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Alignment of a topological defect by an activity gradient
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As a method for controlling active materials, researchers have suggested designing patterns of activity on
a substrate, which should guide the motion of topological defects. To investigate this concept, we model the
behavior of a single defect of topological charge +1/2, moving in an activity gradient. This modeling uses
three methods: (1) approximate analytic solution of hydrodynamic equations, (2) macroscopic, symmetry-based
theory of the defect as an effective oriented particle, and (3) numerical simulation. All three methods show that
an activity gradient aligns the defect orientation, and hence should be useful to control defect motion.
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I. INTRODUCTION

Topological defects are common in many areas of physics,
from crystal structure to cosmology [1,2], and from bacterial
growth to cell assembly [3,4]. In conventional liquid crystals,
topological defects are often used to identify phases, and the
motion of topological defects is an important feature of coars-
ening dynamics. In active liquid crystals, topological defects
are continually forming in pairs, moving, and annihilating
each other [5–12]. Theoretical research on two-dimensional
(2D) active nematic liquid crystals has suggested that topolog-
ical defects should be regarded as effective oriented particles
[13]. In a previous article, we suggested that the defect orien-
tation should be described by a tensor, with a tensor rank that
depends on the topological charge of the defect [14]. Further
work has applied the concept of defects as effective oriented
particles to defect motion induced by temperature, applied
fields, fluid flow, boundary conditions, interactions with other
defects, and activity [15,16].

Recently, one important research theme has been learning
how to control active materials, in order to guide the flow of
defects along preselected paths. Two articles have proposed
to achieve this control by designing patterns of activity on a
substrate. In that way, the activity gradient aligns the orienta-
tions of the defects with topological charge of +1/2, through
a mechanism analogous to an electric field aligning electric
dipole moments [17,18]. Hence, the patterns of activity create
paths for the motion of defects.

In this article, we further investigate the concept of topo-
logical defects moving in a system with nonuniform activity.
Rather than studying a system of many ±1/2 defects, as in
Refs. [17,18], we concentrate on a single defect of topological
charge +1/2 moving in an activity gradient, and analyze the
dynamics using three complementary approaches. First, we
use an approximate analytic method to solve the hydrody-
namic equations for the liquid-crystal director and the flow
field around a defect. Second, we construct a macroscopic
symmetry-based theory for the defect as an oriented parti-
cle, and use it to determine the interaction with an activity

gradient. Third, we perform finite-element simulations of the
defect motion, and determine how the orientation evolves in
response to the activity gradient. In particular, we investigate
the motion of a pair of +1/2 defects within a circular active
region, surrounded by a steep activity gradient to a nonactive
region. We show that all three approaches give consistent
descriptions of defect alignment, and support the concept of
controlling active materials with patterns of activity.

II. HYDRODYNAMIC THEORY

As a first step, we consider the hydrodynamic equations
around a +1/2 defect. We follow the method of our previous
article [16], but now add a gradient of the activity. For this
calculation, the nematic order is described by the director field
n̂(r, t ) = [cos θ (r, t ), sin θ (r, t )]. With the approximation of
equal Frank elastic constants, the Frank free energy is

F =
∫

d2r

[
1

2
K (∂in j )(∂in j )

]
=

∫
d2r

[
1

2
K|∇θ |2

]
. (1)

The dynamic evolution of the director n̂ is coupled with the
fluid flow velocity field v(r, t ). There are two modes that dissi-
pate energy: the strain rate tensor Ai j = 1

2 (∂iv j + ∂ jvi ) and the
director rotation with respect to the background fluid vorticity
Ni = ṅi − ωε jin j , where ε ji is the 2D Levi-Civita symbol and
ω = 1

2εkm∂kvm. In terms of these modes, a minimal model for
the dissipation function is

D =
∫

d2r

[
1

2
α4Ai jAi j + 1

2
γ1NiNi − 2ζ (r)nin jAi j

]
. (2)

Here, the first term represents the dissipation from conven-
tional fluid flow, and the second term represents dissipation
from rotation of the nematic order with respect to the fluid.
The third term is an extra contribution arising from activity
ζ (r), which we allow to be nonuniform. This term is really
a “rate of energy input” (with a negative sign) rather than an
“energy dissipation,” but it still enters into the theoretical for-
malism of a dissipation function. The sign ζ > 0 corresponds
to extensile activity, and ζ < 0 to contractile activity.
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We assume that the material is incompressible, which im-
plies that ∂ivi = 0. Because of this constraint, the velocity
field can be written in terms of a stream function ψ (r, t ) as
vi = εi j∂ jψ .

