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Experimental focusing shocklike dynamics in a nonlocal optical stochastic Kerr medium
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We experimentally study the propagating of an optical intensity jump discontinuity in a nonlocal stochastic
Kerr focusing nematic liquid crystal cell. We show both theoretically and experimentally that nonlocality opens
a route towards beam steering in our system. Indeed, the discontinuity trajectory follows a curve that bends
with the injected power. Despite the stochastic nature of the medium and the constant presence of transverse
instabilities, the development of a focusing shocklike dynamics is shown to survive. The distance Zs for the
focusing shock to occur follows a power law with the beam power P according to Zs ∝ Pχ , with χ = −4/3, as
for shock dynamics in self-defocusing media.
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I. INTRODUCTION

Any physics student from wave optics class has heard
about the phenomenon of diffraction, i.e., varying when the
wave envelope varies during propagation. They also know
that this effect is embedded in Maxwell’s equations, and the
necessary condition for this phenomenon to occur is for the
field envelope to depend on the spatial coordinates. This is
linear diffraction. However, an additional term appears in the
wave propagation equation if the wave propagates in nonlinear
media. This term accounts for the medium polarization and
contains the nonlinear part of the index of the medium. If
the wave envelope injected into the medium has no transverse
spatial dependence (ideal plane wave), no linear diffraction
is observed, but diffraction can still occur providing that the
nonlinearity varies with space. This is nonlinear diffraction,
a notion that every physics student has not heard of unless
they have pursued a course in nonlinear optics. Thus there
are two cases where an optical beam propagating through a
nonlinear medium experiences diffraction, either (i) the ini-
tial beam has a structured profile (amplitude and/or phase
varying with space) and the nonlinear medium is spatially
homogeneous, then the beam linearly diffracts through the
nonlinear medium, or (ii) the initial beam is assimilated to a
plane wave but the nonlinear medium is spatially structured so
that nonlinear diffraction is achieved during propagation. The
nonlinear diffraction was first introduced and evidenced by
Freund using the spatially periodic modulation of the dielec-
tric susceptibility of NH4CL [1]. Such material structuring
will be later implemented for the realization of photonic lat-
tices [2] and lead to novel nonlinear phenomena [3–6]. The
most documented studies on nonlinear optical propagation
deal with the above-mentioned first situation, that is, an initial
beam linearly diffracting along the propagation through a
spatially homogeneous nonlinear medium, first introduced by
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Askaryan [7]. This is the main core of nonlinear optics for
beam propagation, and this article belongs to this category.

Competition or rather “cohabitation” between linear
diffraction and nonlinearity has been the subject of an ex-
tensive amount of publications. Localization through solitary
waves [8–10] or self-similar structures [11–13], modulational
instability (also called filamentation) [14–16], wave singular-
ities such as vortices [17], shock waves [18–20], and wave
collapse [21,22] are some of the manifestations of such dy-
namics. We are interested in the nonlinear propagation of an
optical amplitude jump discontinuity (between two uniform
values of the initial data) through nonlinear focusing me-
dia. This problem belongs to the class of Riemann problems
[23,24]. A Riemann problem [25] classically refers to the
initial value problem for a transverse unidimensional system
associated with hyperbolic equations consisting of two con-
stant states with a step at the origin. When the initial wave
amplitude is steplike, the terminology dam break is used, in
analogy with dam break flows in hydrodynamics. This situ-
ation has been extensively studied in shallow water for the
regularization of initial discontinuities via the emergence of
dispersive shock waves (undular bores) when dissipation is
negligible compared to dispersion [26]. Shock dynamics was
later evidenced in nonlinear optics, when the nonlinearity is
of defocusing type, in temporal systems [27,28] as well as
in spatial ones [19]. On the other hand, the dynamics rad-
ically changes when the nonlinearity is of focusing nature.
The equations become elliptic, and hence a shock boundary
condition is ill posed, associated with no long-term undu-
lar bore solution but modulational instability. In optics it is
predicted that for a focusing nonlinearity whose response
is nonlocal, the shock prevails over modulational instability
[20], and focusing dispersive dam break flows emerge [29].
Wan et al. experimentally demonstrated in local focusing
media that using a partially coherent beam suppresses mod-
ulational instability but leads to a shock followed by spatial
dispersive waves with negative pressure [30]. Thus there are
scant publications and almost no experimental study of shock
dynamics for an optical beam propagating through focusing
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FIG. 1. Experimental setup: CYL - cylindrical lens with f =
75-mm focal length, C - light cutter, L - plano-concave lenses with
f = 100-mm focal length, BS1,BS2 - beam splitters. IS1 - imag-
ing system composed of a 10X, NA = 0.25 microscope objective
(Olympus) and a camera (Thorlabs CMOS camera, 10bit). BS2 - an
imaging system composed of a 5X, NA = 0.1 microscope objective
(Mitutoyo) mounted on a lens tube with f = 200 mm focal length
and a camera (Thorlabs).

and nonlocal nonlinear media. This is the motivation of this
study. We experimentally explore the propagation of an opti-
cal jump discontinuity in a nonlocal focusing medium which
in addition is stochastic, namely, a transverse unidimensional
nematic liquid crystal cell.

