay constant K11. Tactoids, in particular, prevail for
α � 16.2 + 0.3k3 − (14.9 − 0.1k3)k24. Our class of shapes (and director fields) is sufficiently different from
those employed so far to unveil a rather different role of K24.

DOI: 10.1103/PhysRevE.103.022707

I. INTRODUCTION

Tactoids have a long and intriguing history. The name
tactoid (in German, taktoid) comes from the Greek τακτóς ,
meaning ordered; it was coined by Zocher and Jacobsohn [1]
to designate spindlelike aggregates of elongated colloidal par-
ticles dispersed in sols (typically aqueous). Originally, such
particles were composed of monocrystals of vanadium pen-
toxide (V2O5) grown by aging, first1 studied in [3] and further
characterized in [4].2

Later, once Stanley [6] had succeeded in extracting tobacco
mosaic virus (TMV) from infected plants, tactoids made again
their appearance in aqueous sols where TMV had been dis-
persed with a concentration higher than 2% by weight [7].3

Remarkable is the evidence of tactoids in TMV sols collected
in [9], whose diagrams and pictures of pointed shapes we
found inspirational.4 Onsager himself says that explaining the
formation of TMV was one motivation for his seminal paper
[10] on the coexistence of nematic and isotropic phases as
the sole consequence of steric interactions.5 Chromonic liq-
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1We learn, however, in the historical review [2] (which is highly

recommended to the reader) that an earlier experiment performed in
1904 by Quirino Majorana had already found magnetically induced
birefringence in a sol of inorganic particles (FeOOH).

2In this connection, the reader is referred to the interesting review
[5] on a class of mineral liquid crystals, where tactoids are also
formed.

3A more recent study attempting to characterize this special system
can be found in [8].

4The original aim of [9] was to measure intertactoid distances as a
function of pH and ionic strength.

5Although the connection between colloidal aggregates and liq-
uid crystals was already clear to Onsager, it took Zocher a longer
time to include what he had called nematic (and smectic) su-

uid crystals,6 which are constituted by molecular aggregates
whose length distribution is affected by both temperature and
concentration, have shown hosts of tactoids [21–25].7

Now, we know that tactoids are ubiquitous in liquid crys-
tals, irrespective of whether the latter are thermotropic (when
the ordered phase is induced by a change in temperature) or
lyotropic (when the ordered phase is induced by a change
in concentration). A classical phenomenological theory first
proposed by Oseen [28] and then formalized by Frank [29]
has proven valid in describing the elastic cost associated with
static distortions of the nematic director n, the mesoscopic
unit vector field designating the local average orientation of
the elementary constituents of the phase (be they molecules
or supermolecular constructs). Since tactoids are droplets sur-
rounded by an isotropic fluid,8 the Oseen-Frank elastic energy,
which accounts for distortions in bulk, does not suffice to
describe the whole energetic landscape. A surface energy at
the interface separating the droplet from the surrounding fluid
must also be included.

A heuristic argument has often been sketched, which builds
on the purely entropic model put forward by Onsager [10]
that only accounts for steric, excluded-volume interactions
between the particles constituting the phase. It holds that at the
interface particles would tend to lie parallel to the boundary of
the droplet, as this would enhance their mutual sliding and so

perphases [11,12] “into the realm of liquid crystals, though their
physico-chemical nature is very different from that of relatively low
molecular organic substances exhibiting mesophases” [13, p. 178].

6Disparate materials can be classified as chromonic liquid crys-
tals; they include dyes, drugs [14,15], nucleotides [16], and DNA
oligomers [17,18]. See also the review [19] and the thesis [20].

7Examples of tactoids in other materials can also be found in
[26,27].

8This could either be the isotropic melt (or vapor) of the same
substance (in thermotropic materials) or the isotropic component in
phase coexistence (in lyotropic materials).
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increase the entropy of the interface (a proper statistical model
arriving at the same conclusion was also offered in [30]).
Although there is experimental evidence showing that spher-
ical droplets of (mostly thermotropic) liquid crystals may
have normal as well as tangential anchoring at the interface
[31–33], since the earliest works [34,35] tactoids have been
studied under the assumption that the nematic director n is
tangent to the boundary. Actually, most studies have assumed
an axisymmetric shape for tactoids with n along the meridians
on their boundaries. In such bipolar configurations, the poles
are doubly singular, because both the surface normal and the
nematic director have there defects.

Williams [36] made the first systematic attempt to find both
the equilibrium shape of droplets subject to tangential surface
anchoring and the equilibrium director field inside them.9

In its most general formulation, the problem soon appeared
formidable. Nonetheless, analytic estimates and numerical
computations suggested that tactoids “are difficult to observe,
since very small drops and very low surface tension interface
are required” [36, p. 12].10

Such a disheartening conclusion did not deter further stud-
ies. Tactoids and their mathematical description have recently
witnessed a surge of interest in a series of papers by several
authors [38–42]. Despite a number of differences, they have
one feature in common: being directly or indirectly influenced
by the work of Williams [36], they adopt a special representa-
tion for both the droplet’s shape and the nematic director that
makes the saddle-splay constant of the Oseen-Frank energy,
the most elusive to experimental detection, feature as mere
renormalization of the splay constant, thus playing a marginal
role in the occurrence of tactoids.

What makes the saddle-splay constant K24 elusive is its
being related to a surface (elastic) energy. Heuristically, since
surface evokes shape, one expects K24 to be the elastic con-
stant that most determines what a droplet looks like. We are
primarily interested in tactoids and on how they prevail over
other possible equilibrium shapes, a notion which, borrowing
from the language of demography, we describe as tactoid
population. This is precisely what this paper is about: to
widen the class of admissible droplet shapes and directors to
identify the agents responsible for the growth and decay of
tactoid population. We shall show how a change in the class
of admissible shapes may alter considerably the whole scene.

Section II is devoted to the illustration of the class of
shapes (and director fields) adopted in this paper. In particular,
we realize that in our class there are both genuine tactoids
(those with pointed tips) and shapes that, although perfectly
smooth, look very much like sharply pointed spindles. We
introduce a full shape taxonomy that helps us navigate the
configuration space. Not all admissible shapes are convex, but
it is shown in Sec. III that all optimal shapes are so. They can
be tactoids or spheroids (or something in between), depending
on the values of two dimensionless parameters, one related
to the droplet’s size and the other related to the saddle-splay

9In the special case where all elastic constants in the Oseen-Frank
theory are equal.

10It is perhaps for this reason that in a subsequent paper Williams
[37] considered only bipolar spherical droplets.

constant. In Sec. IV, we collect the main results of this paper
by examining the circumstances that determine the prevalence
of one shape over the others. In Sec. V, we summarize our
findings and see how Williams’s pessimistic conclusion about
the scarcity of tactoids can be mellowed. The paper is closed
by three mathematical appendices, where we illustrate the
details of our development that in the main text could have
easily hampered the reader.