From the free energy and the dissipation function, we
derive the equations of motion for θ and ψ . For the direc-
tor orientation θ , the elastic force is −δF/δθ (r, t ), and the
drag force is −δD/δ[∂tθ (r, t )]. Hence, the equation for over-
damped motion is that the forces sum to zero,

− δF

δθ (r, t )
− δD

δ[∂tθ (r, t )]
= 0. (3)

For the generalized velocity ψ , the elastic force is
−δF/δψ (r, t ) = 0, and the combined drag and active force
is −δD/δψ (r, t ). Hence, the equation for overdamped motion
is that this combined drag and active force equals zero,

− δD

δψ (r, t )
= 0. (4)

The detailed expressions for these equations are worked out
in Ref. [16].

We now apply these general equations to the specific case
of nonuniform activity of the form ζ (r) = ζ ′y, so that the
activity gradient is ∇ζ = ζ ′ŷ. We assume that the activity
gradient is small, so that we can use perturbation theory in
ζ ′, following the approach of Ref. [19]. For this perturbation
theory, we write the steady-state solution as

θ (r) = θ0(r) + ζ ′θ1(r) + O(ζ ′2), (5a)

ψ (r) = ψ0(r) + ζ ′ψ1(r) + O(ζ ′2). (5b)

At zeroth order in ζ ′, the stream function ψ0(r) is constant,
which implies that the flow velocity is zero. The differential
equation for θ0 then becomes Laplace’s equation ∇2θ = 0.
A solution corresponding to a +1/2 defect at the origin is
θ0(r) = 1

2 tan−1(y/x) + �0. From Ref. [14], the defect orien-
tation is the orientation in which the director points outward
from the defect. It is given by the vector p = (cos �, sin �),
with � = 2�0.

We now go to first order in perturbation theory in ζ ′. We in-
sert the zeroth-order expressions for θ0 and ψ0 into the partial
differential equations, and solve for the first-order corrections
θ1 and ψ1. We calculate these solutions in polar coordinates
with boundary conditions such that the first-order correction
does not change the far-field behavior, hence θ1(rmax, φ) = 0,
ψ1(rmax, φ) = 0, and ∂rψ1(rmax, φ) = 0. We put θ0 and θ1 into
the series of Eq. (5a), and put that series into the director field
n. We then determine the perturbed orientation in which the
director points outward from the defect,

� = 2�0 + ζ ′r3
max cos(2�0)

6K

g(4 + 2g − √
4 + 2g)

(3 + 2g)(2 + g + √
4 + 2g)

,

(6)

where g = γ1/α4. Hence, we can see that the activity gra-
dient ζ ′ generates a correction term, which shifts the defect
orientation.

To interpret the correction term, suppose that ζ ′ > 0. If
cos(2�0) > 0, so that the unperturbed p has a positive x
component, then the correction term is positive. It rotates the
defect orientation counterclockwise toward the positive y axis.

If cos(2�0) < 0, so that the unperturbed p has a negative x
component, then the correction term is negative, and it rotates
the defect orientation clockwise toward the positive y axis.
In both cases, the correction is toward the positive y axis, so
toward the ∇ζ direction. Likewise, if ζ ′ < 0, the correction
is toward the negative y axis, which is then toward the ∇ζ

direction. Thus, in general, the activity gradient tends to re-
orient the +1/2 defect orientation toward the activity gradient
direction. This effect is analogous to an electric field acting on
an electric dipole moment, which tends to reorient the dipole
toward the electric field direction.