II. EXPERIMENTAL SETUP

Our experimental setup follows the same strategy as pre-
sented in [15]. A steplike intensity beam profile is injected into
a transverse unidimensional liquid crystal (LC) cell (Fig. 1).
Such a Heaviside-like profile is prepared by focusing the
Gaussian beam by a cylindrical lens (CYL) onto a thin
metallic blade with a sharp edge. A 4 f imaging system is
constructed via two f = 100-mm lenses (L) to image the
light profile from the plane � of the cutter (C) to the en-
trance plane �′ of the LC cell. The cell is mounted on a
three-dimensional stage and additional rotating stages, allow-
ing for precise adjustments via translations and rotations in
any direction. To ensure that there is no prepropagation in
air at the cell entrance, a series of videos of the injected
probe beam are recorded for different locations z of the cell.
These videos are averaged over 20-s acquisition time to reveal
the possible air diffraction pattern and adjust the entrance of
the cell �′ with the plane � of the cutter. The single-mode
frequency doubled Nd+3 : Y V O4 (λ0 = 532 nm) laser with
electric field A is linearly polarized along the x axis initially
perpendicular to the extraordinary axis of LC molecules. The
input laser beam radii at the entrance of the cell, measured
via a camera beam profiler (Thorlabs BC106N-VIS/M), are
ωx ≈ 11.5 μm and ωy ≈ 960 μm (in the cutter plane). Thus
no more than one filament can form in the vertical x direction.
The nonlinear medium is a E7 nematic LC of 75-μm thickness
sandwiched between two glass substrates with planar (parallel
to the walls) anchoring conditions. The entrance of the cell is
closed by a glass substrate with a planar anchoring condition
to avoid depolarizing effects during beam injection. A white
light imaging system (WL+IS1 on Fig. 1) is constructed to
image the plane �′ along with the injected one-dimensional
beam profile, insuring that the latter is parallel to the walls
of the LC cell. The propagation evolution of the beam is

tracked via imaging system IS2 using the scattered light in the
x direction. The propagating optical field is scattered by LC
molecule fluctuations depending on director axis orientation,
input field polarization, and observation direction [31,32]. It
is not a direct image of the optical field but of its scattering
by the refractive index profile. However, as in all studies on
optical beam propagation through nematic LCs, it allows for
qualitative analysis of the dynamics.

III. GOVERNING EQUATIONS

The model describing the nonlinear propagation dynamics
in such complex media is governed by a system of coupled
equations for the optical reorientation angle θ of the LC
molecules and the light envelope amplitude A [33], such that

γ
∂θ

∂t
= K2

∂2θ

∂y2
+ C1T A2 sin(2θ ) + √

εξ , (1)

0 = −2ik0n⊥
∂A
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+ ∂2A

∂y2
+ k2

0n2
a sin(θ )2A + ik0n⊥βA, (2)

where γ is viscosity, K2 is the Frank’s twist elastic constant,
na = n‖ − n⊥ is the optical anisotropy with n‖/n⊥ being the
extraordinary/ordinary indices, C1T = ε0n2

a/4, k0 is the laser
wave number, and β are losses. ε is the intensity of the thermal
noise source term ξ , which is Gaussian and δ correlated [34].
At third order in θ , the dimensionless form of Eqs. (1) and (2)
is {
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where the following scalings are introduced: optical
field A with respect to the optical Fréedericksz thresh-
old is scaled as AFr = π/L

√
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A/AFr , L being the cell thickness and K3 the bend
elastic constant. Y = y/(

√
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√
K2

2K3
accounts for the de-

gree of nonlocality.
It is worth mentioning that such a system of equations

Eq. (3), even for stationary, deterministic, and lossless con-
ditions, is fundamentally different from the local nonlinear
Schrödinger equation usually referred to study shock prob-
lems in optics [24,30] as well as in hydrodynamics [23]; hence
different dynamics is anticipated.