II. CLASS OF SHAPES

We describe nematic liquid crystals within the classical
theory, which features a director n as the only mesoscopic
descriptor of local molecular order. The spatial distortion of a
director field n is measured by its gradient ∇n. The elastic
energy density fOF associated with a director distortion is
given by the celebrated Oseen-Frank formula (see, e.g., [43,
Ch. 3]):

fOF := 1
2 K11(div n)2+ 1

2 K22(n · curl n)2 + 1
2 K33|n × curl n|2

+ K24(tr(∇n)2 − (div n)2), (1)

where K11, K22, K33, and K24 are the splay, twist, bend, and
saddle-splay elastic constants, respectively, each correspond-
ing to a particular elastic mode.11

The saddle-splay term can be written in a number of equiv-
alent forms (see, e.g., [46, Ch. 5]),12

tr(∇n)2 − (div n)2 = div((∇n)n − (div n)n)

= − div((div n)n + n × curl n), (2)

which also reveal its nature of a null Lagrangian, as an inte-
gration over the bulk reduces it to a surface energy:∫

B
(tr(∇n)2 − (div n)2)dV

=
∫

∂B
((∇sn)n − (divsn)n) · νdA, (3)

where B is the region in space occupied by the material, ν

is the outer unit normal to ∂B, V and A are the volume and
area measures, ∇s denotes the surface gradient, and divs is the
surface divergence [49]. In particular, as pointed out in [50],
(3) has an interesting consequence when (as will be done here)
n is required to obey the degenerate boundary condition on
∂B:

n · ν ≡ 0. (4)

11Here “tr” denotes the trace of a (second-rank) tensor: in Carte-
sian components, tr(∇n)2 = ni, jn j,i, with the usual convention of
summing over repeated indices. Recently, a different modal decom-
position has been put forward for fOF [44], which has also been
given a graphical representation in terms of an octupolar (third-rank)
tensor [45]. Such a novel decomposition, however, is not particularly
germane to the topic at hand, and so here we shall stick to tradition.

12An instructive way to relate the saddle-splay energy to splay and
twist energies was also offered by Nehring and Saupe [47,48]. In
a Cartesian frame where n = e3 and the matrix ni, j , with n3, j = 0,
represents ∇n, (div n)2 = (n1,1 + n2,2)2 and (n · curl n)2 = (n1,2 −
n2,1)2, while tr(∇n)2 − (div n)2 = −2(n1,1n2,2 − n1,2n2,1).
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Since (4) implies that (∇sn)Tν = −(∇sν)n, where ∇sν is the
(symmetric) curvature tensor of ∂B, it follows from (3) that∫

B
(tr(∇n)2 − (div n)2)dV = −

∫
∂B

(
κ1n2

1 + κ2n2
2

)
dA, (5)

where κ1 and κ2 are the principal curvatures of ∂B and n1 and
n2 are the components of n along the corresponding principal
directions of curvature. Thus, for K24 � 0, the saddle-splay
energy would by itself induce n to align along the direction
with maximum (signed) curvature.13 We shall see in the fol-
lowing that this surface feature is key to the role played by
K24 in determining the population of different droplet shapes.

In the original works of Oseen [28] and Frank [29], fOF

in (1) stems from requiring the elastic energy density, which
estimates the local distortional cost, to be a quadratic form
of the measure of distortion that complies with frame indiffer-
ence and is invariant under the nematic symmetry (demanding
n to be equivalent to −n). To ensure that such a cost is never
negative, the elastic constants in (1) must satisfy Ericksen’s
inequalities [52]:

K11 � K24 � 0, K22 � K24 � 0, K33 � 0, (6)

which will be taken as valid throughout this paper.
Here we study a free-boundary problem, where a given

quantity of nematic liquid crystal occupying the volume V0

(we treat liquid crystals as incompressible fluids) is sur-
rounded by an isotropic fluid (which could well be its own
melt) and can take on any desired shape. The shape of the
region B occupied by the material at equilibrium will be the
primary unknown of our problem.

The bulk elastic energy distributed over B must be supple-
mented by the interfacial energy concentrated on the boundary
∂B, where the liquid crystal comes in contact with the
isotropic environment that surrounds it. There, an anisotropic
surface tension γa, depending on the orientation of n relative
to the outer unit normal ν to ∂B, comes into play. Following
[39], we represent γa as

γa := γ (1 + ω(n · ν)2), (7)

where γ > 0 is the isotropic surface tension and ω is a dimen-
sionless anchoring strength, which we take to satisfy ω � 0.
Actually, (7) is far more general than needed here, as we shall
assume that n obeys (4). As also shown in [39], for sufficiently
small droplets, this assumption is untenable, as n tends to be
uniform throughout B, making (4) impossible (see also [43,
Ch. 5]). Our development will be based on assumption (4);
although ω will never feature explicitly below, it must be taken
to be sufficiently large so as to make (4) valid.14

Equilibrium is attained whenever the total free energy is
minimized, that is, whenever B minimizes the shape func-

13In [50], the curvature tensor of ∂B is defined as −∇sn, so that
the principal curvatures κi have opposite signs and (5) turns into
orienting n along the direction with minimum (signed) curvature (see
also [51]).

14A more precise estimate that also involves the droplet’s size will
be presented in Sec. III A.

FIG. 1. Cross section of the drop with a meridian plane. The
function R(z) represents the boundary ∂B, while the function
Rt (z) = g(t )R(z) is the retraction of R(z) described in the text. The
director field n is everywhere tangent to the retracted curves; n⊥ =
eϑ × n is the orthogonal field that agrees with the outer unit normal
ν on ∂B. The tangent to R(z) for z � 0 makes the angle β with the
z axis; it is instrumental to the definition of the tactoidal measure τ

illustrated in Appendix B.

tional

F [B] :=
∫

B
fOFdV + γ A(∂B), (8)

subject to the constraint

V (B) = V0, (9)

where fOF is as in (1). Minimizers of F will be sought in
a special class of shapes and director fields, which we now
describe in detail.

A. Shape representation and director retraction

We shall represent B as a region in three-dimensional
space axisymmetric about the z axis of a standard cylindri-
cal frame (er, eϑ , ez ) and mirror symmetric relative to the
equatorial plane (er, eϑ ). As shown in Fig. 1, the boundary
∂B is obtained by rotating the graph of a function of class
C1, R = R(z), which describes the radius of the drop’s cross
section at height z ∈ [−R0, R0]. R is taken to an even function:

R(z) = R(−z), z ∈ [−R0, R0]. (10)

The points on the z axis at z = ±R0, where R vanishes, are
the poles of the drop. On the equator, which falls at z = 0,
smoothness and symmetry require that R′(0) = 0, where a
prime denotes differentiation.
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Whenever R′(R0) is finite, the shape B has pointed poles;
it is a tactoid, which we shall call genuine to distinguish it
from similar elongated shapes with a smooth boundary. On
the other hand, whenever R′ is unbounded at the end points of
the interval [−R0, R0], B has a smooth boundary; as shown
below, its shape may appear in different forms and guises.
Figure 1 depicts the cross section with a meridian plane (say,
at ϑ = 0) of a region B in the class we are considering; the
full shape is generated by a 2π rotation around the z axis.