We have also done the same hydrodynamic calculation for
a −1/2 defect at the origin. Again, we use perturbation theory
in the activity gradient ζ ′. At zeroth order in ζ ′, the director
field is given by θ0(r) = − 1

2 tan−1(y/x) + �0, and the stream
function ψ0(r) is constant. We calculate the first-order correc-
tions to both of these functions. Even with these corrections,
the orientations in which the director points outward from
the defect are � = 2�0/3 (mod 2π/3); i.e., the first-order
corrections to these orientations are zero. Hence, the activity
gradient does not rotate the orientation of a −1/2 defect, at
this order in perturbation theory.

III. MACROSCOPIC THEORY

As an alternative approach, we consider the same problem
of defect alignment from the perspective of a macroscopic,
symmetry-based theory.

In Ref. [16], we argued that defect motion can be described
in terms of the macroscopic degrees of freedom for the defect,
without considering the director or the flow velocity field
around the defect. In this perspective, the defect is an oriented
particle, with a position R(t ) and some further variable to
represent the orientation. For a defect of topological charge
+1/2, the orientation is represented by a unit vector p(t ) =
[cos �(t ), sin �(t )]. We can then construct the free energy
and the dissipation function in terms of those macroscopic
variables, using the most general forms allowed by symmetry.

In a conventional, nonactive liquid crystal, the dissipation
function should be a quadratic form in the defect velocity Ṙ
and the rotational velocity ṗ. Hence, the most general form for
the dissipation function is [16]

Dpassive = 1
2 D1|Ṙ|2 + 1

2 D2(p · Ṙ)2 + 1
2 D3| ṗ|2 + D4 ṗ · Ṙ.

(7)

Here, the D1 term gives the energy dissipated by defect trans-
lation, and the D2 term shows how that dissipation depends on
the defect orientation with respect to the velocity. The D3 term
gives the energy dissipated by defect rotation, and the D4 term
shows a dissipative coupling between translation and rotation.
The quadratic form is positive definite if D2

4 < D1D3.
In an active liquid crystal, the dissipation function is not

required to be quadratic in Ṙ and ṗ. Rather, it may have active
terms, which are linear in Ṙ or ṗ, and hence break time-
reversal symmetry. For an active liquid crystal with uniform
activity, there is one active term,

Duniform
active = d5ζ p · Ṙ. (8)
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(In Ref. [16], we wrote the coefficient as D5 = d5ζ , but here
we explicitly show the dependence on the activity parameter
ζ .) In the uniform system, there is no active term involving ṗ,
because we cannot construct a scalar that is linear in ṗ. The
combination R · ṗ is forbidden by translational invariance,
the combination Ṙ · ṗ is a non-active, quadratic term, and the
combination p · ṗ = 0 because p is a unit vector.

Now consider an active liquid crystal with nonuniform
activity. In that case, it is possible to construct an active term
involving ṗ,

Dnonuniform
active = d6(∇ζ ) · ṗ. (9)

In this perspective, the activity gradient ∇ζ is important be-
cause it creates an extra vector that can couple to ṗ. The
total dissipation function is then Dtotal = Dpassive + Duniform

active +
Dnonuniform

active .
In a recent article [20], we argued that a dissipation

function can generate an effective potential, which induces
steady-state alignment. Here, let us apply that general argu-
ment to Dnonuniform

active . This term can be rewritten using the defect
orientation angle � as

Dnonuniform
active = d6[−(∂xζ ) sin � + (∂yζ ) cos �]�̇. (10)

It generates a force acting on �,

f nonuniform
active = −∂Dnonuniform

active

∂�̇

= − d6[−(∂xζ ) sin � + (∂yζ ) cos �]. (11)

That force generates an effective potential acting on � in the
steady state,

U nonuniform
active = −

∫
f nonuniform
active d�

= d6[(∂xζ ) cos � + (∂yζ ) sin �]

= d6(∇ζ ) · p. (12)

This effective potential has the same mathematical form as
an electric field interacting with an electric dipole moment. It
tends to align the defect orientation vector p along the activity
gradient ∇ζ .

This macroscopic, symmetry-based theory has both disad-
vantages and advantages compared with the hydrodynamic
theory of the previous section. One disadvantage is that the
macroscopic theory does not tell us whether the coefficient
d6 is positive or negative, i.e., whether the alignment of p is
parallel or antiparallel to ∇ζ . Based on the hydrodynamic
theory, we can assume that the favored alignment of p is
parallel to ∇ζ , so that d6 < 0.

