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From n-layer planar ordering to the monolayer homeotropic structure of confined hard rods:
The effect of shape anisotropy and wall-to-wall separation
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Using the Parsons-Lee theory, we examined the effect of shape anisotropy and the wall-to-wall separation
(H) on the phase behavior of the hard parallelepiped rods with dimensions L, D, and D (L > D) in such narrow
slitlike pores which only one homeotropic layer can form. The phase structures, including biaxiality, planar
nematic layering transition as well as planar to homeotropic, were studied for some separations in the range
2.5D � H � 10.0D for H−D � L < H .
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I. INTRODUCTION

The liquid crystal (LC) phase is still a fascinating subject
that has attracted many scientists for decades. Over the years,
many scientists have carried out a wide range of investigations
on the anisotropic LC molecules experimentally [1,2], theoret-
ically [3,4], and using computer simulations [5,6] due to their
widespread applications. Their various properties are widely
used in industry, such as sensors [7], photonic instruments [8],
and bistable devices [9]. The reason for the extensive use of
liquid crystal displays is the possibility of controlling the LC
alignment technologically [10,11].

Two important groups of LCs are lyotropics and ther-
motropics. Lyotropics consist of massive particles, and
fundamentally their phase transition only depends on their
concentration, i.e., the entropy is the driving force [12]. It
means the anisotropic shape of the particles is the key fac-
tor in the formation of LC phases. Some other factors that
affect the phase transition of LC particles are anchoring of
the surface, confinements, externally applied electromagnetic
fields, and defects [13,14]. According to the statistics pre-
sented in Ref. [15], over the last two decades, lyotropics
get even more attention from researchers to understand their
fascinating physical properties through theory, simulation,
and experimental laboratories. Its modern applications like
biotechnology, biosensors, drug delivery, biomimetics, strong
nanomembrane films, development of alternative nanomate-
rials with different physical properties, and the synthesis of
nanoparticles can be named [16–20].

The liquid crystalline states generally may be divided into
the isotropic (I), nematic (N), smectic, and columnar phases
[4,21]. These structures can form in both bulk and confined
colloidal systems [22,23]. This phase behavior is arising from
the strong competition between intrinsic and extrinsic inter-
actions [24]. The confining walls may form a nematic phase
with parallel planar (P) or homogenous phase where the long
axis of the particle is parallel to the walls and homeotropic
structure (H), which the long axis of the particles is perpen-
dicular to the walls. Allen [25,26] simulated the rigid rodlike
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particles confined between two planar walls and showed that
the preferred anchoring near the walls is planar.

The study of the transition between P and H phases can
be of interest from the technological point of view since these
phases are essential in designing and constructing optoelec-
tronic devices [11].

The nematic planar phase confined between two walls
could be uniaxial (U) or biaxial (B). The U-B transition in-
duced by a substrate(s) has been predicted to be second order
for confined hard rodlike [27–30] and platelike [31] particles.
The biaxial nematic phases have been studied widely exper-
imentally [32–34] and theoretically [35–37] due to their fast
response time to the applied electric field, which is an essential
factor in display technologies [38].

From a practical point of view, studying hard body fluids
between two hard walls, as a model system of nanoparticles
in nanopores, is also an exciting topic [39,40] since by de-
creasing the wall-to-wall separation, it is possible to reach
the almost two-dimensional (2D) systems (quasi-2D systems),
which the nature of their transition may be completely differ-
ent with three-dimensional (3D) systems [23]. For example,
the I-N phase transition in 3D systems with large enough
particles is discontinuous, but in the 2D systems, the N phase
changes continuously to the I phase with decreasing density
[41,42].

The ordering of the rectangular hard rod particles in
contact with a single wall or between two hard surfaces has
been investigated through the theory [27–30,43]. Their results
can be summarized as (i) a wall-induced surface transition
from uniaxial to biaxial symmetry, (ii) the nematic film wets
the wall completely, (iii) the critical value of the pore width
at which the capillary nematization (I-N) terminates is about
twice the length of the rod, (iv) the P-H transition occurs
at strongly confined nonmesogenic rods (i.e., 1 < L/D < 3
an d H/D � 3) (v) this first-order transition terminates at
about L/D ≈ 2 when 2 < H/D � 3, (vi) T phase forms
for L/D < 2, and (vii) planar nematic layering transition
takes place for some studied L/Ds. Here L is the length
of the particle, and D is its short side. Despite some sharp
differences, some similar results have also been achieved for
hard platelike particles [31,44–47].
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The understanding and describing the structures of the con-
fined parallelepiped-shaped rods with square or different cross
sections are fundamental theoretical problems since such a
system is an excellent model for understanding the phase
behavior of nanorods like goethite, in nanoconfinement.

