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Phase-field model for elastocapillary flows of liquid crystals
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We propose a phase-field model to study interfacial flows of nematic liquid crystals that couple the capillary
forces on the interface with the elastic stresses in the nematic phase. The theoretical model has two key
ingredients: A tensor order parameter that provides a consistent description of the molecular and distortional
elasticity, and a phase-field formalism that accurately represents the interfacial tension and the nematic anchoring
stress by approximating a sharp-interface limit. Using this model, we carry out finite-element simulations of
drop retraction in a surrounding fluid, with either component being nematic. The results are summarized by
eight representative steady-state solutions in planar and axisymmetric geometries, each featuring a distinct
configuration for the drop and the defects. The dynamics is dominated by the competition between the interfacial
tension and the distortional elasticity in the nematic phase, mediated by the anchoring condition on the drop
surface. As consequences of this competition, the steady-state drop deformation and the clearance between the
defects and the drop surface both depend linearly on the elastocapillary number.
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I. INTRODUCTION

We consider two-phase flows of a nematic liquid crystal
(LC) and an immiscible isotropic fluid under coupled elastic
stresses of the LC and capillary forces of the interface. Under-
standing such flows is important for a number of fundamental
and applied scenarios, such as drop dynamics with a nematic
drop or host [e.g., 1–5], self-assembly of soft colloids in a
nematic phase [e.g., 6,7], elastocapillary interaction of parti-
cles on LC interfaces [e.g., 8–10], and dynamics of biological
matter and cells [e.g., 11–13]. The presence of an interface
leads to the interplay among surface tension, the anchoring of
LC molecules, and the bulk elasticity, and gives rise to novel
dynamics. For instance, Rey developed a general continuum
theory for nematic-isotropic interfaces [14–17], and predicted
a Marangoni flow along the surface gradient of the anchoring
energy as well as a normal force on the interface from LC
molecular alignment deviating from easy directions.

To model the behavior of elastocapillary phenomena in-
volving a nematic LC, there have been mainly three types
of approaches. First, many existing studies prescribe various
strong simplifications, such as a fixed interfacial shape [18],
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a class of candidate shapes [19] or the absence of defects
in the bulk of the LC [20]. It is clear, however, that these
assumptions rely on decoupling elasticity and capillarity and
apply only in limiting situations. Second, some researchers
adopt a sharp-interface description of the moving front, and
couple the bulk flow equations with the constitutive relations
characterizing the nematic-isotropic interface. Care et al. [21]
proposed a lattice Boltzmann method (LBM) based on a
continuum theory of the interface similar to that of Rey’s,
and applied it to study the shape of a drop submerged in a
nematic LC [22,23]. However, because of the complexity of
the formulation needed for a sharp nematic-isotropic interface
coupled with dynamic flow, these models are difficult to derive
and apply in time-dependent phenomena. In particular, the
interfacial stress in [21] lacks a viscous component, thereby
only allowing stationary cases to be considered.

The third type of approach uses a diffuse-interface de-
scription based on phase-field (PF) models, the energetic
formulations of which constitute a natural advantage in mod-
eling complex fluids such as the LC whose relaxation is driven
by the minimization of a free energy. The diffuse interface
makes it straightforward to incorporate interfacial dynamics
such that there is no need for sophisticated interfacial equa-
tions. Yue et al. [24] proposed a PF method coupled with
a regularized Leslie-Ericksen (LE) theory. This model has
been used to examine the drop retraction and deformation
with either the drop or host being nematic [2,3], the dynamics
of a Newtonian drop rising in a nematic LC [25], and the
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self-assembly of drops in a nematic phase [26]. However,
the regularization scheme for topological defects employed in
those studies does not admit defects of half-integer winding
numbers in the bulk of LC [27]. As consequences, the ring
defects were predicted to be always attached on the interface,
and drop interaction was mediated by defects with integer
winding numbers in 2D, which were known to be energeti-
cally unfavorable. Metselaar et al. [28] formulated a PF model
to probe the shape of tactoids in a lyotropic LC, and recently
generalized the model to investigate the dynamics of micro-
tubules crosslinked and aligned by active molecular motors
residing in the mixing region of two fluids—the so-called
“active nematic shell” [12]. Nevertheless, the details of the
surface tension model in [28] are not explained and it is
unclear how the model approaches a sharp-interface limit and
represents the interfacial forces.

Generally, to account for fully coupled interfacial flows of
LC, one needs to overcome two challenges: (i) to describe
the LC microstructure with potential topological defects ac-
curately, and (ii) to describe the moving interface and related
interfacial boundary conditions accurately. From the above
survey, existing models typically have employed components
which make it challenging to satisfy one of the two require-
ments. Hence, it is the objective of the present paper to
construct a model able to meet both requirements simultane-
ously.

First, to describe the nematic order and its hydrodynamics,
we use a tensor order parameter similar to [21,28] that stays
smooth regardless of topological defects and keeps the elastic
energy density bounded. Thus, artificial regularization is no
longer needed. Second, to represent the moving interface, we
choose the PF method used in [2,3,24–26,29]. This model
approximates a sharp-interface limit and can thus recover
macroscopic surface tension accurately. In the present context,
this property also makes it possible to capture the nematic
anchoring stress. Our model is numerically solved with a finite
element method, making it easier to accommodate complex
geometries compared with earlier LBM-based methods. The
model is presented in Sec. II. To demonstrate the capability
of our method, we study the dynamics of drop retraction
involving a nematic phase in Sec. III. We provide a compre-
hensive map of drop and defect configurations with various
combinations of materials, anchoring conditions, and spatial
dimensions. Our results show that the competition between
the bulk elastic distortion of the LC and surface tension dic-
tates the process and consequence of drop retraction.

II. THEORETICAL MODEL AND NUMERICAL METHOD

A. Nematic order and free energies

We use the tensor order parameter Q to describe the
nematic order [30,31]. It is defined from the second-order
moment of the distribution function for individual nematic
molecule orientations u: Q = 〈uu − I/3〉, where I is the unit
tensor and the operator 〈·〉 denotes average over an ensemble
of molecules. Following literature [e.g., 32,33], we define
a scalar order parameter: q = √

3/2‖Q‖F = ( 3
2 Q : Qᵀ)

1/2
,

where ‖ · ‖F is the Frobenius norm. When the nematic phase
is in a uniaxial state, we recover, as expected, the relationship

Q = q(nn − I/3), where n is the nematic director. Note that
some researchers adopt a different definition by requiring q to
be proportional to the largest-in-magnitude eigenvalue of Q
[e.g., 34–36].