IV. NUMERICAL RESULTS FOR AN “IDEAL”
STATIONARY NOISELESS AND LOSSLESS SYSTEM

First, numerical simulations are performed to get insight
into possible nonlinear dynamics. Figure 2(b) depicts the spa-
tiotemporal evolution of the y-transverse profile of the initially
steplike optical intensity |A|2 after z = 1.2 mm propagation
for Eqs. (1) and (2) in the local limit, that is, K2 = 0, without
noise nor losses (ε = 0 and β = 0) and for an initial amplitude
value of the optical field at z = 0, leading to focusing shock.
Apart from the oscillatory wave regularizing the discontinuity,
the evolution with time stays stationary even at the early stage
of the steepening (as also visible in [30]). On the contrary, tak-
ing into account for the nonlocal response of the nonlinearity
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FIG. 2. (a) Steplike Gaussian intensity profile injected in the LC
cell. Spatiotemporal evolution of the beam transverse profile after
z = 1.2-mm propagation for (b) the local (K2 = 0) and (c) nonlocal
(K2 = 6.57 × 10−12 N) cases. Both profiles are normalized to their
maximum values. (b) A = 5000 and (c) A = 31 250. ε = 0, β = 0,
n‖ = 1.7589, n⊥ = 1.5269, λ0 = 532 × 10−9 m, and ωy ≈ 960 μm.

(K2 = 6.57 × 10−12 N) gives a radically different dynamics
[Fig. 2(c)]. The leading edge of the oscillatory wave drifts
with time to the highest intensity side. The whole transverse
structure is steered during the propagation to the highest in-
tensity value by more than 50 μm in the example of Fig. 2(c).
Thus all-optical beam steering is evidenced owing to the non-
local nature of our system. Experimentally, (i) the intrinsic
thermal fluctuations are known to affect the dynamics [34] and
(ii) the scattering losses are relatively high (β ∼ 600 m−1),
so we expect competition between shock dynamics and
filamentation (absent in the ideal case of simulations depicted
in Fig. 2) as pointed out in [20,29] and wonder if shock
dynamics can still survive in our stochastic system.

V. EXPERIMENTAL RESULTS

Typical experimental propagation evolution of the initial
optical intensity jump discontinuity with increasing nonlin-
earity is displayed in Figs. 3(a)–3(c). The dynamics exhibits
a continuous evolution of the fine structure of the propagating
optical pattern due to the stochastic nature of the nonlinear
medium as described in [35]. However, its global shape re-
mains quasistationary after a transient setup time. Thus videos
of the dynamics are recorded (20-s duration at 5 fps) with a
10-bit depth dynamic range to extract corresponding averaged
images representative of the global shape of the propagating
structure, as presented in Figs. 3(a)–3(c). The acquisition time
of the camera is automatically adjusted by the software to get
unsaturated videos taking into account eventual light pinning
or saturated pixels due to cell impurities. The first 200 μm of
propagation are not reported on experimental plots (i) to avoid
scattered signals from the optical field injection at the entrance
of the cell and mainly (ii) to allow for the input light to trans-
fer its boundary condition discontinuity on the LC molecule
distribution, that is, to the medium refractive index. This latter
point is crucial, since our system is described by a set of two
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FIG. 3. Spatial evolution of the initial intensity jump discontinu-
ity vs propagating distance z for increasing laser power measured
before the sample entrance, namely, (a) P = 17.5 mW, (b) P =
73.8 mW, and (c) P = 193.5 mW. The intensity profiles are normal-
ized to their maximum values. (d) Transverse intensity profiles at
z = 354 μm propagating distance [dotted lines on (a), (b), and (c)]
for the three power values of diagrams (a), (b), and (c). Black circles
on (d) locate the scattered light intensity discontinuity YS (see text for
definition). (e) Evolution of the intensity profile at z = 1200 μm vs
the injected light power P; the transverse profiles collected for each
value of P are normalized to 1 in order the render the image readable.
All data are averaged over 20 s of dynamics.

coupled equations [Eqs. (1) and (2)], and the initial boundary
condition is only applied to the light envelope amplitude A,
not to the optical reorientation angle θ of the LC molecules. In
usual setups where the Riemann problem is studied, only one
variable accounts for the propagation dynamics of the system
(e.g., nonlinear Schrödinger equation or Korteweg–de Vries
equation) and the initial condition is applied to this variable
[28,36,37]. Also, the scattered light recorded by the camera
IS2 is a result of the LC index distribution that has no initial
jump discontinuity at z = 0 but will only acquire it over the
early stage of propagation (100 − 200 μm).