In this paper, we examine the effect of very narrow confine-
ment on the surface-induced biaxial ordering and the planar
nematic layering transition as well as the transition from
P to H phase where H/D is constant, and L is limited to
H−D � L < H to avoid the formation of complex phases
with several mixed structures. It means only one homeotropic
layer can place into the pore. Based on our theoretical results,
which have been achieved from the Parsons-Lee theory in
the restricted orientation approximation, we divide the studied
ranges into four parts (i) 2.5 � H/D � 3.0, (ii) 3.0 < H/D �
4.0, (iii) 4.0 < H/D � 8.0, and (iv) H/D � 9.0. First, we
study case (iii) where there is one planar nematic layering
transition, i.e., (n − 1) layers to n layers. Then we examine
the case (iv) or the wider pores where we expect more than
one planar nematic layering transition, and in the next step,
we calculate the phase borders of the case (ii) where there
is no planar nematic layering transition for some pores, but
there is (n − 1) − n layering transition for the other pores in
this range with presenting re-entrant phenomenon. At last, we
study case (i) where there is no planar layering transition.

The drawback of the Parsons-Lee theory is that this the-
ory only captures isotropic and nematic phases, not the solid
phase. As a result, the confined n-layer planar fluid may
freeze first, and then it transforms into the homeotropic crys-
tal, where both coexisting phases are crystalline. The applied
restricted orientation approximation also has quantitative and
qualitative effects on the achieved results. To resolve this
issue, it is necessary to extend the theory. Therefore, study-
ing the system in a freely rotating manner and including
the possible crystalline phases is essential to demonstrate the
reported phase structures in this paper. However, the presence
of the layering transitions has been proven for confined freely
rotating squares between two hard lines in a simulation study
[48]. Such a layering phenomenon has also been reported in
thin confined films by Monte Carlo simulation investigations
[49,50].

Also, it is worth noticing that the investigation into the
phase structures and surviving the density induced P-H transi-
tion in wide pores is essential to fabricate bistable devices or
pressure sensors [51].

II. THEORY

We studied the confined hard rod particles with a rect-
angular cross section and edge lengths L, D, and D into

a slitlike pore with flat and parallel hard walls where the
walls are perpendicular to the z axis and placed at z = 0 and
z = H and spread in the xy plane. We use the Onsager theory
with the Parsons-Lee modification [27,52] within a three-state
Zwanzig approximation [53], which the orientation freedoms
of the particles are along the x, y, and z directions. Therefore,
the local density of each direction (ρi where i = x, y, z) is a
function of the z coordinate only, and we can achieve the pack-
ing fraction (η) from the local densities (ρi(z), i = x, y and z)
as below:

η = V0

V

∑
i=x,y,z

∫
d�rρi(�r) = V0

H

∑
i=x,y,z

∫
dzρi(z), (1)

where V0 = LD2 is the volume of each particle, L is the length
of the larger side, and D is the length of shorter sides of a
particle, A is the area of the confining surfaces, and V = AH
is the volume of the pore. The details of the used theory are
in Ref. [27], and here we explained it briefly. It is assumed
that the system is athermal, and the free energy only depends
on the variation of the entropy (S), i.e., the system is entropy
driven. The free energy is the sum of the ideal, excess, and
external terms (F = Fid + Fexc + Fext). In the ideal free energy
term, the particles’ distribution is rather homogeneous in both
orientation and position, and it is given by

βFid

A
=

∑
i=x,y,z

∫
dzρi(z)(lnρi(z) − 1), (2)

where β = 1/kBT , T is the absolute temperature. The mini-
mized excess free energy term is related to the ordered phases’
equilibrium, which is achieved by minimizing the excluded
volume between two particles. The second term of the free
energy can be written as follows:

βFexc

A
= 1

2
c

∑
i, j=x,y,z

∫∫
dz1dz2ρi(z1)ρ j (z2)Ai j

exc(z1 − z2),

(3)
where c = (1 − 3η/4)(1 − η)−2 and Ai j

exc is the excluded area
between two particles with i and j orientations. The external
free energy term confines the particles between the hard walls
of the pore, and it is written as below:

βFext

A
=

∑
i=x,y,z

∫
dzρi(z)βV i

ext (z), (4)

where V i
ext (z) is zero inside the pore and infinite otherwise. To

determine the local equilibrium densities, the free energy is
minimized with respect to all density components, and finally,
the local equilibrium densities are achieved as below:

ρk (z) = Hη

V0

exp
[−βV k

ext (z) − c
∑

i=x,y,z

∫
dz1ρi(z1)Aik

exc(z − z1)
]

∑
l=x,y,z

∫
dz1exp

[−βV l
ext (z1) − c

∑
i=x,y,z

∫
dz2ρi(z2)Ail

exc(z1 − z2)
] , (5)

where k = x, y, z. Here, we define the dimensionless distance
z∗ = z/D, the dimensionless density ρ∗ = ρD3 and H∗ =
H/D, where D is unit of the distance.