We introduce a phase variable φ to mark the different
fluids. φ = −1 denotes the nematic LC and φ = 1 denotes
the isotropic phase. These two fluids mix in the thin diffuse
interfacial region in which φ and other variables transition
smoothly. The total free energy of the fluids includes the
mixing energy of the interface, the bulk elastic energy of the
nematic phase, and the anchoring energy on the interface.
The mixing energy and the bulk elastic energy are standard
from the PF model [e.g., 24] and the nematic order theory
[e.g., 37], respectively. The mixing energy is described by the
Landau-Ginzburg density

fm = λ

2
|∇φ|2 + λ

4ε2
(φ2 − 1)2, (1)

where λ is the mixing energy strength with the dimension
of force, and ε is the constant capillary width governing the
thickness of the diffuse interface. The bulk elastic energy
in the nematic phase can be described phenomenologically
as [37]

fb = fLdG + fe

= A

2
Qi jQi j + B

3
Qi jQjkQki + C

4
(Qi jQi j )

2

+ L1

2
(∂iQ jk )(∂iQ jk ). (2)

Here A, B, C are material property coefficients (A < 0, B <

0), and L1 is the bulk elastic constant. The first three
terms constitute the celebrated Landau–de-Gennes (LdG) free
energy expansion fLdG for local molecular relaxation (microe-
lasticity). Since we are only concerned with thermotropic LCs
at a fixed temperature in this paper, A, B, C are constants.
Minimizing the total LdG energy FLdG = ∫

fLdG dV under
the uniaxial assumption gives the equilibrium scalar order
parameter qe . We consider a nematic phase far away from
phase transitions with strong molecular interaction. In this
case,

qe = 3

4

⎛
⎝− B

3C
+

√( B

3C

)2

− 8A

3C

⎞
⎠. (3)

The last term in Eq. (2), fe = (L1/2)(∂iQ jk )(∂iQ jk ), de-
scribes the long-range orientational distortions (distortional
elasticity). For simplicity, we have applied the common one-
elastic-constant approximation [31] and further omitted all
mixed derivatives of the Q components.

The anchoring energy enforces a finite-strength anchoring
condition on the interface by penalizing LC molecules de-
viating from the easy direction. We propose the following
diffuse-interface form of the Rapini-Papoular anchoring en-
ergy density [38,39]:

fa = W

2
|∇φ|4

∥∥∥∥Q − qe

(
ee − 1

3
I
)∥∥∥∥

2

F

, (4)

where W is the constant anchoring strength, and e is a unit
vector along the easy direction on the interface. More will be
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discussed on the value of W in Sec. II C. The factor |∇φ|4
avoids singularities in the expression of ee [see Eqs. (5) and
(6)]. Note that one may consider alternative forms of anchor-
ing energy, such as a LdG style energy expansion truncated at
low orders of |∇φ|, which warrant future investigations.

We consider two common choices for the easy direction:
(1) Homeotropic anchoring. The easy direction is the same

as the unit normal vector m = ∇φ/|∇φ| of the interface.
Hence

f h
a = W

2

∥∥∥∥|∇φ|2Q − qe

(
∇φ∇φ − 1

3
|∇φ|2I

)∥∥∥∥
2

F

. (5)

(2) Planar anchoring in 2D planar and axisymmetric ge-
ometries. The easy direction is along a tangential direction
to the interface. In 2D planar geometry, e can be written as
e = (m2,−m1, 0), where m1 and m2 are components of m. It
follows that

f p
a = W

2

∥∥∥∥|∇φ|2Q + qe

(
∇φ∇φ − 1

3
|∇φ|2J

)∥∥∥∥
2

F

, (6)

where the tensor J can be written as

J =
⎡
⎣2 0 0

0 2 0
0 0 −1

⎤
⎦, (7)

which is rotationally symmetric in the 1-2 coordinate plane.
Therefore, as expected, the above expression of J does not
rely on a specific coordinate frame. In the 2D axisymmetric
geometry, we only consider the case where e stays in the
r-z plane in a cylindrical frame, i.e., a “monostable” planar
anchoring [40]. Then, one needs to swap the second and third
components in the diagonal of Eq. (7).

Hence, the total free energy of the two-phase mixture in a
domain � is

F =
∫

�

f (φ, Q,∇φ,∇Q) dV

=
∫

�

(
fm + 1 − φ

2
fb + fa

)
dV. (8)

The factor (1 − φ)/2 gives the concentration of the nematic
phase.

B. Governing equations

The governing equations include an evolution equation for
the phase field φ (Cahn-Hilliard), an evolution equation for
the tensor Q, and the equations of motion for the fluid flow.

The Cahn-Hilliard equation. The classical Cahn-Hilliard
(CH) equation describes the evolution of φ [24]:

∂φ

∂t
+ v · ∇φ = γ∇2μ, (9)

where v is the velocity vector, and the constant γ is the
mobility parameter [unit: m2/(Pa s)]. The chemical potential
μ is

μ = δFm

δφ
= λ

(
−∇2φ + φ(φ2 − 1)

ε2

)
, (10)

where Fm = ∫
�

fm dV is the total mixing energy. Thus μ only
includes the relaxation of the mixing energy, without the con-

tribution from the bulk elastic and anchoring energies. The
same simplification has been adopted in previous works [e.g.,
24,29]. It allows for convenient recovery of interfacial forces,
which will be elaborated in Sec. II C.

The evolution equation for nematic order. There have been
a number of tensor-based theories for nematic hydrodynamics
[e.g., 41–45], including kinetic theories that do not start from
the same elastic energy fb as in this paper [e.g., 46]. Each
gives a slightly different evolution equation for Q. Yet, all of
them predict qualitatively similar results [e.g., 33,37,47,48].
So far, experimental evidence has been inadequate to dis-
criminate among these models. Therefore, we choose the
Beris-Edwards (BE) theory [42,43,49] based on its wide us-
age. In our PF formulation, the evolution equation for Q has
the same general expression as in the BE theory in the bulk of
LC [49],

∂Q
∂t

+ v · ∇Q = S + 	H, (11)

where 	 is the collective rotational diffusion coefficient and is
assumed to be a constant in this paper. The molecular field H
is still given by H = −δF/δQ + tr(δF/δQ)I/3. Considering
Eq. (8), we write H as

H = 1 − φ

2
M − G + ∇ ·

(
1 − φ

2
L1∇Q

)
, (12)

where the first and third terms are the same as in the BE
theory except for the LC concentration as an additional co-
efficient. M is a polynomial in Q that stems from the LdG
energy: M(Q) = −AQ − BQ · Q − (B/3)(Q : Qᵀ)I − C(Q :
Qᵀ)Q. The tensor G is due to the anchoring energy. In cases
of homeotropic anchoring [Eq. (5)] and planar anchoring
[Eq. (6)], respectively,

Gh = W |∇φ|2[|∇φ|2Q − qe
(∇φ∇φ − 1

3 |∇φ|2I
)]

, (13)

Gp = W |∇φ|2[|∇φ|2Q + qe
(∇φ∇φ − 1

3 |∇φ|2J
)]

. (14)