The director field n on ∂B is taken to be oriented along
the meridians. This is an additional hypothesis, also made in
[39,41], which is expected to be justified provided that the
splay constant K11 does not exceed a combination of twist
and bend constants. For spherical droplets, Williams [37]
showed that when K11 � K22 + 0.43K33 a twisted configura-
tion (with the director spiraling at an angle with the meridians)
is energetically more favorable than the bipolar configuration.
Heuristically, this is understood by considering that when
the splay component of the nematic distortion becomes too
energetic it can be relaxed at the expenses of both twist and
bend distortions, if they are less energetic. As pointed out in
[39], since in elongated shapes, such as tactoids, the splay
component is likely to be less prominent than in spherical
droplets, one expects that in this context the twisting insta-
bility would require even larger values of K11 compared to
Williams’s original estimate.15

For any given ϑ , the boundary curve is represented by the
position vector (issued from the center of symmetry of B)

p1(ϑ, z) := R(z)er + zez, −R0 � z � R0, (11)

which is retracted inside B as the curve

p(t, ϑ, z) := g(t )R(z)er + zez, −R0 � z � R0, (12)

where t is the retraction parameter ranging in [0,1] and g
is any function of class C1 strictly increasing on [0,1] and
such that g(0) = 0 and g(1) = 1 [an example would be g(t ) =
t]. Clearly, for t = 1, p(t, ϑ, z) reduces to p1(ϑ, z) in (11),
whereas for t = 0 it describes the polar axis p0(z) = zez (see
Fig. 1). The family of retracted curves fills the whole of B by
letting ϑ vary in [0, 2π ). Thus, (t, ϑ, z) ∈ [0, 1] × [0, 2π ) ×
[−R0, R0] is the new set of retracted coordinates for the region
B.

We not only retract the boundary ∂B by letting t vary
in [0,1], we also retract the meridian director field on ∂B,
which is thus defined in the whole of B as the unit vector
field tangent to the lines with given (t, ϑ ) and varying z (see
Fig. 1). The director field produced with such a geometric
construction possesses two point defects at the poles; they
are two boojums with equal topological charge m = +1. By
differentiating p in (12) with respect to z, keeping (t, ϑ ) fixed,
we easily obtain

n = gR′er + ez√
1 + (gR′)2

. (13)

Letting n⊥ be the unit vector orthogonal to n in the meridian
plane, oriented so as to coincide with the outer unit normal ν

15The fact, however, remains that a thorough stability analysis of
the nematic distortions considered here is still lacking.

on ∂B, we see from (13) that

n⊥ = er − gR′ez√
1 + (gR′)2

. (14)

A positively oriented orthonormal frame (n, n⊥, eϑ ) is then
obtained by appending the unit vector eϑ = n × n⊥, every-
where orthogonal to the local meridian plane. This frame,
however, is not the frame associated with the new coordinates
(t, ϑ, z), as we now proceed to show.

Imagine a smooth curve in B parametrized as ξ �→
(t (ξ ), ϑ (ξ ), z(ξ )). It follows from (12) that

ṗ = (g′Rṫ + gR′ż)er + gRϑ̇eϑ + żez, (15)

where a superimposed dot denotes differentiation with respect
to the parameter ξ .16 A glance at (13) suffices to show that (15)
can also be rewritten as

ṗ = g′Rṫer + gRϑ̇eϑ +
√

1 + (gR′)2żn, (16)

showing that (er, eϑ , n) is the (nonorthogonal) frame associ-
ated with the retracted coordinates (t, ϑ, z).

Equation (16) is especially expedient to derive the elemen-
tary volume dV of B and the elementary area dAt for the
retracted boundary ∂Bt in B. For the former we have that

dV = dtdϑdz(g′R)(gR)
√

1 + (gR′)2 er · eϑ × n

= gg′R2dtdϑdz, (17)

where use has also been made of (13), while for the latter

dAt = dϑdz(gR)
√

1 + (gR′)2 eϑ × n · n⊥

= gR
√

1 + (gR′)2dϑdz. (18)

Thus, the volume of a droplet B will be expressed in terms of
the function R as

V (B) =
∫ 1

0
gg′dt

∫ 2π

0
dϑ

∫ R0

−R0

R2dz = π

∫ R0

−R0

R2dz = V0,

(19)
and the area of the boundary ∂B as

A(∂B) = 2π

∫ R0

−R0

R
√

1 + R′2dz, (20)

which follows from (18) for t = 1.
It is shown in Appendix A how to derive from (12) the form

taken by ∇n in the orthonormal frame (n, n⊥, eϑ ); this reads
as

∇n = gR′′(
1 + (gR′)2

)3/2 n⊥ ⊗ n +
(

R′

R

1√
1 + (gR′)2

− g2R′R′′(
1 + (gR′)2

)3/2

)
n⊥ ⊗ n⊥+ R′

R

1√
1 + (gR′)2

eϑ ⊗ eϑ .

(21)

16With a slight abuse of language, here a prime denotes differen-
tiation both with respect to t (in g′) and with respect to z (in R′).
No confusion should arise since, apart from p, no other instance will
occur of a function depending on both (t, z).
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The following expressions for the traditional measures of dis-
tortion are easy consequences of (21):

div n = R′√
1 + (gR′)2

(
2

R
− g2R′′

1 + (gR′)2

)
, (22a)

curl n = gR′′

(1 + (gR′)2)3/2
eϑ , (22b)

n · curl n = 0, (22c)

n × curl n = − gR′′

(1 + (gR′)2)3/2
n⊥, (22d)

tr(∇n)2 − (div n)2 = − 2R′2

R(1 + (gR′)2)

(
1

R
− g2R′′

1 + (gR′)2

)
.

(22e)

In particular, (22c) shows that, as expected, no twist is asso-
ciated with the class of retracted meridian fields that we are
considering.

Inserting (22) in (1), we arrive at

fOF = 1

2
K11

g4R′2R′′2

(1 + (gR′)2)3
+ (K11 − K24)

2R′2

R(1 + (gR′)2)

(
1

R
− g2R′′

1 + (gR′)2

)
+ 1

2
K33

g2R′′2

(1 + (gR′)2)3
, (23)

which shows how in our setting, at variance with [38–42], the saddle-splay constant does not merely renormalize the splay
constant. For given g, the function R represents here both the shape B of a droplet and the nematic director field inside it.

Before building upon (8) and (23) the free-energy functional that we shall study in the following, we find it useful to rescale
all lengths to the one dictated by the volume constraint. We call Re the radius of the equivalent sphere, which has volume V0, and
we rescale to Re both z and R(z), keeping their names unaltered.17 Letting

μ := R0

Re
, (24)

by use of (8), (23), (17), and (20), we arrive at the following reduced functional, F [μ; R], which is an appropriate dimensionless
form of F :

F [μ; R] := F [B]

2πK11Re
=

∫ 1

0
dt

∫ μ

−μ

gg′R2

[
1

2

g4R′2R′′2

(1 + (gR′)2)3
+ 2(1 − k24)R′2

R(1 + (gR′)2)

(
1

R
− g2R′′

1 + (gR′)2

)
+ k3

2

g2R′′2

(1 + (gR′)2)3

]
dz

+ α

∫ μ

−μ

R
√

1 + R′2dz

=
∫ μ

−μ

{
R2R′′2

4R′2

(
ln(1 + R′2)

R′2 − 1

(1 + R′2)2

)
+ (1 − k24)

[(
1 − RR′′

R′2

)
ln(1 + R′2) + RR′′

1 + R′2

]

+ (k3 − 3)
R2R′′2

8(1 + R′2)2

}
dz + α

∫ μ

−μ

R
√

1 + R′2dz, (25)

where the integration in t is shown to be independent of the
specific function g, provided it is monotonic and obeys the
prescribed boundary conditions. The following scaled elastic
constants have been introduced in (25):

k3 := K33

K11
, k24 := K24

K11
, (26)

where the former is non-negative and the latter is subject to
0 � k24 � 1, as a consequence of (6). Moreover,

α := γ Re

K11
(27)

is a reduced (dimensionless) volume.18

17An abuse of notation that we hope the reader will tolerate.
18When we say that a drop is either small or large, we mean

precisely that either α 
 1 or α � 1, respectively.