By comparison, one advantage of the macroscopic the-
ory is that it can easily be applied to defects of different
symmetries. For example, consider a defect of topological
charge −1/2. Because this defect has threefold symmetry,
its orientation can be described by a third-rank, completely
symmetric tensor Ti jk , as discussed in Ref. [14]. The macro-
scopic theory shows us immediately that there is no linear
coupling between the orientation tensor Ti jk and the activity
gradient ∇ζ , in agreement with the hydrodynamic calculation.
Rather, there may be a higher-order coupling of the form
(∂iζ )(∂ jζ )(∂kζ )Ti jk , or a coupling with a third derivative of

the form (∂i∂ j∂kζ )Ti jk . Hence, even without any calculations,
we can see that a −1/2 defect is not as strongly aligned by
an activity gradient as a +1/2 defect, but it may have these
weaker, higher-order aligning interactions.

IV. SIMULATIONS

So far, we have used two types of analytic theory to show
that the orientation of a +1/2 defect is aligned by an activity
gradient. As a numerical test of these analytic arguments, we
now perform simulations of the dynamic evolution of the po-
sition and orientation of a +1/2 defect in an activity gradient.

For the simulations, we follow the method of Ref. [16]. In
this method, we allow both the magnitude and the direction of
nematic order to vary, so that defects will be able to form and
move freely. Hence, we represent nematic order by the ten-
sor Qi j (r, t ) = S(r, t )[2ni(r, t )nj (r, t ) − δi j], with magnitude
S and director n̂. The magnitude S goes to zero at the defect
core. With the approximation of equal Frank constants, the
Landau–de Gennes free energy for this model is

F =
∫

d2r

[
−1

4
aQi jQi j + 1

16
b(Qi jQi j )

2

+ 1

16
L(∂kQi j )(∂kQi j )

]
. (13)

This free energy favors a bulk order parameter S = (a/b)1/2

away from any defect, and it favors a defect core radius rcore =
(L/a)1/2. The elastic constant L in this tensor representation is
related to the Frank constant K in the director representation
by K = LS2.

In this tensor representation, the two modes that dissipate
energy are the strain rate tensor Ai j = 1

2 (∂iv j + ∂ jvi ) and the
rotation of nematic order with respect to the background
fluid vorticity Bi j = Q̇i j − ω(εl jQil + εliQl j ), where ε ji is the
2D Levi-Civita symbol and ω = 1

2εkm∂kvm. In terms of these
modes, a minimal model for the dissipation function is [16]

D =
∫

d2r

[
1

2
α4Ai jAi j + 1

16
�1Bi jBi j − Z (r)Qi jAi j

]
. (14)

Here, the first term represents the dissipation from con-
ventional fluid flow, the second term represents rotation of
nematic order with respect to the fluid, and the third term
arises from the activity Z (r), which may be nonuniform. The
rotational viscosity and activity coefficients in the tensor rep-
resentation are related to the corresponding coefficients in
the director representation by γ1 = �1S2 and ζ = ZS. This
minimal model omits further terms that show the anisotropy
of drag, depending on the direction of velocity gradients with
respect to the nematic director, as discussed in Ref. [16].

Based on the free energy and dissipation function, the
partial differential equation for overdamped dynamics of the
nematic order tensor becomes

0 = − δF

δQi j
− δD

δQ̇i j
. (15)

Similarly, the equation for inertial dynamics of the flow veloc-
ity field becomes

ρ(∂t + v j∂ j )vi = −δD

δvi
+ ∂i p, (16)
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FIG. 1. (a) Steady-state defect orientation � as a function of ac-
tivity gradient Z ′, at rmax = 2, compared with a linear fit. (b) Steady-
state defect orientation � as a function of system size rmax,
at fixed Z ′ = 1, compared with a cubic fit.

where ρ is the mass density and p(r, t ) is the pressure. Finally,
the constraint of incompressibility is ∂ivi = 0.