The PF version of the corotation tensor S is defined as

S(∇v, Q) =
(

(1 − φ)ξ

2
D + �

)
·
(

Q + 1

3
I
)

+
(

Q + 1

3
I
)

·
(

(1 − φ)ξ

2
D − �

)

− (1 − φ)ξ [Q : (∇v)ᵀ]

(
Q + 1

3
I
)

, (15)

where D = [(∇v)ᵀ + ∇v]/2 is the rate of deformation tensor,
and � = [(∇v)ᵀ − ∇v]/2 is the vorticity tensor. ξ is a mate-
rial parameter that determines, together with A, B,C, if the LC
material is a flow-aligning or tumbling nematic [31,49]. Note
that in arriving at Eq. (15) from the original S in the BE theory,
we have postulated the phenomenology of interpolating ξ

with the nematic concentration (1 − φ)/2. It ensures that this
equation vanishes in the isotropic phase when φ = 1. It avoids
the complexity of designing Poisson brackets, similar to what
was done in the original BE theory [44], with the addition of
the phase field. Provided that Q vanishes in the isotropic fluid
and the interface is thin, this phenomenology does not alter
the dynamics of Q in the nematic phase. The modified H and
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S in the PF formulation preserve the symmetry of the tensors
in the original BE theory, as expected.

The equations of motion for the fluids and the LC stress ten-
sor. The continuity and Navier-Stokes (NS) equations for an
incompressible fluid govern the velocity and pressure fields:

∇ · v = 0,
(16)

ρ
∂v
∂t

+ ρv · ∇v = ρg + ∇ · τ + μ∇φ.

Here ρ is the interpolated density of the two-fluid mixture:

ρ = 1 + φ

2
ρi + 1 − φ

2
ρn, (17)

where ρi and ρn are the densities of the isotropic and nematic
phases. g is the gravitational acceleration. The last term is a
body-force form of surface tension from the PF formulation
[29]. The stress tensor τ can be written in the following form:

τ = −pI + (1 + φ)ηiD + (1 − φ)ηnD + τn, (18)

where p is pressure, and the second term is the viscous stress
from the isotropic phase. The third term is a viscous stress of
the nematic phase with a constant viscosity ηn, independent
of the molecular configuration Q [42–44]. The last term is
the nematic stress tensor τn, which will be modified from the
BE theory to take into account the anchoring condition on the
moving interface. Instead of rederiving this stress tensor using
Poisson brackets, we take a simple but equivalent shortcut.
Following [31], we decompose the effect of anchoring into
two parts, each of which can be determined from a distinct
virtual operation. (i) From a virtual rotation and deformation
of the molecular distribution without motion of the fluid. This
part is already accounted for in the molecular field [Eq. (12)].
(ii) From a virtual strain of the fluid with the Q configura-
tion frozen in each fluid particle. This variational procedure
gives rise to an additional stress tensor associated with ∇φ,
termed the anchoring Ericksen stress τae. τae can be derived
by applying the virtual work principle to the total free energy
[Eq. (8)] [24]. For homeotropic [Eq. (5)] and planar [Eq. (6)]
anchoring, respectively, we have

(
τ h

ae

)
i j = − ∂ f h

a

∂ (∂iφ)
(∂ jφ) = −W

[
|∇φ|2Qkl − qe

(
(∂kφ)(∂lφ) − 1

3
|∇φ|2δkl

)]

×
[

2Qkl (∂iφ) − qe

(
δik (∂lφ) + (∂kφ)δli − 2

3
(∂iφ)δkl

)]
(∂ jφ), (19)

(τ p
ae)i j = − ∂ f p

a

∂ (∂iφ)
(∂ jφ) = −W

[
|∇φ|2Qkl + qe

(
(∂kφ)(∂lφ) − 1

3
|∇φ|2Jkl

)]

×
[

2Qkl (∂iφ) + qe

(
Jik (∂lφ) + (∂kφ)Jli − 2

3
(∂iφ)Jkl

)]
(∂ jφ). (20)

As expected, τae is not symmetric in general. Overall, the PF version of the nematic stress tensor is

(τn)i j = −1 − φ

2

[
ξHik

(
Qk j + 1

3
δk j

)
+ ξ

(
Qik + 1

3
δik

)
Hk j − 2ξ

(
Qi j + 1

3
δi j

)
(QklHkl ) + L1(∂iQkl )(∂ jQkl )

]
+ HikQk j − QikHk j + (τae)i j . (21)

Boundary conditions. For the evolution of the order pa-
rameter Q, there are four types of BCs. (i) On boundaries
	QN where the gradient of Q vanishes, the homogeneous
Neumann BC m · ∇Q|	QN

= 0 applies. (ii) On boundaries
	QD with infinite-strength anchoring, we use the Dirichlet
BC Q|	QD

= QD, where QD is the nematic configuration pre-
scribed by the anchoring condition. (iii) On boundaries 	QR

with finite-strength anchoring, we assume a Rapini-Papoular
anchoring energy and equilibrium on 	QR. This leads to the
Robin condition (W̃ (Q − Q̃) + L1m · ∇Q)|	QR

= 0, where W̃

and Q̃ are the anchoring strength (surface energy density)
and the easy nematic configuration on 	QR, respectively. (iv)
On a symmetry boundary 	S , one of the three symmetry
planes of the ellipsoid described by Q + I/3 needs to be
tangential to 	S . Assuming that 	S is parallel to a coordinate
plane, we can thus impose the mixed BC: m · ∇(Qii )|	S

=
0, Qi j |	S

= 0 (i �= j), where ii does not imply the Einstein
summation.

For the continuity and NS equations for the fluid flow, stan-
dard BCs can be used. For example, on boundaries that mimic

infinity or on 	S , we can use no penetration and free slip con-
ditions. The fourth-order CH equation needs two BCs. First,
one often requires that there be no diffusive flux across all
boundaries: m · ∇μ|∂� = 0. The second BC typically deals
with φ or the gradient of φ. For instance, on a boundary in
contact with a single phase or with a pinned contact line, we
impose fixed values of the phase variable φ. The current paper
does not consider dynamic contact lines or contact angles,
which require different types of BCs and will be the subject
for future investigation.

C. Interfacial forces

Since our computations involve a nematic-isotropic inter-
face, the interfacial forces include both surface tension and
the anchoring stress. These quantities are clearly defined in
a sharp-interface model, but need to be transformed into our
diffuse-interface framework.