We use the trapezoidal quadrature rule to solve numerical
integrations. The coupled integral equations of the local den-
sities, Eq. (5), have been solved numerically through Picard’s
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FIG. 1. Schematic diagram of the phase transitions of the particles by increasing η for H/D = 4.5 and L/D = 4.30.

iteration method to calculate the equilibrium phase structures.
Reliable solutions for each phase depend on choosing the
correct initial value. Therefore, it is crucial to find the right
initial value of the desired phase at the first packing fraction
by an initial function in the code to achieve the solutions at
other packing fractions. A linear combination rule is also used
to mix the results of the successive iterations. To check the
convergence between the results of two consecutive iteration
steps, this equation 1

1+u

∑u
i=0

∑
k |ρ j+1

k (zi) − ρ
j
k (zi)| < 10−10

is applied where j is an iteration step in which the successive
iteration process is considered to be convergent. In addition,
we use �z = 0.01 where the phase separation is strong and
�z = 0.001 or 0.000 1 where phase boundaries are very
close. Discontinuous phase transitions are placed at the cross
point of two different solutions of Eq. (5) in the βμ − βF

A
plane. It is also important to notice that the stable phase in
the system at a certain packing fraction has the smallest free
energy.

III. RESULTS AND DISCUSSION

We have applied the Parsons-Lee theory to study the phase
structures of the hard rectangular rods numerically for H/D −
1 � L/D < H/D where only one homeotropic layer can form
in the pores, preventing them from forming complex struc-
tures. Therefore, the particles are permitted to lie either planar
with maximum n layers or homeotropic with only one layer.
The Parsons-Lee formalism is utilized for the prolate [54] and
oblate particles [55] and also different types of pores. We use
it for rods with aspect ratios in the range of 2.00 � L/D <

10.00 with eight different constant wall distances, i.e.,H/D =
2.7, 2.9, 3.3, 3.5, 4.5, 6.0, 8.0, and 10.0. For H/D = 3.3
and 4.0 < H/D � 8.0, there are only either (n − 1) or n pla-
nar layers where n is the maximum allowable planar layers,
and its value is either n = [H/D] − 1 for an integer H/D or
n = [H/D] for a noninteger H/D ([H/D] denotes as an integer
part of H/D). The scenario could be different for other pores.
For example, for H/D = 9.0 and 10.0, there are two planar
layering transitions, i.e., (n − 2) → (n − 1) and (n − 1) → n
(we have not reported the phase diagram of H/D = 9.0) or for
H/D = 3.5, and 2.5 � H/D � 3.0, there is no planar layering
transition.

We present our results as follows: (i) some H/Ds in the
range of 4.0 < H/D � 8.0, (ii) H/D = 10.0, (iii) some H/Ds
in 3.0 < H/D � 4.0, and (iv) some H/Ds in 2.5 � H/D �
3.0. It would be useful to calculate the highest value of the
packing fraction for the planar and homeotropic states to
determine the more stable phases. The packing fraction is
defined as η = NV0/V , where N is the number of particles in
the pore. This value for the planar and homeotropic phases are

ηP = (NLD/nA) × (nD/H ) and ηH = (ND2/A) × (L/H ),
respectively, i.e., the packing fraction for each orientation is
possible to divide into 2D (first parentheses in ηP and ηH) and
1D (second parentheses in ηP and ηH) parts. The maximum
packing fraction occurs when in each layer the particles’
faces are parallel to the walls, and cover the pore surfaces
thoroughly, i.e., (NLD/nA)Max = 1 for the planar structure
and (ND2/A)Max = 1 for the homeotropic one. Therefore, the
close packing values of the packing fraction are ηP

cp = nD/H
and ηH

cp = L/H for the planar and homeotropic structures,
respectively. It is worth mentioning that as ηP

cp < ηH
cp < 1, the

homeotropic state will be more stable than the planar phase at
high densities. According to the Parsons-Lee theory, the free
energy diverges at η = 1 [56,57]; therefore, the free energy
cannot be infinite at ηcp.