The variational problem that we thus face can be phrased
as follows: find a positive μ and a smooth, even function R
that obeys

R(−μ) = R(μ) = 0 (28)

so as to minimize F subject to the isoperimetric constraint
(19), which in the scaled variables reads simply as∫ μ

−μ

R2(z)dz = 4

3
. (29)

B. Special family of shapes

The variational problem just stated is rather challenging,
especially if we wish to discuss the role played by the constitu-
tive parameters k3 and k24 and by the reduced volume α in de-
termining the population of minimizing shapes. Instead of em-
barking on a thorough numerical minimization of F , we rather
resort to a special family of shapes described by a small num-
ber of parameters. We shall take the function R in the special
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form19

R(z) = a(μ2 − z2) + b
√

μ2 − z2. (30)

We now illustrate and classify the relatively large variety
of shapes that can be represented through (30). We begin by
considering the constraints that the parameters (a, b, μ) are
subject to.

First, R(z) must be non-negative for all −μ � z � μ. It a
simple matter to check that this requirement is equivalent to
the inequalities

b � −μa and b2 � (μa)2 or ab > 0, (31)

which can be represented by letting

μa = ρ cos φ and b = ρ sin φ,

with ρ > 0 and 0 � φ � 3π

4
.

(32)

Second, the isoperimetric constraint (29) requires that

μ3

(
b2 + 9π

16
(μa)b + 4

5
(μa)2

)
= 1. (33)

Inserting (32) into (33), we obtain ρ and conclude that all
admissible values of a and b are represented by

a = 1

μ5/2

cos φ√
h(φ)

, b = 1

μ3/2

sin φ√
h(φ)

with

h(φ) := sin2 φ + 9π

16
sin φ cos φ + 4

5
cos2 φ > 0,

0 � φ � 3π

4
. (34)

Thus, (φ,μ) are the only independent parameters that de-
scribe all admissible shapes in the special class (30). We now
explore the qualitative features of these shapes, corresponding
to different regions in configuration space S := {(φ,μ) : 0 �
φ � 3π

4 , μ > 0}.
We first distinguish prolate from oblate shapes; the former

are characterized by having height larger than width, that is,
by the inequality μ � R(0), which by (30) and (34) becomes

μ � � (φ) := 3

√
(cos φ + sin φ)2

h(φ)
. (35)

The graph of � (φ) is shown in Fig. 2: all shapes above it are
prolate, and all shapes below it are oblate. The round sphere,
corresponding to the point ( π

2 , 1), falls on the graph of � (it
is denoted by a circle in Fig. 2).

We distinguish convex from concave shapes. The latter
arise whenever R′ has an extra root in −μ � z � μ, besides
z = 0. It is easily seen that such an extra root requires that

a < 0 and b < 2μ|a|. (36)

By (34), these inequalities reduce to φ > φc :=
arccot (− 1

2 )
.= 2.03 rad. Thus the pink strip in S depicted

in Fig. 2 is where we find all concave shapes represented
by (30). The corresponding three-dimensional droplets B

19For b = 0, R in (30) reduces to the parabolic profile considered in
[36].

FIG. 2. Configuration space with all admissible shapes described
by (30). The blue region below the graph of the function � (φ)
in (35) represents all prolate shapes. The (pink) vertical strip for
φc � φ � 3π

4 represents the concave shapes that we have called
dumbbells; all shapes falling on the left of this strip are convex.
The sphere is represented by the point ( π

2 , 1), marked by a (red)
circle. According to the taxonomy introduced in Sec. II C, we also
call tactoids the shapes for 0 � φ � π

16 (genuine tactoids, only those
for φ = 0, marked by a (red) line), bumped spheroids those for π

16 �
φ � 6π

16 , simply spheroids those for 6π

16 � φ � 9π

16 , and barrels those
for 9π

16 � φ � φc (see also Table I and Fig. 3 for a fuller gallery of
shapes). The barriers marking transitions from one family of shapes
to another are represented by vertical dashed lines.

are axisymmetric dumbbells, with a neck that narrows as φ

approaches the boundary of S at φ = 3π
4 , where it vanishes

altogether and the droplet is severed. The strip of dumbbells
is also traversed by the graph of � (φ) (see Fig. 2), which
means that some dumbbells are prolate (if they fall above
the graph of � ), while others are oblate (if they fall below
the graph of � ), although here this simply means that their
height is either larger or smaller than their neck.

C. Droplet taxonomy

Strictly speaking, as already remarked above, a three-
dimensional shape B represented by (30) has pointed tips at

022707-6



NEMATIC TACTOID POPULATION PHYSICAL REVIEW E 103, 022707 (2021)

TABLE I. We identify five strips in configuration space S, which correspond to five qualitatively different shapes for a droplet B
represented by (30) via (34). The names given below are somewhat self-explanatory; a visual illustration is provided by the gallery of shapes
drawn in Fig. 3 for μ = 1. The transition shapes, which somehow belong to two adjacent classes, are characterized by the following values of
φ: π

16 , 6π

16 , 9π

16 , and φc = arccot (− 1
2 )

.= 2.03 rad.

Tactoids Bumped spheroids Spheroids Barrels Dumbbells

0 � φ � π

16

π

16
� φ � 6π

16

6π

16
� φ � 9π

16

9π

16
� φ � φc φc � φ � 3π

4

the poles only for φ = 0, which according to (34) is the only
value of φ that makes b vanish. We wonder whether for small
enough values of φ the shape represented by (30) via (34)
can be visually distinguished from a tactoid (in accord with
the etymology of the word recalled in the Introduction). The
answer to this question is vital to our “demographic” quest.
If we want to know how tactoids feature in the whole droplet
population, we need to have a clear criterion to classify as
tactoids also those shapes which may not have pointed tips,
but look like they have.

In Appendix B, we build a quantitative criterion on a cer-
tain qualitative observation. There, we arrive at a tactoidal
measure, which here translates into a conventional classifica-
tion rule. We propose to call simply tactoids all shapes repre-
sented by the strip 0 � φ � π

16 in configuration space S. Other
strips are conventionally identified in S, which describe other
shape variants. Our full taxonomy is summarized in Table I.

In this section, we shall be contented with illustrating our
taxonomic criterion by drawing shapes for which μ = 1. We
have two good reasons to do so. First, we have drawn a
number of shapes for very different values of μ and always
found our criterion qualitatively accurate. Second, as will be
clear in Sec. III below, the equilibrium shapes that minimize
the free-energy functional never fall too far away from μ = 1.

Figure 3 presents a gallery of meridian cross sections of a
droplet obtained from (30) and (34) for μ = 1 and a number
of values of φ falling in the different categories listed in
Table I, including the transition shapes. Clearly, the shapes
in Figs. 3(a)–3(c) are tactoids. On the other hand, the shapes
shown in Figs. 3(e)–3(h) are definitely not tactoidal, but they
are not completely spherical either. We call them bumped
spheroids to highlight the fact that they exhibit a smooth
bump where a tactoid would have a tapered tip. The differ-
ence between tactoids and bumped spheroids is just a matter
of what polar protrusions look like: pointed in the former,
smoother in the latter. Further increasing φ from 6π

16 to 9π
16 , the

representative shapes gradually lose their bumps, justifying
calling them simply spheroids [see Figs. 3(j) and 3(k)]. At φ =
9π
16 , however, spheroids evolve into something else: they start
resembling cylinders; we call them barrels [see Fig. 3(m)].
Beyond the transition shape at φ = φc shown in Fig. 3(n), the
gallery of shapes is closed by a dumbbell falling in the pink
region of the configuration space in Fig. 2 [see Fig. 3(o)].