For this purpose, we consider a flat diffuse interface at
local equilibrium, i.e., μ = 0. Let x̂ be the local coordinate
normal to the interface, with x̂ = 0 at φ = 0. Using Eq. (10)
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one obtains

φe(x̂) = tanh

(
x̂√
2ε

)
. (22)

This equation also holds asymptotically (ε → 0) for curved
interfaces in general. Requiring that the mixing energy of the
diffuse interface be equal to the surface energy of a sharp
interface, one arrives at the matching condition [24]

σ = 2
√

2

3

λ

ε
, (23)

where σ is the surface tension coefficient. The same local in-
terfacial profile also allows us to specify the PF expression of
the anchoring strength W [Eq. (4)]. Consider a sharp interface
SW that is represented in our PF model by an interfacial region
�W . In the sharp-interface formulation, the Rapini-Papoular
anchoring energy is written as the following surface energy
density:

fs = Ws

2

∥∥∥∥Q − qe

(
ee − 1

3
I
)∥∥∥∥

2

F

, (24)

where Ws is the anchoring strength with the dimension of
force/length. Equating the anchoring energies in the sharp-
interface and diffuse-interface models yields,∫

SW

Ws

2

∥∥∥∥Q − qe

(
ee − I

3

)∥∥∥∥
F

dS

=
∫

�W

W

2
|∇φ|4

∥∥∥∥Q − qe

(
ee − I

3

)∥∥∥∥
F

dx̂. (25)

We are free to make SW and �W arbitrarily small, and can
thus assume that ‖Q − qe(ee − I/3)‖F is a constant. Using
the equilibrium φ profile in Eq. (22), we obtain

W = Ws∫ ∞
−∞ (φ′

e)4 dx̂
= 35

8
√

2
Wsε

3, (26)

where the prime denotes differentiation with respect to x̂,
and W bears the expected dimension of energy×length [see
Eq. (4)].

We include only the mixing energy in μ [Eq. (10)] in order
to derive the local interfacial profile in Eq. (22), which in turn
allows us to establish the correspondence of interfacial forces
between the sharp and diffuse interface descriptions [Eqs. (23)
and (26)]. The values of λ and W would have depended on
Q otherwise, resulting in a more complicated surface tension
model. Compared to the PF method used in [28], our model is
a simplification in the sense that the former specifies a more
complete chemical potential including all free energies.

With the simpler CH dynamics of Eq. (10), free from
coupling with Q, we are able to exploit the well-established
separation of timescales in the nonlinear CH diffusion [50].
As ε → 0, on the timescale of O(ε4/(γ λ)), the interface
stabilizes locally and develops the hyperbolic tangent profile
[Eq. (22)]. On the longer timescale of O(εr3/(γ λ)), where r
is a characteristic length of interfacial shape such as the radius
of curvature, CH diffusion drives an evolution of φ in addition
to flow advection, known as Mullins-Sekerka flow in material
science [51]. Therefore, we require ε to be small and γ to
be judiciously chosen such that the flow timescale of interest

 = - 0.9 ~ 0.9

defect

(a)

(b)

L

L

x or r

y or z

b
a

φ

FIG. 1. (a) Setup of the drop retraction problem. In 2D planar
geometry it is in the x-y plane, while in 2D axisymmetric geometry it
is in the r-z plane. (b) Mesh used in a typical simulation where a ne-
matic drop retracts in an isotropic medium in a 2D planar geometry.
In the inset, the solid black lines show level sets of φ = 0.9, φ = 0
(nominal interface), and φ = −0.9, and the shaded area (bottom left)
represents the defect core (q � 0.5).

falls between the two timescales of the CH dynamics men-
tioned above. In this way, the interface motion is governed by
flow advection under the correct interfacial forcing. Practical
guidelines on mitigating nonphysical long-time effects have
been documented in [24,29,52].

D. Numerical approximation

We employ a Galerkin finite element method to solve the
governing equations. We use a mixed formulation for the CH
equation as is done in [29,53], as well as for the NS equation
by keeping τn as an auxiliary variable. The weak form of
the governing equations with applicable BCs is discretized on
an unstructured mesh of triangles, using piecewise quadratic
Lagrange elements (P2) for v, φ, μ, Q, τn and piecewise
linear Lagrange elements (P1) for p. We employ nonuniform
meshes to balance resolving defects and the thin interface and
saving computational cost. (See Sec. III and Fig. 1 for an
example.)

The model is implemented using the software package
COMSOL MULTIPHYSICS® [54] to make use of a selection of
well-developed numerical solvers. For time stepping, we use
a backward-difference-formula (BDF) scheme with adaptive
time step sizes and adaptive orders of accuracy between first
and second [55]. LC hydrodynamics displays a range of
physical timescales including relaxations of microelasticity,
distortional elasticity, and the flow field, in addition to the
timescale at which the φ field establishes local equilibrium.
Thus the adaptive time step size is crucial for the performance
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of our computation. In each time step, all equations are
coupled and solved simultaneously. The nonlinear system is
solved by a damped Newton’s method. To solve each Newton
iteration, we choose the multifrontal massively parallel sparse
direct solver (MUMPS) [56,57], an efficient direct linear solver.
Since we only deal with 2D problems in this paper, a direct
solver is advantageous in its robustness and accuracy without
incurring excessive computational cost.

We note two practical considerations in the numerical
scheme. First, on symmetry boundaries 	S , τn satisfies the
same conditions as Q: m · ∇[(τn)ii]|	S

= 0, (τn)i j |	S
= 0 (i �=

j) (also see Sec. II B). This condition needs to be taken into
account when choosing the approximation spaces for τn in the
weak form. Second, due to the relaxation of the total mixing
energy in a finite domain, after the interfacial profile is stabi-
lized, φ will not be exactly 1 or −1 in the bulk of the two fluids
[52]. In the current calculation, antidiffusion could arise from
the term ∇ · ( 1−φ

2 L1∇Q) [Eq. (12)] when φ shifts slightly
above 1, producing spurious oscillations in the Q field. To
mitigate this issue, we introduce a thresholding scheme. Let
hs(x̂) denote a regularized Heaviside function that transitions
smoothly from 0 to 1 within x̂ ∈ [−d, d]. The advection term
in Eq. (11) and the concentration factor (1 − φ)/2 in all the
equations are multiplied by hs(−φ + φc). This ensures that
the LC dynamics vanishes where φ > φc + d . We choose the
cutoff φc = 0.9 and d = 0.05. Provided that we are close to
the sharp-interface limit, specific φc values have little impact
on the flow field. We have tested smaller φc values and the
overall dynamics is hardly changed.

To validate our numerical model, we have performed
extensive tests on single-phase nematic flows, including for-
mation of Saturn ring and polar ring defects near a spherical
solid particle, a flow-aligning nematic in simple shear flow
in both infinite space or bounded by walls, and annihilation
of defects of opposite winding numbers with and without
flow coupling. We have also simulated a deformed Newtonian
drop retracting in a Newtonian medium to validate our PF
calculation. Quantitative agreement with literature has been
achieved. The details are omitted here, but can be found
in [58].