In Fig. 1, we have shown the schematic diagram of the
studied phase structures for H/D = 4.5, and L/D = 4.30.
This figure depicts the 2D representation of the possible tran-
sitions which occur by increasing η.

Figure 2(a) presents the phase diagrams of H/D =
4.5 with 3.50 � L/D < 4.50. The density profiles of four
different packing fractions at η = 0.300, 0.450, 0.550,

and 0.750 have been shown in Figs. 2(b), 2(c), 2(d),
and 2(e), respectively, which can be identified by differ-
ent symbols in Fig. 2(a). As we mentioned before, to
avoid complicated phases, we set the following condi-
tion: H/D − 1 � L/D < H/D. According to Fig. 2(a), by
increasing the density, the overall trends of the phase tran-

sitions are 3IL
second−order transition−−−−−−−−−−−−→ 3BPL

first−order transition−−−−−−−−−−−−→
4BPL

first−order transition−−−−−−−−−−−−→ H (monolayer), where 3IL, 3BPL,
and 4BPL stand for isotropic phase with three layers and
planar adsorption at the walls, planar nematic with three
biaxial layers, and planar nematic with four biaxial layers,
respectively. These behaviors originate from the competition
between Eqs. (2) and (3) to increase the available space for
the confined rods. Contrary to the free energy’s excess term,
Fexc, the free energy’s ideal term, Fid, prefers the particles
to be in the random positions and orientations. Since the
planar ordering is important to decrease the excluded area
near the walls, the structure is planar close to the surfaces, as
shown in Fig. 2(b). We call this structure the planar isotropic
(I) or the uniaxial phase because of the equal contributions
of ρx and ρy. By increasing the density, the phase changes
to the biaxial (ρx �= ρy �= ρz) and planar nematic (BP), as
illustrated in Fig. 2(c). The (blue) solid line in Fig. 2(a)
shows the biaxiality border, which separates the I and the
BP phases. This relatively steep slope of the I-BP line arises
from the dependency of the second term of the free energy
[Eq. (3)] to the aspect ratios of the particles, L/D. As shown in
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FIG. 2. (a) The coexisting packing fractions versus L/D for H/D = 4.5, (b)–(e) the density profiles of the different phases versus z* for
L/D = 4.10 marked by different symbols in (a). These phases are (b) planar isotropic with three layers (3IL) at η = 0.300, (c) biaxial planar
nematic with three layers (3BPL) at η = 0.450, (d) biaxial planar nematic with four layers (4BPL) at η = 0.550, and (e) homeotropic (H) at
η = 0.750.

Fig. 2(a), the I-BP transition density increases by decreasing
L/D. In fact, by decreasing the shape anisotropy, the excluded
area between two particles decreases [30], and thereby the
second term of the free energy decreases, which is com-
pensated by higher ηs. Furthermore, by decreasing L/D in
the range of 3.50 � L/D < 4.50, the aspect ratio is getting
closer to the region of nonmesogenic particles (L/D < 3.00),
and the I-BP transition takes place even at higher packing
fractions for more isotropic particles [27]. The slope of all

studied I-BP lines are presented in Table I. According to
this table, the absolute value of the slope of all the re-
ported U-B lines is decreasing by increasing the pore width
as we expect due to the increment of the shape anisotropy
of the studied particles with increasing the wall-to-wall
distance.

As illustrated in Figs. 2(a)–2(c) both the isotropic and the
biaxial phases have three layers. There is no 2–3 planar lay-
ering transition for H/D = 4.5 since the pore is wide enough
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TABLE I. The slope of the I-BP lines of different H/Ds. The values marked with * have been reported in Ref. [27].

L/D The range of η for I-BP transition The slope of I-BP line

2.2* (2IL-2BPL) 1.60 � L/D < 2.20 0.800 � η � 0.648 −0.253
2.5* (2IL-2BPL) 1.74 � L/D < 2.50 0.750 � η � 0.561 −0.236
2.7 (2IL-2BPL) 2.00 � L/D � 2. 69 0.663 � η � 0.516 −0.213
2.9 (2IL-2BPL) 2.00 � L/D � 2.89 0.657 � η � 0.468 −0.212
3.0* (2IL-2BPL) 1.95 � L/D < 3.00 0.658 � η � 0.443 −0.205
3.3 (3IL-3BPL) 2.85 � L/D � 3.05 0.525 � η � 0.489 −0.193
3.3 (2IL-2BPL) 2.89 � L/D � 3.29 0.455 � η � 0.380 −0.177
3.5 (3IL-3BPL) 3.00 � L/D � 3.49 0.491 � η � 0.407 −0.169
4.5 (3IL-3BPL) 3.50 � L/D � 4.49 0.377 � η � 0.262 −0.116
6.0 (4IL-4BPL) 5.00 � L/D � 5.99 0.240 � η � 0.177 −0.064
8.0 (6IL-6BPL) 7.00 � L/D � 7.99 0.159 � η � 0.130 −0.029
10.0 (7IL-7BPL) 9.00 � L/D � 9.99 0.119 � η � 0.099 −0.020

to form three planar layers mixing with out-of-plane particles
even at the low densities.