We solve these equations numerically with the finite-
element method, using the software package COMSOL, inside
a circular domain of radius rmax. For the initial condition, we
impose a +1/2 defect at the center, with its initial orientation
in the +x direction. At later times, we find the location of
the defect by searching for the minimum of the scalar order
parameter S(r, t ) = [ 1

2 Qi jQi j]1/2. After finding the defect, we
determine the defect orientation vector p = (∇ · Q)/|∇ · Q|,
and hence the angle � = tan−1(py/px ).

We use parameters a = b = 200, L = 4, α4 = 1, �1 = 8,
and ρ = 1 (in arbitrary units). With these parameters, the bulk
order parameter is S = 1, and the defect core radius is rcore ≈
0.2. We impose a nonuniform activity pattern Z (x, y) = Z ′y,
with a gradient in the +y direction. We vary the activity
gradient Z ′ and the system size rmax, as discussed below.

For a first set of simulations, we apply Dirichlet boundary
conditions at rmax, so that the nematic order at the boundary is
fixed in its initial configuration. As we move forward in time,
the defect position shifts and its orientation rotates. However,
the system is highly constrained because of the boundary con-
dition. Because of this constraint, the system reaches a steady
state, with a limited translation and rotation of the defect.

Figure 1(a) shows the numerical results for the steady-state
defect orientation angle � as a function of Z ′, with fixed
rmax = 2. We can see that � is linearly proportional to Z ′.
Similarly, Fig. 1(b) shows corresponding results for � as a
function of rmax for fixed Z ′ = 1. Here, we see that � is
proportional to r3

max, because the larger system size allows
the defect more freedom to rotate. Both of these results are
consistent with the scaling predicted in Eq. (6).

For another set of simulations, we apply free boundary con-
ditions, so that the defect is not constrained by the boundaries.
With these boundary conditions, the defect will eventually
move out of the system, but we can monitor its position and
orientation until it leaves. Figure 2 shows examples of the
defect trajectories, with arrows indicating the defect positions
and orientations at the specified times. The defect begins at
the origin, with its orientation vector in the +x direction. The
orientation rotates toward alignment with the activity gradient
in the +y direction. This rotation occurs quickly for large Z ′,

FIG. 2. Examples of defect trajectories, as a defect moves out-
ward from the origin and exits the system with free boundary
conditions. The arrows indicate the defect position and orientation
at times t = 0, 2.0, 2.5, 3.0, 3.5, 4.0, . . . .

and more slowly for small Z ′, so that the rotation may not be
complete before the defect exits the system.

Similarly, Fig. 3 shows the time evolution of the defect
orientation angle � in the system with free boundary condi-
tions, with several positive and negative values of the activity
gradient Z ′. These results show that � is driven toward +π/2
when Z ′ > 0, and it is driven toward −π/2 when Z ′ < 0. In
both cases, the defect orientation vector p = (cos �, sin �) is
driven to be parallel to the activity gradient ∇Z = Z ′ŷ.

For a final example, we consider a more complex pat-
tern of activity. In this example, we are inspired by a recent
experiment [21], which investigated circulating motion of
two +1/2 defects in a circular disk with uniform activity.

FIG. 3. Time evolution of the defect orientation angle �, in a
system with free boundary conditions, for several positive and nega-
tive values of the activity gradient Z ′.
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For a related nonuniform simulation, we construct a system
with a circular region of nonzero activity in the center, sur-
rounded by a larger region of zero activity. We expect that
the activity gradient between the two regions will confine de-
fects, so that they will circulate around this effective confined
region.

The simulation geometry is shown in Fig. 4. The pink circle
in the center is the active region, while the gray region around
the circle is not active. The activity profile is

Z (x, y) = −Z0

π
tan−1

[
C

(
x2 + y2 − r2

0

)] + 1

2
, (17)

where Z0 = −100 or +30 is the value of activity within
the circular region, r0 = 0.5 is the radius of the region, and
C = 50 is a coefficient to determine the steepness of the
activity gradient (so that the wall width is C−1/2 ≈ 0.14). If
Z0 < 0, the gradient points outward, as shown by the red
(larger) arrows in Figs. 4(a)–4(d). Likewise, if Z0 > 0, the
gradient points inward, shown by the red (larger) arrows in
Figs. 4(e)–4(h).