III. DROP RETRACTION WITH A
NEMATIC-ISOTROPIC INTERFACE

We consider the problem of a freely suspended microsized
liquid drop retracting in a quiescent medium, with one of
the fluids being a nematic LC. Besides being relevant for
a number of applications [1,4,59], drop retraction provides
a relatively simple ground for understanding the interplay
among surface tension, the bulk elastic energy, and the anchor-
ing energy, under the constraint of geometry and topology.
The notion of a dynamic surface tension, dependent on tran-
sient factors such as interfacial molecular alignment, has
been demonstrated experimentally [60,61] and computation-
ally [2,3] in drop retraction with a nematic-isotropic interface.
The results in [2,3], however, suffered from limitations due to
the regularization scheme in the modified LE model, as noted
earlier (Sec. I). Previous modeling work also only covered a
few scattered cases. Different combinations of drop-matrix
materials, anchoring conditions, and spatial dimensions

remain to be explored. Here, using our new model, we per-
form a systematic numerical study of the drop retraction
problem with a nematic-isotropic interface. On one hand, it
validates our model by reproducing known features. On the
other hand, we obtain new insight on elastocapillary flows.

The problem is set up in either 2D planar or axisymmetric
geometries, as shown in Fig. 1(a). In all cases considered
here, the geometry and nematic alignment have quadrupolar
symmetry, so we only need to simulate one quarter of the
domain. On the outer boundaries, we use nonpenetrating, free-
slip walls and specify the phase to be nematic or isotropic.
For all cases where the nematic phase is outside the drop, we
require the far-field LC molecules to be oriented in the vertical
direction (y direction in 2D planar geometry, and z direction
in 2D axisymmetric geometry) at equilibrium order [Eq. (3)].
Initially the drop is always elongated in the vertical direction.
In most cases, whether the nematic is outside or inside the
drop, the LC molecules are initially oriented along the vertical
direction at equilibrium order. Exceptions will be explained in
specific cases.

We prescribe a subdomain with highly refined, near-
uniform mesh, covering the area through which the interface
and topological defects move. Outside this subdomain, the
mesh gradually coarsens. Figure 1(b) shows the mesh struc-
ture in a typical simulation. The interfacial region and the
defect core are both well resolved during the entire simulation.

Unless explicitly stated otherwise, the results have been
obtained with the base parameters listed in the Appendix.
The nematic and isotropic phases have a matched density
and we set ηi = ηn as we are focused on the interaction of
elasticity and capillarity. In presenting the results, we use di-
mensionless variables marked by an asterisk. We scale length
by the nominal drop radius R, time by ηiR/σ , energy by L1R,
and energy (volume) density by L1/R2. Among the numer-
ous dimensionless groups, the following three dimensionless
lengths are important in governing the defect configuration
and drop shape:

l∗
c = 1

R

√
L1

−A
, l∗

e = L1

WsR
, l∗

ec = L1

σR
. (27)

The nematic coherence length l∗
c reflects the competition

between distortional elasticity and microelasticity, and gov-
erns the defect core size. The anchoring extrapolation length
l∗
e describes the competition between the bulk distortion of

molecular order and the anchoring of LC molecules on the
fluid-fluid interface. The elastocapillary length l∗

ec denotes the
competition between the bulk elastic distortion and surface
tension. Note that with our base parameters l∗

e = 0.01  1.
Hence, we are in a regime where the anchoring is strong and
topological defects are expected.

In the following sections, we first provide an overview
of the different cases considered in this study, including the
defect structures and drop deformation, in comparison with
previous literature. Next, we explain how the drop deforma-
tion originates from the competition between bulk elasticity
and surface tension. Last, we show the retraction speed of the
drops and the interfacial Marangoni flow induced by anchor-
ing energy gradients, in agreement with existing results.
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FIG. 2. Snapshots of a nematic drop retracting in an isotropic
host with planar anchoring in 2D planar geometry (Case 1 in Fig. 3).
The grey scale shows the concentration-weighted scalar order param-
eter, 1−φ

2 q, with qe = 0.81. The nominal interface φ = 0 is marked
with a solid black curve. The dark region inside the drop signals the
defect. (a) Well-aligned state at initial condition. (b) As the drop
retracts, a defect starts to nucleate at the pole of the drop. (c) The
defect core is completely established. (d) The defect detaches from
the interface and moves inside the drop. The drop shape and defect
location come to a steady state.

A. Overview of different cases

With isotropic fluids, the drop retraction is solely driven by
surface tension, or, equivalently, by the reduction of the mix-
ing energy. In the presence of an LC, however, depending on
the initial bulk orientation of LC molecules and the prescribed
anchoring conditions at the interface, various topological
defects may appear and influence the retraction process. Dis-
tortions in the nematic alignment during retraction are likely
to increase the elastic energies.

We first consider an illustrative case exemplifying the re-
traction process and energy tradeoff. Figure 2 shows snapshots
of a nematic drop retracting in an isotropic fluid with pla-
nar anchoring in the 2D planar geometry. The grey scale
indicates the concentration-weighted scalar order parameter
1−φ

2 q. With our parameters, the equilibrium order is at qe =
0.81 [Eq. (3)]. Consistent with the initial alignment, Fig. 2(a)
shows a uniform molecular configuration without any defect
at the beginning. While the drop retracts, the LC molecules
near the interface reorient to reduce anchoring energy, and
a defect nucleates near the pole [Figs. 2(b) and 2(c)], at the
expense of both molecular and distortional elastic energies.
Later, due to strong anchoring, the defect detaches from the
interface and moves inside the drop, transitioning from a
surface defect to a point defect of winding number +1/2 in
the bulk [Figs. 2(c) and 2(d)]. Eventually the drop settles into
a steady state and attains an elongated shape in the y direction.

We summarize the steady-state defect and drop configura-
tions observed in our study into eight different cases (Fig. 3).

FIG. 3. Illustrated final defect and drop configurations after drop
retraction. Defects are marked by green points or curves. The thin
solid lines illustrate streamlines of the director n. The drop defor-
mation may be exaggerated for clarity. P = planar anchoring. H =
homeotropic anchoring. These anchoring conditions are illustrated
in the boxes for Cases 1 and 3. For all cases with a nematic host (2,
4, 6, 8), in the far field the molecular alignment is along the vertical (y
or z) direction at equilibrium order. For Cases 1–4 and 8, the defects
may be attached on the interface or not depending on parameters.

Case 1 corresponds to the scenario described above. Cases
2–4 are drop retractions in 2D planar geometry as well, with
different material combinations and anchoring conditions. For
convenience of comparison, in Case 3, we set the initial
molecular alignment to be along the x direction, which leads
to a final drop elongation in the y direction. The same cases
are calculated for 3D drops with axisymmetry in Cases 5–8.
Note that, for Cases 1–4 and 8, the defects are detached from
the interface (as shown in the diagrams) when the surface
tension or anchoring strength is high, otherwise it would be
energetically favorable for the defects to stay bound to the
interface. See Sec. III B for more details.