By comparing Figs. 2(c) and 2(d), it is clear that by increas-
ing the density, the first order 3BPL-4BPL transition takes
place where its coexisting region is patterned by tilting lines
and green color in Fig. 2(a). The creation of a new planar
layer is discontinuous since it pushes the existing layers to the
direction of the walls, and thereby there is less space for old
layers. The dashed (violet) line shows the close packing value
of the packing fraction of the 3BPL phase, η3BPL

cp = 0.667.
The occurrence of the 3BPL-4BPL transition below η3BPL

cp
shows the high stability of the 4BPL structure. The 3BPL-
4BPL transition depends very weakly on L/D and decreases
very slowly by the decrement of L/D. This dependency arises
from the easier rearrangement of the particles with smaller
aspect ratios.

As it is apparent in Fig. 2(a), by increasing the packing
fraction, the first-order 4BPL-H phase transition takes place
(grey region) for some L/D s. This change in the structure
can also be seen by comparing Figs. 2(d) and 2(e). Since
the available distances along the z axis in the planar and
homeotropic phases are (H−D) and (H−L), respectively, the
inequality H−D > H−L guarantees more available room for
the planar phase for the prolate particles (L/D > 1). However,
by increasing the density, the particle-particle interactions in-
crease, and the particles distribute themselves in such a way
that the free energy of the system decreases, thereby caus-
ing the homeotropic phase. This P-H transition takes place
in the range of 4.02 � L/D < 4.50 where the minimum η

or the 4BPL-H transition curve corresponds to L/D = 4.13,
and it goes up to the higher values of η as L/D → 4.50 and
4.02. This transition terminates at (L/D)c ≈ 4.02, and ηc ≈
0.785. It means that for L/D < 4.02, 4BPL phase evolves
continuously into the H phase on increasing η because the
rods with smaller elongation can rearrange easier, hence it
is easier to accommodate the homeotropic layer into the
pore.

The solid (red) line in the top-left of Fig. 2(a) shows ηH
cp,

which grows by increasing L/D. As shown in this figure,
the H phase happens below η4BPL

cp = 0.889 (not shown in the
figure) which indicates the stability of this structure. Since
in the homeotropic phase, by increasing the particles’ aspect
ratios, the translational entropy decreases along the z axis,

the system prefers to remain in the planar phase rather than
the homeotropic one. That’s why the 4BPL phase for 4.13 �
L/D < 4.50 has the widening stability region. Note that the
stability of the 4BPL phase with respect to the homeotropic
phase for 4.02 � L/D < 4.13 cannot be explained by the
same reason because, in the homeotropic order, the transla-
tional entropy is now larger. Therefore, the main factor in
this phenomenon could be the packing entropy as the close
packing values of 4BPL and H phases are becoming closer to
each other as L/D goes to 4.02.

Figure 3 shows the results of H/D = 6.0 when 5.00 �
L/D < 6.00. The different phase structures for H/D = 6.0 are
indicated in Fig. 3(a). Figures 3(b) and 3(c) depict the struc-
ture changes from a planar isotropic with four layers (4IL)
to the biaxial planar nematic with the same number of layers
(4BPL). Although there exist particles with homeotropic order
in the middle of the pore in the 4IL phase, by increasing
the density, the fraction of the particles with the homeotropic
orientation decreases [Fig. 3(b)] because of their interaction
with all planar layers. Therefore, the planar ordering wins
the competition, and more planar layers emerge in the pores,
i.e., 4BPL changes to 5BPL [Figs. 3(c) and 3(d)]. The max-
imum number of planar layers is 5 for H/D = 6.0, and the
discontinuous transition from 4BPL to 5BPL happens around
η = 0.450. The η4BPL

cp and η5BPL
cp are 0.667 and 0.833, respec-

tively, as shown by a dashed violet and a dotted green lines
in Fig. 3(a). However, at very high densities (homeotropic
ordering), the packing entropy (the excluded area) term of the
free energy (Fexc) wins over the translational and orientational
ones (ρi ln ρi) due to minimizing the excluded area term be-
tween the particles in Eq. (3), thereby 5BPL-H transition takes
place. The gray area with rhombus pattern is the coexisting
region of 5BPL and homeotropic phases; and the solid (red)
line on the top-left of Fig. 3(a) shows ηH

cp. This first-order
transition terminates at (L/D)c ≈ 5.01 and ηc ≈ 0.807. The
slope of the I-BP transition line in Fig. 3(a) is smaller than the
one in Fig. 2(a) and occurs at lower densities due to the more
anisotropic shape of the particles (Table I).