We shall see in the following sections where in configura-
tion space S the free-energy functional F in (23) attains its
minimum, for given values of k3 and k24, and variable α. We
shall learn which among the shapes illuminated in Fig. 3 will
be privileged as energy minimizers. In preparation for that,
here we have set the language to describe a variety of possible
shape transitions.

III. OPTIMAL SHAPES

Our paper is confined to bipolar droplets, for which the
anchoring at the interface is successfully holding up a tan-
gential, albeit degenerate alignment of the nematic director.
It is well known [53] that for sufficiently small droplets the
nematic orientation inside them tends to be uniform and the
anchoring at their boundary is accordingly broken, so that the
equilibrium shape is delivered by the classical Wulff construc-
tion [54]. We need to make sure that the parameters are chosen
in a range where such a configuration would be energetically
disfavored. We shall see that this can be achieved provided
that the reduced volume α in (27) is sufficiently large.

A. Admissible volumes

To identify the safeguard value of α below which it would
be unwise to push our analysis, we perform here an energy
comparison based on two simple estimates.

We begin by estimating the free energy F in (8) for a
uniformly aligned cylindrical drop with (constant) radius R
and height L delivered by

L = 4

3

R3
e

R2
, (37)

for the constraint on the volume in (9) to be obeyed. Suppose
that n is along the cylinder’s axis; since ∇n vanishes identi-
cally, no distortion energy is stored in the body B of the drop:
all the free energy comes from the boundary ∂B; it is given
by

Fc = 2πγ

(
4

3

R3
e

R
+ (1 + ω)R2

)
, (38)

where use has been made of (37) and account has been taken
of the different orientation of n relative to ν on the lateral
surface and on the bases of the cylinder. It is a very simple
matter to see that Fc is minimized for

R = Re
3

√
2

3(1 + ω)
(39)

and that the corresponding value of Fc is

Fc = 2πγ R2
e

3
√

12(1 + ω). (40)

This energy is to be compared with that estimated for a sphere
with the bipolar director field emanating from the poles. Let-
ting all constants K11, K22, and K33 be equal to K in the elastic
energy computed in Eq. (2.18) of [37], for the total free energy
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FIG. 3. Gallery of shapes illustrating for μ = 1 the taxonomy introduced in Table I. In particular, the four transition shapes that somehow
share features of two adjacent categories are also shown. The color coding of the shapes is the same used in Fig. 2.

Fs of a spherical drop of radius Re we obtain

Fs =
(

7 − π2

4

)
πKRe − 4πK24Re + 4πγ R2

e . (41)

The demand that Fs < Fc for all admissible K24, which would
make it unfavorable breaking the tangential surface anchoring,
is thus reverted into an inequality for α:

α > αs(ω) := 7 − π2

4

2( 3
√

12(1 + ω) − 2)
, (42)

which shows how the bipolar safeguard value αs for α de-
pends on ω. Clearly, the larger is ω, the smaller is αs.
Estimating ω in the range20 1–10, we shall take21 α > αs(5)

.=
1.0.

20See, for example, [23,55].
21This threshold is to some extent conventional, but cannot be “too”

wrong, as for other values of ω we would obtain αs(1)
.= 2.6 and

αs(10)
.= 0.7.

In view of (27), the latter inequality can be interpreted as
a lower bound for the linear size Re of the drops admissible
in our theory.22 Taking K ∼ 1–10 pN as typical value for all
elastic constants23 and γ ∼ 10−5 N m−1 as typical value for
the interfacial energy of a nematic liquid crystal in contact
with its melt,24 the lower bound for α translates into Re �

22Thus making it clear in what sense this applies to sufficiently
large drops.

23This estimate is supported by a number of contributions that span
a long time interval, from early works [56–62] to more recent ones
[63–71], both experimental and computational in nature, for liquid
crystals ranging from thermotropic to lyotropic, with both low and
high molecular weight (see also [36,39]). That elastic constants are
not too dissimilar for lyotropic and thermotropic liquid crystals has
also been confirmed by a recent study on chromonics [72] (see also
[23]).

24This estimate is supported by the now classical experimental
works [73,74] on cyano-biphenyls and a number of more recent
works [75–78] on other materials (see also [79–81] for further earlier
sources).
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FIG. 4. For given α > 1, the function Fα is defined in configuration space S = {(φ,μ) : 0 � φ � 3π

4 , μ > 0} by reducing the functional
F [μ; R] in (25) to the special families of shapes in (30). Reduced elastic constants are k3 = 1, k24 = 1

2 . (a) Graph of Fα against S for
α = 10. The (red) dot designates the minimum. (b) Contour plot of Fα , for α = 10. The minimum is attained at the point where φ

.= 0.37
and μ

.= 1.24, marked by a (red) circle. (c) Cross section of the equilibrium shape corresponding through (30) to the minimizer of Fα

marked in Fig. 4(b). Since π

16 < φ < 6π

16 , according to our conventional taxonomy in Sec. II C, it is a bumped spheroid (and looks indeed like
one).

0.1–1 μm, which expresses in physical terms the appropriate
range of validity of the theory presented here.25

B. Minimizing trajectories

Finding the minimum of the functional F [μ; R] in (25) is
not a problem that can be solved analytically, even in the class
of shapes (and retracted meridian fields) described in (30) with
a and b expressed as in (34) in terms of the configuration
parameters (φ,μ).

For a given choice of the elastic parameters (k3, k24), we
evaluated numerically F [μ; R] for increasing values of α > 1
as a reduced function Fα (φ,μ) on the configuration space S.
Figure 4 illustrates the generic situation that we encountered.

25It is perhaps worth noting that such a range changes dramatically
when the isotropic fluid surrounding the drop is not its melt. For
example, the early measurements of Naggiar [82] and Schwartz
and Moseley [83] gave γ ∼ 10−2 N m−1 for the surface tension of
nematic liquid crystals in contact with its vapor. Correspondingly, an
estimate for the admissible Re would then give Re � 10−11 m, which
makes our theory applicable to drops of virtually all sizes in that
environment.

As shown in Fig. 4(a), Fα has a convex graph and attains a
single minimum in S, which is easily identified through the
level sets of Fα depicted in Fig. 4(b); the corresponding equi-
librium shape, a bumped spheroid according to the taxonomy
of Sec. II C, is illustrated in Fig. 4(c).

We performed a systematic search for the minimizer of Fα

upon increasing α > 1, for given elastic parameters (k3, k24).
Each search delivered a path of minimizers in the configu-
ration space S, parametrized in α. These paths are shown
in Fig. 5 for k3 = 1 and a sequence of values of k24 in the
admissible interval [0,1]. They all have a number of features
in common.