To our knowledge, the defect structures computed in Cases
1 and 2 have not been reported before. Even though Yue et al.
[2] and Liu et al. [3] considered the same setups as in Cases
1–3 here, they obtained different configurations because the
formation of defects with half-integer winding numbers in the
bulk of LC, like those in Cases 1–3, were not permitted in
their model (see Sec. I). In particular, for Cases 1 and 2, the
defects could detach from the interface in our model, while
those in [2,3] were bound to the drop surface. In Case 3,
[2,3] predicted a point defect at the center of a circular drop,
while our calculation shows a pair of defects of half-integer
winding number, deforming the drop. Notice the similarity in
the defect structure in our Cases 3 and 4 with those in Fig. 4 of
Mackay and Denniston [62], who computed the configuration
of an elastic vesicle shell suspended in a continuous phase of
nematic LC in 2D. In [62], the homeotropic anchoring induced
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(a) (b)

FIG. 4. Conceptual director patterns in Case 3. The thin solid
curves represent streamlines of the directors, and the solid dots
represent defects. In (a), the torques exerted on the drop interface by
the nematic distortions are represented by semicircles with arrows.
These torques tend to rotate the interface to relieve the elastic distor-
tion resulting in a drop elongated in the y direction (b). Deformation
is exaggerated for clarity.

defects both inside and outside the shell, which have been
reproduced separately in our Cases 3 and 4. It also reflected
well image charge arguments in the strong anchoring limit.
For Case 4, our computed defect agrees with earlier studies
on 2D particles or drops submerged in the bulk of a nematic
LC [21,63].

In the axisymmetric geometry, Cases 5 and 6 feature
surface-bound defects, the so-called “boojums,” a conse-
quence of the topological constraint of the spherical surface
in 3D [64–66]. This is in contrast with the detached defects
in Cases 1 and 2. In a 3D drop with homeotropic anchoring
in Case 7, a central point defect opens up spontaneously into
a small ring. This is a known feature of the LdG free energy
with the one-elastic-constant approximation [37,67]. In Case
8 with an isotropic drop in a nematic host with homeotropic
anchoring, we have found a Saturn ring in the bulk of LC
or a surface ring attached on the drop, depending on the
parameters. Consistent with experimental observations [68],
our result is more physically realistic than that in [25], where
the ring defect was confined to the drop surface. Again it
is because of the regularized LE theory used in the latter
study. In addition, in Case 8, it is well known that a dipolar
configuration, which consists of a companion hyperbolic point
defect located in the close vicinity of the particle, may arise
as well [37]. Actually, because of our assumption of isotropic
elasticity in the LdG free energy, the point defect will spon-
taneously open up into a small ring, as in Case 7. However,
with our material parameters A, B,C, L1 (see the Appendix),
the dipolar pattern is not stable with respect to the Saturn ring
[69,70].

The nonspherical shapes attained at the end of the retrac-
tion in 2D planar geometry (Cases 1–4) agree with results
reported in various earlier studies [2,3,20,23,28]. The shapes
of axisymmetric drops (Cases 5–8), although reported less
frequently, are not surprising considering their 2D planar
counterparts. Here we suggest a heuristic argument that can
rationalize intuitively the equilibrium drop shapes in all cases
by considering the interaction between the director field (thin
lines in Fig. 3) and the interface. In Case 3, for instance, we
first consider a circular drop with a director field consistent
with the homeotropic anchoring on the interface, illustrated in
Fig. 4(a). Because of the anchoring, bend and splay distortions
arise in the director field, which exert torques on the drop

interface, as shown by the semicircles with arrows in Fig. 4(a).
These torques will tend to rotate the interface and elongate the
drop in the y direction, as shown in Fig. 4(b). This argument
is consistent with the well-known fact that defects of equal
winding numbers repel each other elastically. In Case 7, the
defect is far from the interface so that the alignment is ap-
proximately radial at the interface, thereby producing a nearly
spherical drop. In Case 8, by a similar argument to that in
Case 3, nematic distortions near the interface tend to “flatten”
the drop, resulting in an oblate shape. Our explanation agrees
with the argument put forward in [62], although, in the latter
study, the deformation is additionally resisted by the bending
rigidity of the vesicle shell. We have not attempted a more
quantitative comparison on drop shapes with prior literature.
Such a comparison is hampered by strong assumptions on
drop shape classes or defect locations required in analytical
solutions [e.g., 19,20], or difficulties in mapping parameters
among different models for nematic order and interfacial
stresses used in computational studies [2,3,23,28].

B. Drop deformation and competition of free energies

Now we examine the steady-state drop configurations in
more detail. The qualitative analysis in the last paragraph
of the above section suggests that the reduction in the bulk
distortional elastic energy at the expense of the mixing en-
ergy (surface tension) is the dominant factor determining the
drop deformation at steady state. This motivates a scaling
argument for the final drop deformation, which has not been
reported before. Let as, bs denote the steady-state lengths of
a and b, the semiaxes of the drop [Fig. 1(a)]. The competi-
tion between the distortional elastic energy and the mixing
energy gives rise to the (dimensional) elastocapillary length
lec = l∗

ecR = L1/σ . Dimensional analysis suggests that the
drop deformation, measured by bs − as , is proportional to lec .
This scaling relation may be developed in more detail in the
limit of small deformations. Consider a circular drop in the
2D planar geometry (Cases 1–4) and a fully relaxed Q field
with a pair of defects. In the nematic phase, the distortional
elastic energy density fe ≈ L1/ζ

2, where ζ is a characteristic
length of long-range Q distortions. For all 2D planar cases
(and also Cases 5 and 6), one can choose ζ to be the distance
between the point defects. Typically, for all cases reported
in Fig. 3, ζ is on the order of R. We examine the change
of free energies when the drop elongates by δl  R in one
direction. Without loss of generality, we assume that bs > as,
i.e., bs = R + δl . To conserve the drop area, to leading order,
as = R − δl . The distortional elastic energy density becomes
approximately L1/(ζ + 2δl )2 as the defects move apart by
about 2δl . We further assume that the characteristic area of
elastic distortion is Ae, which stays constant under small de-
formations. Thus the change in total distortional elastic energy
δFe ≈ (−4AeL1/ζ

3)δl . Meanwhile, the change in the mixing
energy δFs ≈ (3πσ/R)δl2. Equating their magnitudes gives
an equilibrium δl corresponding to the lowest total of the
two energies: bs − as = 2δl ≈ (8AeRL1)/(3πζ 3σ ). Scaling
all lengths by R, we obtain

b∗
s − a∗

s = 2δl∗ ≈ 8A∗
e

3πζ ∗3

L1

σR
= 8A∗

e

3πζ ∗3
l∗
ec. (28)
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FIG. 5. Steady-state drop deformation |b∗
s − a∗

s | as a function of
the elastocapillary length l∗

ec for all the cases reported in Fig. 3. (a) 2D
planar (Cases 1–4), and (b) 2D axisymmetric (Cases 5–8). The lines
are least-square fitted to the data points.