The boundary condition on the square outer edge of the
gray region is tangential, with θBC (x, y) = tan−1(y/x) + π/2.
This boundary condition requires a total topological charge of
+1 inside the system, presumably in the form of two defects
of topological charge +1/2 each. Furthermore, this boundary
condition favors an inward alignment of the +1/2 defect
orientation vectors, shown by the blue (smaller) arrows on the
defects.

We set an initial state with a pair of +1/2 defects in the
active region, one pointing upward and the other downward.
Inside the active region, the initial director field is

θ (x, y) = 1

2

[
tan−1

(
y − y1

x − x1

)
+ tan−1

(
y − y2

x − x2

)]
+ π

4
,

(18)

where (x1, y1) and (x2, y2) are the locations of these two +1/2
defects. Outside the active region, the initial director field just
matches the boundary condition.

When the simulation begins, the defects repel each other
and move apart, and they rotate toward the orientation favored
by the boundary conditions. After that, the behavior depends
on the sign of the activity Z0. If Z0 < 0, as in Figs. 4(a)–4(d),
the defects move until they reach the edge of the active region.
At that point, they are confined by the activity gradient, and
cannot leave the active region. As a result, they circulate
around the active region, in the direction parallel to their p
vectors (as expected for negative, contractile activity). They
remain in this state of circular motion indefinitely. By contrast,
if Z0 > 0, as in Figs. 4(e)–4(h), the defects move directly
through the edge of the active region. Once they are in the
inactive region, they are no longer driven by activity, and
hence they stop moving.

We have also done simulations (not shown here) with
the radial boundary condition θBC (x, y) = tan−1(y/x), which
favors an outward alignment of the +1/2 defect orien-
tation vectors. In that case, the dependence on the sign
of Z0 is reversed: If Z0 > 0, the defects circulate indefi-
nitely around the active region, in the direction opposite to
their p vectors (as expected for positive, extensile activity).

FIG. 4. Snapshots of the dynamic evolution of the circular mo-
tion of +1/2 defects. (a)–(d) show the process with negative activity,
and (e) and (f) show the process with positive activity. The pink
(central) circle is the area with activity, and the red (larger) arrows
show the direction of activity gradient. The blue (smaller) arrows
show the location and orientation of defects.

If Z0 < 0, the defects move directly through the edge
of the active region, and stop moving in the inactive
region.

These simulation results can be understood based on the
hydrodynamic theory and the macroscopic theory presented
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earlier in this paper. In Figs. 4(a)–4(d), the boundary con-
ditions favor an inward defect orientation, while the activity
gradient favors an outward defect orientation. Hence, the de-
fects are oriented inward by the boundaries, but then they
have an unfavorable interaction with the activity gradient
around the edge of the pink (central) circle. The edge of
the circle is effectively a wall on the defects, which con-
fines them within the circular region. For that reason, they
move in a circle inside that region. In Figs. 4(e)–4(h), the
boundary conditions and the activity gradient both favor an
inward defect orientation. Hence, the defects rotate to an
inward orientation, and they can easily move through the
activity gradient. The edge of the pink (central) circle is
not a wall for them, and they go directly into the inactive
region. If the boundary condition is reversed from tangen-
tial to radial, then the dependence on the sign of Z0 is also
reversed.

In early stages of the simulations, the dynamics is mainly
controlled by the elastic interaction of defects, which causes
the defects to move apart from each other. In later stages, the
dynamics is mainly controlled by the activity, which causes
the defects to move along their orientation vectors, and by the

activity gradient, which realigns the defect orientation vectors.
The elastic interaction may play a secondary role in the later
stages.

In summary, this paper has presented three approaches
to model the interaction of topological defects with nonuni-
form activity: hydrodynamic theory based on the director and
velocity fields, macroscopic theory based on symmetry, and
simulations based on the nematic order tensor and velocity
fields. All of these approaches show that an activity gradient
aligns the orientation vector of a +1/2 defect, in a similar
way to an electric field aligning an electric dipole moment.
In particular, the simulations provide one example of how an
activity gradient can be designed to guide the motion of topo-
logical defects. These results agree with the previous work
of other groups using different methods [17,18], and support
the concept that nonuniform activity patterns can be used to
control active materials.
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