Similar transitions with different number of layers can
also be seen in Fig. 4 for H/D = 8.0. As it is obvious from
this figure, the critical point of 7BPL-H transition occurs
at (L/D)c ≈ 7.02 and ηc ≈ 0.806. The dashed (violet) line
shows η6BPL

cp = 0.750 and the inset in Fig. 4(b) presents the
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FIG. 3. (a) The coexisting packing fractions versus L/D for H/D = 6.0, (b)–(e) the density profiles of different phases versus z* for
L/D = 5.40 marked by different symbols in (a). These phases are (b) planar isotropic with four layers (4IL) at η = 0.200, (c) biaxial planar
nematic with four layers (4BPL) at η = 0.400, (d) biaxial planar nematic with five layers (5BPL) at η = 0.500, and (e) homeotropic (H) at
η = 0.750.

number of layers clearly. The slope of the (blue) line in
Fig. 4(a) is smaller than the ones in Figs. 2(a) and 3(a) and
occurs at lower densities due to the more anisotropic shape of
the particles (Table I).

For all the studied H/Ds in the range of 4.0 < H/D � 8.0,
only (n − 1) to n layering transition occurs, but more layering
transitions emerge for studied wider pores. In this order, we
examined the layering transitions of H/D = 9.0 and 10.0. We
report the phase structures of H/D = 10.0 in Fig. 5 where
in addition to 8BPL-9BPL transition, the 7BPL-8BPL transi-

tion also occurs. According to our results, by increasing the
wall-to-wall distance and the shape anisotropy, we expect the
occurrence of more and more layering transitions for H/D �
9.0 because in the middle of the pore, the local density is
almost constant and the new peak can emerge easily in that
area. In Fig. 5(a), the dashed (orange) line, and the dotted
(violet) one show the η7BPL

cp = 0.700 and η8BPL
cp = 0.800, re-

spectively. The critical point of the 9BPL-H transition occurs
at (L/D)c ≈ 9.05 and ηc ≈ 0.794. The inset in Fig. 5(b) en-
ables us to count the number of the existing layers.

022702-6



FROM n-LAYER PLANAR ORDERING TO THE … PHYSICAL REVIEW E 103, 022702 (2021)

FIG. 4. The phase structures of confined hard rods for H/D = 8.0, (a) The coexisting packing fractions versus L/D, (b)–(e) the density
profiles of different phases versus z* for L/D = 7.20 marked by different symbols in (a). These phases are (b) planar isotropic with six layers
(6IL) at η = 0.140. The inset shows part of in-plane density profiles, and it depicts the number of planar layers clearly, (c) biaxial planar
nematic with six layers (6BPL) at η = 0.550, (d) biaxial planar nematic with seven layers (7BPL) at η = 0.600, and (e) homeotropic (H) at
η = 0.750.

In this paper, we have also studied the phase structures
of some pores for 3.0 < H/D � 4.0 and 2.5 � H/D � 3.0.
Figure 6(a) and 6(b) show the phase diagrams of H/D = 3.3
and H/D = 3.5, respectively. As shown in this figure, the 2IL-
2BPL transition line [blue solid line in Fig. 6(a)] intersects
2BPL-3BPL coexisting region at L/D = 2.89, and at higher
densities, 3IL-3BPL transition emerges and intersects this re-
gion at L/D = 3.05 [red dotted line in Fig. 6(a)]. Therefore,

the phase structures at the intermediate densities for H/D =
3.3, could be divided into three parts depending on the L/D
values. By increasing η, the phase transitions are as follows:

1: 2IL-2BPL-3BPL for 3.05 � L/D < 3.30,

2: 2IL-2BPL-3IL-3BPL for 2.89 � L/D < 3.05,

3: 2IL-3IL-3BPL for 2.85 � L/D < 2.89.