In 3D with axisymmetry, similar arguments give b∗
s − a∗

s ≈
(24V ∗

e /πζ ∗3)l∗
ec, where V ∗

e is the dimensionless characteristic
volume of long-range distortion, scaled by R3.

Numerical data confirm this proportional relation. In Fig. 5
we show the dimensionless drop elongation |b∗

s − a∗
s | as a

function of the dimensionless elastocapillary length l∗
ec with

constant l∗
e and l∗

c , for Cases 1–4 in 2D planar geometry
[Fig. 5(a)] and for Cases 5–8 in 2D axisymmetric geometry
[Fig. 5(b)]. In all cases, the deformation |b∗

s − a∗
s | is indeed

approximately proportional to l∗
ec. In Case 7 the relation is

degenerate with negligible drop deformation regardless of l∗
ec.

This proportionality persists to moderately large magnitudes
of |b∗

s − a∗
s |, around 0.2 in many cases and over 0.3 in Case 6.

In certain scenarios, the tradeoff between the bulk elastic
energy and the mixing energy can be demonstrated directly
from the evolution of free energies in time. In Case 8, for
instance, we calculate different components of the free energy
with our PF model, in dimensionless forms:

F ∗
m = 1

L1R

∫
fm dV, F ∗

LdG = 1

L1R

∫
1 − φ

2
fLdG dV,

F ∗
e = 1

L1R

∫
1 − φ

2
fe dV, F ∗

a = 1

L1R

∫
fa dV, (29)

where F ∗
m is the mixing energy, F ∗

LdG the microelastic
(LdG) energy, F ∗

e the distortional elastic energy, and F ∗
a the
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FIG. 6. Temporal evolution of various free energies in a repre-
sentative simulation of Case 8. (a) The mixing energy. (b) The LdG
energy. (c) The distortional elastic energy. (d) The anchoring energy.
(e) The total energy. We have used a smaller surface tension in this
run (l∗

ec = 0.033) than the base value, so as to magnify the drop
deformation for ease of visualization and analysis. Steady state is
reached near t∗ ≈ 200. For clarity here we only show the range up to
t∗ = 100.

anchoring energy. Let F ∗ be the total energy, i.e., F ∗ =
F ∗

m + F ∗
LdG + F ∗

e + F ∗
a . Figure 6 shows the evolution of these

energies of a simulation in Case 8. The initial transients are
dominated by the retraction of the drop and establishment of
the defects. As we are most interested in the later stage of drop
deformation, we have chosen matching ranges for the various
energies to facilitate their comparison in the later stage. The
mixing energy decreases during the initial contraction in the
axial (z) direction, and rises again, although very moder-
ately, in the subsequent expansion in the radial (r) direction
[Fig. 6(a); also see Case 8 in Fig. 3]. The decreasing distor-
tional elastic energy [Fig. 6(c)] drives the decay in the total
free energy [Fig. 6(e)], while being resisted to an appreciable
extent only by the mixing energy. Their antagonism indeed
dominates the changes in the microelastic (LdG) [Fig. 6(b)]
and the anchoring [Fig. 6(d)] energies.

In addition, as the drop shape is dictated by the competition
between the bulk distortion and the mixing energy, the defect
position relative to the interface also depends on l∗

ec whereas
the anchoring strength is kept constant relative to distortional
elasticity (constant l∗

e ). We use d∗
s to denote the dimension-

less steady-state distance from the defect core to the nominal
interface (φ = 0 contour) in the drop elongation direction.
Figure 7 shows d∗

s as a function of l∗
ec for all 2D planar cases

as examples. When surface tension decreases (increasing l∗
ec),

the defect gradually approaches the drop interface and d∗
s

decreases roughly linearly, again consistent with suggestions
by dimensional analysis. In this process, although the anchor-
ing energy may increase due to the disordered defect core
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FIG. 7. The dimensionless distance d∗
s between the defect and

the interface as a function of l∗
ec for 2D planar cases. The insets show

the distribution of 1−φ

2 q at steady state for two scenarios in Case 2.
The grey scale is the same as in Fig. 2. The dark region outside the
drop marks the defect.

being closer to the interface and disturbing molecular order,
the total energy decreases thanks to relaxed bulk distortions.
In Cases 1 and 3, the dependence of d∗

s on l∗
ec is weak, and

the data points overlap, similar to those in Fig. 5(a). This is
because of the confinement of the defects inside the drop. The
dependence is stronger in Cases 2 and 4, with the nematic
outside the drop. Note that, at high values of l∗

ec with the
nematic outside, the defects become attached to the interface,
as shown by the insets (Fig. 7).

In the limit of vanishing anchoring (l∗
e → ∞), the bulk

distortion and the mixing energy will be decoupled as there
will be no nematic distortions, defects or drop deformation
at steady state. Thus the anchoring energy mediates the ex-
change between the bulk distortion and the mixing energy
by providing a topological constraint on the directors in the
interfacial region. As examples, we show the effect of an-
choring strength in Fig. 8 for Cases 1 and 2, with l∗

ec = 0.05.
There are three features that warrant attention. First, when
the anchoring strength decreases (increasing l∗

e ), the defects
shift closer to the interface [Fig. 8(a)], as expected intuitively
and in agreement with literature [e.g., 71]. The defects then
undergo an abrupt transition and become attached to the in-
terface [Fig. 8(a) and the insets therein]. This transition is
also observed by Lishchuk et al. [23] in their LBM calcu-
lation of a static drop shape similar to our Case 2. Second,
as the defect becomes attached, the drop elongation jumps
to a higher value, reducing the bulk distortion but increasing
the mixing energy [Fig. 8(b)]. This is another manifestation
that the drop deformation is mainly driven by the reduction
of the distortional elastic energy. Third, as anchoring further
weakens, the coupling between the bulk distortion and the
mixing energy is gradually lost, and the drop deformation
decays, in agreement with our reasoning about l∗

e → ∞. Note
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defect defect

FIG. 8. (a) Defect location d∗
s and (b) drop deformation |b∗

s − a∗
s |

as functions of l∗
e for Cases 1 and 2. The insets show the distribution

of 1−φ

2 q at steady state for two scenarios in Case 2. The grey scale
is the same as in Fig. 2. The dark region outside the drop signals the
defect.

that the first two features have counterparts in Fig. 7 when
the surface tension is lowered. In the latter case, though, the
transition is much smoother.

To summarize the analysis in this section, we see that the
tradeoff between the bulk elastic distortion and the mixing en-
ergy determines the drop deformation. The anchoring energy
plays the role of a mediator and moderates this coupling.