First, they reside on the μ axis (for φ = 0) until α reaches a
critical value, αc, upon crossing which they leave the bound-
ary of S and dive into its interior. Clearly, for 1 < α < αc,
the equilibrium shape of the drop is a genuine tactoid (with
sharply pointed tips). For α > αc, the minimizing trajectory
traverses the domain of generic tactoids, until φ reaches the
conventional barrier φ = π

6 . Such a crossing takes place for
α = α′

c; there, the equilibrium drop undergoes a (smooth)
shape transition, becoming a bumped spheroid. The whole ter-
ritory of these latter shapes is then traversed by the minimizing
trajectories, which enter the realm of spheroids for α = α′′

c
(where φ = 6π

11 ). Upon further increasing α, all trajectories
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FIG. 5. Minimizing trajectories (solid lines) in the configuration space S for k3 = 1 and different values of k24. All trajectories are
parametrized in α and start from the configuration representing the minimum of Fα for α = 1 (marked by a cross); they all converge to
the point representing in S the sphere of radius Re (marked by a circle). The dashed lines (at φ = π

6 and 6π

16 ) represent the barriers introduced
in Sec. II C to delimit different families of shapes.

converge towards the point that in S represents the sphere of
radius Re (marked by a circle in Fig. 5).

Qualitatively, this scenario remains the same for different
values of k24. As shown by the panels in Fig. 5, the only
appreciable difference is that the minimizing trajectory resides
on the line of genuine tactoids for a longer stretch when k24

is smaller. This feature has two consequences. First, for a
given (sufficiently small) value of α, genuine tactoids are more
slender for smaller k24. Second, the critical value αc, which
marks the extinction of genuine tactoids, decreases as k24 in-
creases. Actually, as shown in Fig. 6, this is a property that αc

shares with both α′
c and α′′

c . This means that as k24 increases

both tactoids and bumped spheroids persist only in smaller
and smaller intervals for α, giving way to larger colonies of
spheroids. In brief, we may say that k24 is an antidote to
slender shapes. In particular, the tactoidal population prospers
only as k24 decreases.

Figure 7 shows how this characteristic is quantitatively
affected by changes in k3. While the graph of α′

c against k24

is essentially the same for k3 = 1
2 , 1, 2, it moves upward for

k3 = 10; correspondingly, all four graphs of α′′
c are orderly

one above the other, keeping their features unchanged. A
quantitative inspection shows that the data reported in Fig. 7
for α′

c and α′′
c can be given the following approximate linear
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FIG. 6. Critical values of α plotted against k24 for k3 = 1. The
lowest (dashed) line, αc, designates the extinction of genuine (sharply
pointed) tactoids; the middle line, α′

c, marks the extinction of tactoids
(pointed or not) and the onset of bumped spheroids; the upper line,
α′′

c , marks the extinction of bumped spheroids and the onset of
spheroids.

representation:

α′
c ≈ 16.2 + 0.3k3 − (14.9 − 0.1k3)k24, (43a)

α′′
c ≈ 31.6 + 3.7k3 − (21.3 − 0.02k3)k24, (43b)

which show how k3 has but a moderate role in determining
the distribution of equilibrium droplet shapes. Thus, α and k24

remain the only effective (dimensionless) parameters of our
analysis.

In Sec. IV, we shall detail such a shape distribution, which
is one distinctive feature of this paper. Other works have
illuminated the multiplicity of shapes exhibited by bipolar

FIG. 7. The critical values α′
c and α′′

c plotted against k24 as in
Fig. 6, but for four different values of k3, namely, k3 = 1

2 , 1, 2, 10.
While the first three graphs of α′

c virtually coalesce on one another
and are not discernible at this scale, the corresponding graphs of α′′

c

are one above the other, ordered like the values of k3.

FIG. 8. Apollonian family of shapes. The boundary ∂B is ob-
tained by rotating a circular segment about the z axis, so that the
profile R(z) is described by (44). The integral lines of the director
field n are a family of circles represented by Rt (z) in (45). For
t → ∞, Rt tends to the z axis, whereas it represents the droplet’s
boundary for t = 0.

nematic droplets. To close this section, we show how these
works relate to ours.

C. Comparison with previous work

The variety of stable equilibrium shapes offered by nematic
bipolar droplets has been the object of a remarkable series of
theoretical papers, inspired by the seminal work of Williams
[37]. In particular, the papers [38–42] have followed in the
same footsteps, sharing the original geometrical approach,
which, as we shall see here, is unrelated to ours.

The class of admissible droplet shapes suggested by
Williams includes spindles and spheres, all obtained by ro-
tating about the z axis a circular segment hinged at the points
z = ±R0 (the poles of the drop; see Fig. 8). On a meridian
cross section of the drop, the integral lines of the family
of admissible director fields are Apollonian circles passing
through both poles with radius increasing on approaching
the z axis (see, for example, Sec. 2 of [84]). Thus, in the
parametrization introduced in Sec. II A, the boundary ∂B of
the drop is described by the function

R(z) =
√

R2
0 + x2

0 − z2 − x0, z ∈ [−R0, R0], (44)

where the point (−x0, 0) in the (er, ez ) plane is the center
of the bounding Apollonian circle (for x0 = 0, the drop is
spherical). Accordingly, the integral lines of the director field
n are circles in a family parametrized by t ∈ [0,+∞):

Rt (z) =
√

R2
0 + (x0 + t )2 − z2 − (x0 + t ), (45)

where the point (−(x0 + t ), 0) in the (er, ez ) plane is the
center of a circle passing through the poles. The curves of
this family at t = 0 and +∞ correspond to the boundary of
the drop and to its symmetry axis, respectively.

It is now a simple exercise to show that this family of
shapes does not fall within that introduced in Sec. II A, as
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there is no function g(t ) such that Rt (z) in (45) could be
expressed as Rt (z) = g(t )R(z), with R(z) as in (44). To afford
a fair comparison between our approach and this one, we
need to compare the minima of the total free energy F [B]
computed with the two methods.

The total free energy in (25) associated with a droplet
described by R in (44) has been computed in [42], [see in
particular their Eq. (12)], which we now transliterate in our
language. Instead of μ, defined in (24), Prinsen and van
der Schoot [42] used the aspect ratio ε := R(0)/R0 � 1 to
parametrize tactoids in their class of shapes. By letting the
droplet’s volume V0 be expressed as in (A.14) of [42] (where,
incidentally, R is to be identified with our Re), we easily arrive
at the relation

μ(ε) := 2

3

√(
1+ε2

ε

)2(
1 − 1−ε2

ε
arctan ε

) − 4
, (46)

which shows how μ and ε are in a one-to-one correspondence,
with μ(1) = 1 and μ(ε) → ∞ as ε → 0. In [42], the dimen-
sionless strength of surface energy is defined as

υ := V0

(
γω

K̃11

)3

, (47)

where K̃11 := K11 − K24 is the reduced splay constant26 and
we replaced their τ with our γ (with the same physical mean-
ing). Making use of (47), (46), and (27) in (12) of [42], having
noted that there F̃ = F/γV 2/3

0 , we arrive at the following
form for the reduced total free energy in terms of ε:

Ft (ε) := F [B]

2πK11Re

= μ(ε)

{(
2(1 − k24) + 3

2
k3 + α

1 + ε2

ε
μ(ε)

)
×

(
1 − 1 − ε2

ε
arctan ε

)
− 2k3 arctan2 ε

}
. (48)

It is not difficult to show that Ft is a function that diverges
like 1/ε1/3 as ε → 0 and has a single minimum for 0 < ε < 1,
which approaches ε = 1 as α → ∞. Moreover,

Ft (1) = 2 +
(

3

2
− π2

8

)
k3 + 2(α − k24), (49)

which agrees with formula (2.18) of [37] for the reduced free
energy of a bipolar sphere. Thus, in this theory, the minimum
of the free energy is attained on a bipolar tactoid.27 Differ-
ently said, there is no critical value of α above which the
equilibrium shape of the droplet becomes smooth, although
remaining elongated, which is a feature of the theory pre-
sented in this paper.