Note that the re-entrant phenomenon takes place in
part 2, i.e., 2.89 � L/D < 3.05. Here both the isotropic and
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FIG. 5. The phase structures of confined hard rods for H/D = 10.0 (a) The coexisting packing fractions versus L/D, (b)–(f) the density
profiles of different phases versus z* for L/D = 9.25 marked by different symbols in (a). These phases are (b) planar isotropic with seven
layers (7IL) at η = 0.090. The inset shows part of in-plane density profiles, and it depicts the number of planar layers clearly, (c) biaxial planar
nematic with seven layers (7BPL) at η = 0.300, (d) biaxial planar nematic with eight layers (8BPL) at η = 0.470, (e) biaxial planar nematic
with nine layers (9BPL) at η = 0.670, and (f) homeotropic (H) at η = 0.780.

biaxial planar phases are re-entrant. The isotropic phase with
two planar layers (at lower densities) and the isotropic phase
with three planar layers (at higher densities) change to two
and three biaxial planar layers, respectively. Four different
density profiles of H/D = 3.3 can be seen in Figs. 6(c)–
6(f). For L/D < 2.89, there exists a direct 2IL-3IL transition,
which causes three planar isotropic layers ordering emerges

without accruing 2BPL phase in this region. Figures 6(e)
and 6(f) show that the peaks are narrower for three-layer
states than the peaks of the planar isotropic with two layers
[Figs. 6(c) and 6(d)], which means that for 3IL and 3BPL,
the particles near the opposite walls do not overlap with each
other. Since the particles are packed very well with three-
layer uniaxial planar state in the pore as well as being in the
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FIG. 6. The phase structures of confined hard rods for (a) H/D = 3.3, (b) H/D = 3.5. (c)–(f) The density profiles of different phases
of H/D = 3.3 versus z* marked by different symbols in (a). These phases are (c) planar isotropic with two layers (2IL) at η = 0.400 and
L/D = 3.15, (d) biaxial planar nematic with two layers (2BPL) at η = 0.440 and L/D = 3.15, (e) planar isotropic with three layers (3IL) at
η = 0.500 and L/D = 2.95, and (f) biaxial planar nematic with three layers (3BPL) at η = 0.530 and L/D = 2.95.

in-bulk nonmesogenic particle range (L/D < 3.00), make it
possible to have the planar isotropic ordering at higher den-
sities. As a result, the second-order 3IL-3BPL transition
shifts to higher densities. The close packing value of two
layers [the violet dashed line in Fig. 6(a)] and three lay-
ers [not shown in Fig. 6(a)] are η2BPL

cp = 0.606 and η3BPL
cp =

0.909, respectively. The phase changes from 3BPL to H
by increasing the density and this transition terminates at

(L/D)c ≈ 3.01 and ηc ≈ 0.777. Figure 6(b) depicts the phase
structures of H/D = 3.5. There is no layering transition for
H/D = 3.5 and hence 3.5 < H/D � 4.0 since in this range
the pore is wide enough to form three planar layers even
at low densities but not wide enough to have four planar
layers. At higher values of the densities the phase transi-
tion of 3BPL to H is formed which terminates at (L/D)c ≈
3.01 and ηc ≈ 0.784. The close packing value of three-
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FIG. 7. The phase transitions of confined hard rods for (a) H/D = 2.7 with the density profiles of the planar isotropic (in the inset) with
two layers (2IL) at η = 0.600 and L/D = 2.20 and (b) H/D = 2.9 with the density profiles of the planar isotropic (in the inset) with two layers
(2IL) at η = 0.560 and L/D = 2.30.

layer state is η3BPL
cp = 0.857 that has not been shown in

Fig. 6(b).
According to Ref. [27], there exists a direct transition from

I to H phase for 2.10 < L/D < 2.50 when H/D = 3.0, i.e.,
the BP phase is absent in above-mentioned range, and this
transition does not happen for H/D � 2.5. To investigate if
this direct transition exists for the other H/Ds in the range
of 2.5 < H/D < 3.0, we calculated the phase separations of
H/Ds in this range and reported the phase diagrams of H/D =
2.7 and 2.9 as shown in Figs. 7(a) and 7(b), respectively.
Considering the findings of Ref. [27] and our calculations,
we conclude that there is a direct I-H transition in the range
of 2.7 � H/D � 3.0. The insets in Figs. 7(a) and 7(b) show
the density profiles at ηs, which are below the I-H coexist-
ing region. The 2BPL-H transition terminates at (L/D)c ≈
2.01 and ηc ≈ 0.751 for H/D = 2.7, and (L/D)c ≈ 2.01 and
ηc ≈ 0.740 for H/D = 2.9. As it is clear, for H/D � 3.0, the
homeotropic phase appears at lower densities with respect
to H/D > 3.0. Because for wider pores, the translational en-
tropy is more dominant and prevents forming the homeotropic
ordering at lower densities.