C. Retraction dynamics

In Fig. 9, we analyze the retraction speed by monitor-
ing the time evolution of the drop deformation parameter
D = (b − a)/(b + a) (see Fig. 1 for definitions of a, b) for
all the cases considered in Fig. 3, in semilogarithmic scale.
Additionally, we perform two simulations of a Newtonian
drop retracting in a Newtonian medium in 2D planar and
axisymmetric geometries, respectively, with the viscosity and
density matched to the isotropic fluid in our nematic-isotropic
cases (Appendix). Designated by “N/N”, these results serve
as baselines for comparison. As known from previous studies
[72], the N/N retraction features an exponential decay of D
toward 0. Yet, with a nematic-isotropic interface, the decay of
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(a)

(b)

FIG. 9. Time evolution of the drop deformation factor D com-
pared with a Newtonian drop retracting in a Newtonian host (N/N).
(a) 2D planar (Cases 1–4). (b) 2D axisymmetric (Cases 5–8). We
only show dimensionless time up to t∗ = 10 to highlight the in-
terfacial motion. The late-time evolution is dominated by defect
movement while the drop shape changes little.

D deviates gradually from exponential, particularly in the late
stage. In general, compared with N/N, the acceleration or de-
celeration depends on whether retraction facilitates or hinders
the reduction of the bulk distortion. The drops in Cases 1, 2, 3,
5, and 6 retract slower than in their corresponding Newtonian
cases, because a more spherical drop causes more bending and
splay of the directors, which resists further retraction (also see
the last paragraph in Sec. III A). Note that the trend in Cases
1 and 2 agrees well with the findings in [2,3]. In contrast,
those in Cases 4 and 8 retract faster than in N/N as the bulk
distortions keep on decreasing while the drop first retracts in
the y or z direction and then expands in the x or r direction.
The drop in Case 7 retracts slightly slower than in N/N. In this
configuration, the nematic distortions do not play a strong role
in the drop retraction. The retraction speed can be faster or
slower than in the N/N case, depending on initial conditions
and parameter values.

Finally, the gradient in the anchoring energy drives a
Marangoni flow along the interface from locations of low
anchoring energy to those of high anchoring energy, as pre-
dicted by Rey [14]. It has been captured in our simulations,
as demonstrated in Fig. 10 by a snapshot near the end of the
retraction in Case 8. The grey scale indicates the dimension-

r

z

0

4

8

12

defect

interface

FIG. 10. Anchoring energy density and velocity field for Case
8 near the end of the retraction (t∗ = 183). The grey scale shows
the dimensionless anchoring energy density f ∗

a . The interface and
the defect core (q � 0.5) are marked with solid curves. The arrows
show the velocity field, displaying the Marangoni flow driven by the
anchoring energy gradient.

less anchoring energy density f ∗
a and the arrows represent the

velocity field. The anchoring energy increases gradually from
the north pole toward the equator of the drop, peaking at a
short distance above the equator. This drives a Marangoni flow
along the interface, producing a pair of vortices on either side.
Similar flows have been identified for other cases as well. Note
that, in the early stage of retraction, this Marangoni flow is
dominated by global eddies created by the fast deformation of
the drop. Only toward the end of the retraction, when the main
flow field has more or less died down, can we observe the
Marangoni flow clearly. By this time, though, the anchoring
energy gradient has declined much and the Marangoni flow
has also become weaker. In [2,3] similar numerical results
were observed.

IV. CONCLUSION

This paper reports direct numerical simulations of elasto-
capillary flows with liquid crystals (LCs). We have developed
a computational framework that integrates a tensorial descrip-
tion of molecular order in nematic LCs with a phase-field (PF)
formalism that approximates a sharp-interface limit of two-
phase flows. This method allows for a physically consistent
description of topological defect structures in the LC, while
capturing interfacial forces including surface tension and the
LC anchoring stress.

We demonstrate the capability of our method by applying
it to the drop retraction problem with a moving nematic-
isotropic interface. We have provided a comprehensive map
of drop-defect configurations in a variety of cases, including
a nematic drop in an isotropic medium and the inverse, with
planar and homeotropic anchoring conditions at the interface,
in 2D planar and 2D axisymmetric geometries.

One of our key findings is the interplay between the
bulk elastic distortions and surface tension in dictating the
drop shape. In particular, the dimensionless steady-state drop
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deformation is proportional to the elastocapillary length l∗
ec =

L1/(σR), which controls the relative importance of bulk
distortional elasticity and surface tension. This coupling is
mediated by the anchoring energy, and gradually diminishes
as anchoring becomes weaker. Our examination of this model
problem highlights the interplay between the elastic energies
of the LC and surface tension.

In addition, we have reproduced many features observed in
prior studies, including defect configurations, elongated drop
shapes, retraction speed, and the Marangoni flow induced by
anchoring energy gradients. Compared to certain earlier com-
putational studies on the same problem, our predicted defect
structures are more physically realistic, admitting defects of
half-integer winding numbers in the bulk of LC.

Even though our model offers several advantages over pre-
vious descriptions in [2,3,24–26], it still has the limitation of
high computational cost associated with the fine mesh for the
thin interfacial region, and the need to solve the fourth-order
CH equation. New schemes proposed for general gradient
dynamics problems, including CH diffusion, have provided
promising prospects for acceleration of our calculation [e.g.,
73,74].

Last, our model can be extended to treat moving contact
lines thanks to the energetic nature of the PF method (see
Sec. II B). The finite-element approximation allows for com-
plex geometries and one can further equip the model with
adaptive mesh refinement or moving mesh capabilities. Our
model is well-suited for further development to tackle more
complex problems such as particle interactions under coupled
elastocapillary forces at the interface of an LC [e.g., 9,18,75].
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APPENDIX: PARAMETERS FOR THE DROP
RETRACTION PROBLEM

The base parameters used for drop retraction are close to
those for 5CB [36,37,76,77]. The numerical parameters for
the CH dynamics (capillary width ε, mobility γ ) are chosen
based on considerations in Sec. II C and [24,29,52]. They
are, in dimensional form, as follows. Bulk elastic constant
L1 = 100 pN. LdG energy coefficients A = −105 Pa, B =
−6 × 105 Pa, C = 6 × 105 Pa. Nematic shape factor ξ = 0.6.
Collective rotational diffusion coefficient 	 = 25 Pa−1s−1.
Density ρn = ρi = 103 kg/m3 (“n” for the nematic phase
and “i” for the isotropic phase; same below). Viscosity ηn =
ηi = 0.01 Pa s. Surface anchoring strength Ws = 0.01 N/m.
Surface tension coefficient σ = 0.01 N/m. Domain half edge
length L = 5 μm. Nominal drop radius R = 1 μm. Initial
drop size a0 = 0.8 μm, b0 = 1.25 μm (2D planar); a0 =
0.8944 μm, b0 = 1.25 μm (2D axisymmetric). Capillary
width ε = 20 nm. Mobility γ = 4 × 10−14 m2/(Pa · s) (2D
planar); γ = 4 × 10−15 m2/(Pa s) (2D axisymmetric). The
base parameters give the following values for the dimension-
less lengths: l∗

c = 0.0316, l∗
e = 0.01, l∗

ec = 0.01.
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