To ascertain whether the smoothening transition that we
predict is real or not, we need to compare the minimum

26As already recalled, in this theory, K24 enters only through a
renormalization of K11.

27Leaving aside the possibility that it undergoes the twisting insta-
bility first predicted in [37] for sufficiently large values of K11.

FIG. 9. Plots of the relative energy difference �F against α,
according to (50), for k24 = 0.7 and k3 = 1

2 , 1, 2. The dashed straight
line marks the critical value αc

.= 3.02 (virtually identical in the three
cases) where our theory predicts that the minimizing droplet’s shape
ceases to be a genuine tactoid.

of Ft (ε) for ε in [0,1] and the minimum of Fα (φ,μ) in S.
Unfortunately, we do not have a general closed-form formula
for Fα (φ,μ) to be compared with (48), and so generically the
comparison between minima is to be performed numerically.

There are two instances worth mentioning for which we
can provide closed-form expressions for Fα (φ,μ). These are
for φ = 0 and any μ, corresponding to genuine tactoids, and
for φ = π

2 and μ = 1, corresponding to the sphere of radius
Re. We record both formulas in Appendix C, for the reader’s
convenience; the energy of the sphere in (C2) is the one that
especially interests us here. Contrasting it with (49) shows that
the asymptotic behavior as α → ∞ of Ft (1) and Fα ( π

2 , 1) is
the same. Now, since the minimizing shapes for both Ft and
Fα converge to the sphere as α → ∞, we conclude that for
sufficiently large α we cannot distinguish between the two
theories. But we can for finite values of α.

We computed the relative energy difference �F defined as

�F (α) := min(φ,μ) Fα (φ,μ) − minε Ft (ε)

minε Ft (ε)
. (50)

The graph of �F against α for k24 = 0.7 and three values of k3

is plotted in Fig. 9; it shows that �F , although tiny in absolute
value, is always negative. This property has been confirmed
for similar numerical computations performed for k24 = 0.2
and 0.4. We have thus good reasons to hold that smooth
shapes, be they generic tactoids or bumped spheroids, are
energetically more favorable than genuine tactoids. We shall
substantiate this claim more quantitatively in the following
section.

IV. SHAPE POPULATIONS

Typical methods for generating liquid crystal droplets pro-
duce a wide range of droplet sizes. For simplicity, we assume
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FIG. 10. Relative frequencies (in percentage) for the occurrence
of tactoids (red triangles), bumped spheroids (blue circles), and
spheroids (green squares) in the population of equilibrium shapes.
The three functions f are plotted against k24; they have been com-
puted for k3 = 1 under the assumption that the droplet size is
uniformly distributed in a range of volumes corresponding to 1 <

α < 100.

that droplets are uniformly distributed in size within a certain
volume interval (V0,V0 + δV ). Correspondingly, in view of
(27), for given isotropic interfacial tension and elastic con-
stants, α ranges in an interval (α0, α0 + δα).

We have already seen in Figs. 6 and 7 how the width of
the strips in the (k24, α) plane inhabited by different droplets’
shapes depends on k24. Assuming uniform distribution of
droplets in a probe volume interval (parametrized in α), we
convert this information into a frequency of occurrence in the

whole equilibrium shape population of the three distinctive
shapes that we have identified as most easily recognizable,
namely, tactoids (either genuine or not), bumped spheroids,
and spheroids. Formally, for given k24, the frequency of
occurrence f of a shape is defined as the ratio of the
span of values of α where the selected shape occurs at
equilibrium over the whole explored range δα. These fre-
quencies depend nontrivially on k24; they suggest themselves
as possible statistical measures for k24, based on shape
recurrence.

Figure 10 shows the graphs of f for the three shape pop-
ulations as functions of k24, for 0 < α < 100. It is clear
that the population of tactoids is depleted as k24 grows; the
same trend (but with higher values) is exhibited by the pop-
ulation of bumped spheroids; the majority always lies with
spheroids when α ranges in an interval large enough to allow
them to arise. Unlike tactoids and bumped spheroids (the
elongated kin), spheroids are increased in number as k24 in-
creases. Thus, k24 depresses slim shapes, while fostering fat
ones.

In Fig. 11, we illustrate a finer analysis of the frequencies
of shapes, performed on a sequence of elementary volume
intervals of equal amplitude, δα = 3.5. Such a splitting of the
whole range of droplet volumes in smaller intervals around
increasing values reveals different scenarios in shape popu-
lations. When the average volume is small, tactoids dominate
over bumped spheroids, for a wide range in k24, the equal pop-
ulation point being close to k24 = 1. As the average volume
increases, the equal population point decreases, until bumped
spheroids displace tactoids completely. As the average vol-
ume further increases, bumped spheroids are challenged by
spheroids, which first reach an equal population point with
bumped spheroids close to k24 = 1 and then eventually domi-
nate the scene completely, as the volume is further increased.

The simple moral of the whole story is that in bipolar
nematic droplets the population of tactoids (and elongated
shapes, in general) is favored by small saddle-splay elastic

FIG. 11. Relative frequencies (in percentage) for the occurrence of tactoids (red triangles), bumped spheroids (blue circles), and spheroids
(green squares) as functions of k24, for k3 = 1 and increasing values of the average volume in the specified range, under the assumption of
uniform distribution in droplet size.
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FIG. 12. Relative frequencies (in percentage) for the occurrence
of tactoids (red triangles), bumped spheroids (blue circles), and
spheroids (green squares) as functions of the (reduced) volume α,
for k3 = 1 and under the assumption of uniform distribution in the
(dimensionless) saddle-splay constant k24.

constants (compared to the splay constant), provided that the
droplet (dimensionless) volume is not too large.

To isolate the role played by the droplet’s volume in the
distribution of equilibrium shapes, in Fig. 12 we plot the
relative frequency of the three shapes as functions of α. These
graphs are extracted from Fig. 6, as were those in Fig. 10,
but assuming uniformity in the distribution of k24. Again, we
may say that small, intermediate, and large volumes promote
tactoids, bumped spheroids, and spheroids, respectively. But,
perhaps, the most interesting feature shown in Fig. 12 is the
coexistence of all shapes for moderate volumes.

V. CONCLUSIONS

This paper took a census of all possible shapes that a bipo-
lar droplet of nematic liquid crystal can have upon varying its
volume and the elastic constants of the material that consti-
tutes it. In the adopted class of shapes, we found that either
tactoids (genuine or not), bumped spheroids, or spheroids can
be optimal. The prevalence in population of one shape is
determined by the volume V0 and the saddle-splay constant
K24 (appropriately scaled). One may say that tactoids prevail
when both volume and saddle-splay constant are small (with
the bend constant K33 acting as a moderate amplifying factor).
But there is more to it: for a given average volume V0, the
prevalence in shape population changes upon increasing K24,
shifting first from tactoids to bumped spheroids, and then from
the latter to spheroids, as V0 is increased. It may be a stretch
to think that our “demographic” analysis has the potential to
indicate the ballpark in which to find the ratio K24/K11 of a
specific material, provided we can produce droplets in a range
of wide enough volumes.

In comparing our work with others, we saw that the optimal
shapes we find in our class may have slightly less energy than
shapes found in other classes, but the qualitative difference
in shapes was substantial even if the gain in energy was
marginal. This adds to the difficulty of the problem tackled
here, indicating that the energy minimum is rather shallow.