For H/D � 2.5, the pore widths are very narrow; therefore,
switching from the planar phase to the homeotropic one is
harder, and the P-H transition takes place at higher densities
than the densities that the I-BP transition occurs [27], but the
pores in the range of 2.7 � H/D � 3.0 are wide enough to
change the phase from planar to homeotropic at the densities
where the I-BP transition can form.

The critical packing fractions of the critical points of
nBPL-H transitions versus H/D have been shown in Fig. 8(a).
The hollow circles are related to Ref. [27], and the filled
squares belong to the calculations of this paper with dotted
line as a guide to the eye. As it can be seen, the lowest ηc of
the studied cases belongs to H/D = 2.9, and the highest ηcs
are for H/D = 2.2, 6.0 and 8.0. The critical aspect ratio of the
particles ((L/D)c) versus wall-to-wall separation is illustrated
in Fig. 8(b). The hollow circles correspond to Ref. [27], and
the asterisks belong to our calculations. According to this

figure, for all the pores where H0/D < H/D � H0/D + 1,
which H0/D is an integer number, the critical point of the
nBPL-H transitions occur approximately around (L/D)c ≈
H0/D. However, to express a general rule, more wall-to-wall
distances have to be studied. Figure 8(c) presents the lowest
coexisting densities in nBPL-H transitions vs H/Ds. Figure 8
depicts that the best H/D range to investigate nBPL-H tran-
sition for confined rectangular rods in future simulation and
experimental studies is about 2.7 � H/D � 3.0 at L

D ≈ 2 +
H
D −2

2 as well as H
D = 6.0 at L

D ≈ 5.3. According to Fig. 8(c)
for 2.2 � H/D � 3.0, by increasing the pore width, the H
phase could be stabilized at lower densities since there is no
planar layering transition in this range, and by increasing the
wall separation the particles can order easier at the direction
normal to the walls. At larger pore widths (i.e., H

D > 3.0)
the planar layering transitions shift the nBPL-H transition to
higher densities.

IV. CONCLUSION

We have investigated the effect of the pore width and aspect
ratio on the phase behaviors of hard rodlike particles located
between two parallel hard walls. Through the Parsons-Lee
theory in a restricted orientation model. We have found that
the purely repulsive forces between walls and particles in-
duce a biaxial nematic order with strong adsorption at the
walls where the nematic director is parallel to the walls. This
strong surface adsorption maximizes the available space for
the particles in the pore, reducing the excluded volume cost
between the particles. It is demonstrated that if the surface
density of adsorbed particles at the walls exceeds the I-N
transition density of 2D hard rectangles, a surface induces
the biaxial nematic phase. The biaxial ordering occurs at
higher densities by decreasing shape anisotropy due to the less
packing entropy gain with in-plane ordering. We observed the
biaxiality in all the studied wall-to-wall distances. However,
for 2.7 � H/D � 3.0 and some L/Ds, the H phase overcomes
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FIG. 8. (a) The critical packing fractions (b) the critical aspect ratios of the nBPL-H transitions and (c) the minimum coexisting packing
fractions in nBPL-H transitions versus wall-to-wall separation. The hollow circles are related to Ref. [27] and other symbols are related to our
calculations.

the biaxiality, and for some H/Ds between 3.0 and 4.0, two
types of biaxiality occur.

Since the pores are not wide enough in the middle of
the pore, the inhomogeneous fluid structure cannot relax the
same as the bulk, and the wall effects determine the number
of layers. We have observed that there are always two pla-
nar layers at the walls, but a homeotropically ordered layer
competes with the planar one in the middle of the pore.
For 3.0 < H/D � 4.0, layering transition occurs for some
H/Ds with re-entrant phenomenon but for other H/Ds in this
range; there is no planar layering transition. For 4.0 < H/D �
8.0, only (n − 1) to n layering transition occurs, and finally,
for H/D � 9.0, there is (n − 2) BPL-(n − 1) BPL-n BPL-H
phase sequence with increasing the density. Note that for all
studied H/Ds in this paper, the (n − 1) BPL-n BPL transitions
occur below η(n−1)BPL

cp , which shows the high stability of nBPL
phases. By comparing the studied pore widths, it is obvious

that the width of the coexisting region of (n − 1) BPL-n BPL
transition is smaller for wider pores.

In 2018, the planar-to-homeotropic transition was reported
for H/D � 3.0 [27] and here we show this kind of transition
survives even for wider pores. For all studied H/Ds in this
paper, the n BPL-H transitions take place at η < ηnBPL

cp , which
proves the stability of the H phase. Such a transition has been
reported for stiff-polymer rings [58] and also examined by
changing the wall penetrability in a system of hard Gaussian
overlap particles [59].
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