Williams [37] studied the stability of a bipolar spherical
droplet against twisting distortions. This study was sharpened
and extended to tactoids by Prinsen and van der Schoot [42].
As expected, large values of the splay constant K11 (relative
to K22 and K33) promote a twisting instability in the direc-
tor field, which starts exhibiting a chiral pattern around the
symmetry axis. It would be desirable to find the critical value
of K11 below which the bipolar droplets studied in this paper
are stable, as our conclusions are valid only in this regime.
In light of the role played by K24 in determining the optimal
bipolar droplet, we expect that their range of stability would
also be affected. This is likely to shed light on the chiral
symmetry breaking exhibited by tactoids in some chromonic
liquid crystals [22,24,25].

APPENDIX A: RETRACTED MERIDIAN FIELD

Our aim here is to justify the expression (21) for the gradi-
ent of the the retracted meridian field n in (13).

First, we remark that differentiating n along the smooth
curve ξ �→ (t (ξ ), ϑ (ξ ), z(ξ )) introduced in Sec. II we easily
obtain from (13) that

ṅ = g′R′ṫ + gR′′ż
1 + (gR′)2

n⊥ + gR′ϑ̇√
1 + (gR′)2

eϑ , (A1)

where a superimposed dot denotes differentiation with respect
to ξ and use has also been made of (14).

Now, ∇n must be such that

ṅ = (∇n) ṗ, (A2)

where ṗ is as in (16) for arbitrary (ṫ, ϑ̇, ż). Since n is a unit
vector field and we wish to express its gradient ∇n in the
orthonormal frame (n, n⊥, eϑ ), we can write

∇n = n⊥ ⊗ a + eϑ ⊗ b, (A3)

where a = a1n + a2n⊥ + a3eϑ and b = b1n + b2n⊥ + b3eϑ ,
with ai and bi scalar components to be determined. Thus, (A2)
also reads as

ṅ = (a · ṗ)n⊥ + (b · ṗ)eϑ . (A4)

Making use of (16) and both (13) and (14), we readily see that

x · ṗ = g′R(gR′x1 + x2)ṫ√
1 + (gR′)2

+ gRx3ϑ̇ +
√

1 + (gR′)2x1ż, (A5)

for any vector x = x1n + x2n⊥ + x3eϑ . Specializing (A5) for
x = a and b and inserting both resulting equations in (A4)
alongside (A1), we obtain an identity for arbitrary (ṫ, ϑ̇, ż)
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FIG. 13. Graphs of β against z according to (B1) for several
values of 0 � φ � π

2 . The concave (red) curve corresponds to φ = 0,
whereas the convex (red) curve corresponds to φ = π

2 . All other
(blue) curves in the pencil interpolating the red curves have an
inflection point (besides that at z = 0), which defines τ .

only if the components of a and b in the frame (n, n⊥, eϑ ) are
given by

a1 = gR′′

(1 + (gR′)2)3/2
, a2 = R′

R

1√
1 + (gR′)2

− g2R′R′′

(1 + (gR′)2)3/2
, a3 = 0, (A6a)

b1 = b2 = 0, b3 = R′

R

1√
1 + (gR′)2

, (A6b)

which with the aid of (A3) deliver (21) in the main text.

APPENDIX B: TACTOIDAL MEASURE

In this Appendix, we introduce a tactoidal measure to jus-
tify the conventional choices made in Sec. II C to classify the
different shapes that inhabit the special family represented by
(30).

Consider the angle β that the tangent to the drop’s profile
makes with the symmetry axis (see Fig. 1). If for μ = 1 we
draw the graph of β as a function of z, we observe a drastic
difference in the two cases φ = 0 and π

2 , corresponding to
a shape B that is a genuine tactoid and the round sphere,
respectively. In the former case, the graph is concave, whereas
it is convex in the latter. There is indeed more to it: as also
shown in Fig. 13, as soon as φ > 0, the graph of β exhibits an
inflection point at z = τ > 0, which slides gradually towards
z = 0 (corresponding to the equator of the drop) as φ increases
towards π

2 .28

28It is perhaps in order to remark that z = 0 is an inflection point
for β(z), for all values of φ [see also (B1)].

FIG. 14. The graph of the tactoidal measure τ against φ. The
circle marks the point at φ

.= 1.46 rad, where τ bifurcates off the
trivial inflection point for β at z = 0. The two dashed vertical (red)
lines delimit the nearly linear behavior of τ between two “knees”
(one upward and the other downward); they are placed approximately
at φ = π

16 and 6π

16 , which are precisely the barriers conventionally
introduced in configuration space to delimit the range of bumped
spheroids; see Fig. 2.

It is precisely τ that we take as a tactoidal measure. The
closer is τ to unity, the more likely is B to look like a tactoid
(even if its outer unit normal ν is continuous throughout ∂B).
Formally,

β = arctan

(
2 cos φ√

h(φ)
z + sin φ√

h(φ)

z√
1 − z2

)
(B1)

and τ is defined as the positive root of the equation β ′′(z) = 0.
Figure 14 illustrates how τ depends on φ. A simple asymp-

totic analysis shows that 1 − τ = O(φ2/5) as φ → 0 and that
a bifurcation of τ occurs out of the trivial inflection point of
β at z = 0 for φ

.= 1.46 rad. It is remarkable how the graph
of τ in Fig. 14 exhibits a nearly linear behavior between two
“knees,” the first upward and the second downward, which
are approximately placed at φ = π

16 and 6π
16 . In Sec. II C, we

interpreted the former as the upper limit for a tactoidal shape
and the latter as the upper limit for what we called a bumped
spheroid.

We fully appreciate that a good deal of conventionality
remains attached to this choice of ours and to the taxonomy
of shapes that ensued in Sec. II C. Perhaps, the best way to
convince the reader that it has some merit is to see it at work
in Fig. 3. In any event, here we have recounted the (possibly
meandering) path that we took to identify the barriers that
delimit the range of bumped spheroids in the configuration
space shown in Fig. 2.
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APPENDIX C: ENERGIES OF GENUINE TACTOIDS AND A SPHERE

Here we record the closed-form formulas that can be obtained by performing the integrals in (25) for special values of the
parameters (φ,μ) featuring in (30) via (34).

For genuine tactoids, corresponding to φ = 0 and any μ,

Fα (0, μ) =
√

5μ arctan

√
5

μ3

[
1

5

(
47

32
− 3

32
k3 − k24

)
μ2 +

(
1

16
(13 − k3) − k24

)
1

μ
+ 5

32

(
1

3
+ k3

)
1

μ4

]
+

(
1

3
ln

(
1 + 5

μ3

)
+ 1

32
(3k3 − 47) + k24

)
μ + 5

32

(
1

3
+ k3

)
1

μ2

+ 1

2
α

[
ln

(√
5

μ3
+

√
1 + 5

μ3

)(
1 + 1

20
μ3

)
μ2 +

√
5

2

√
μ3 + 5

(
1

μ
− μ2

10

)]
. (C1)

In complete analogy to formula (48) for Ft in the main text, this function has a unique minimum for μ in [0,∞); it diverges to
+∞ like 1/μ7/2 as μ → 0, and like

√
μ as μ → ∞.

For a sphere of radius Re, corresponding to φ = π
2 and μ = 1,

Fα

(
π

2
, 1

)
= 1

3
ln 2 + 23

12
+ 1

4
k3 + 2(α − k24). (C2)
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