A. Bending of the edge trajectory

Three values of the injected optical power P, representative
of the dynamics of interest, are shown on Figs. 3(a)–3(c),
namely, P = 17.5 mW, P = 193.5 mW, and P = 286.7 mW.
For the lowest power [Fig. 3(a)] the regime is dominated
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by linear diffraction, and the observed small deviation ex-
perienced by the discontinuity is attributed to linear Fresnel
diffraction. The dynamics drastically changes when increas-
ing the laser power with a transverse shift of the sharp edge
[Figs. 3(b) and 3(c)]. The edge steering is clearly evidenced
on Fig. 3(d) through the transverse intensity profiles plotted
at a fixed propagation distance, namely, z = 354 μm, for the
three powers of Figs. 3(a)–3(c). A shift of ∼ 20 μm is ob-
tained after only 354-μm propagation. The 0 reference of the
transverse y axis is fixed by the location of the discontinuity
at z = 200 μm in the linear regime (that is, P = 17.5 mW).
Figure 3(d) also evidences the steepening of the edge with
increasing power. For the highest depicted power [Fig. 3(c)],
the reached transverse steering at 1.2 mm propagation dis-
tance from the cell entrance is at least 40 μm, that is larger
than 33 mrad. Such beam deviation is low compared with the
0.2-rad value reported in studies [38,39]. However, our strat-
egy does not require any external factors such as a second
beam or a mechanical translation of the cell and is solely
related to the intrinsic nonlocal nature of the nonlinearity.
The amount of steering obtained after 1.2-mm propagation
versus the input beam power P is plotted in Fig. 3(e), clearly
demonstrating a power dependence of the sharp edge position
shift. For a quantitative analysis of this nonlinear beam devi-
ation, the transverse position Ys of the intensity discontinuity
is tracked. As an example, Ys is marked by a black circle on
the profiles of Fig. 3(d). At a given propagating distance z, Ys

corresponds to the abscissa of the maximum of the transverse
intensity steepness calculated as Sz(y) = (∂|A|2/∂y)|z. The
measurement of this dependence brings out a power law for
Ys as depicted in Fig. 4(d), namely, Ys ∝ P

1
25 .

Experimental results of Fig. 3 show that the beam steering
predicted in Fig. 2 is a robust phenomenon with respect to
noise and scattering losses. On the other hand, Fig. 3 does
not show focusing dispersive waves as in Figs. 2(b) and 2(c).
A numerical study would be necessary to identify the effects
of noise, losses, and, e.g., nonlinearity saturation effects on
the emergence of the focusing dispersive oscillating struc-
ture. This is out of the scope of this article, since the high
transverse spatial resolution required to perform numerical
simulations on such a wide beam profile requires many weeks
of computing to reach the stationary state in the deterministic
case. This is why in this work we do not directly contrast our
experimental results with numerical ones, based on Eqs. (1)
and (2). We want to point out that transverse instabilities,
in the form of modulational instabilities, starting from the
early stage of propagation (so not the focusing dispersive dam
break flows) are always present even for the “linear regime”
of Fig. 3(a) as mentioned in [40]. The averaged pictures
of Figs. 3(a) and 3(c) do not emphasize them, since their
transverse location and periodicity are wandering with time
[35] and are washed out by the averaging process. Further
study would be necessary to identify these short wavelength
instabilities with noise-sustained modulational instability [15]
or other stochastic resonance behavior [41].

B. Focusing shocklike dynamics

Let us check now for shocklike dynamics. Focusing shock
results from the underlying mechanism of the wave steepening
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FIG. 4. (a) Typical experimental maximum transverse steepen-
ing Smaxz (z) (see text for definition) evolution with increasing power,
P = 137.18 mW (black), 193.5 mW (blue), and 279.7 mW (red); the
dot indicates the location ZS and refers to the maximum of Smaxz (z).
(b) Numerical maximum transverse steepening Smaxz (z) evolution
with increasing intensity values |A|2 = 5.64 × 106 (black), |A|2 =
7.98 × 106 (blue), and |A|2 = 9.76 × 106 V2/m2 (red), respectively.
(c) Experimental evolution of the focusing shocklike distance Zs (see
text for definition) vs injected power P in logarithmic scales showing
a power law Zs ∝ Pχ , with χ = −4/3 coefficient. (d) Experimental
evolution of the transverse position Ys of the intensity discontinu-
ity (see text for definition) at z = 1.2 mm vs injected power P in
logarithmic scales showing a power law Ys ∝ Pχ , with χ = 1/25
coefficient. All experimental values are averaged over 20 s of
dynamics.

driven by the nonlinearity, which leads to a gradient catas-
trophe. The self-steepening dynamics of our experimental
refractive index discontinuity is analyzed, versus propaga-
tion, using the previously defined steepness Sz(y). For each
z, the maximum value Smaxz of Sz(y) is extracted. The typ-
ical experimental evolution, during the propagation, of the
maximum transverse steepening Smaxz (z) for the discontinuity
between the ground and high-intensity regions versus power
injection P is illustrated in Fig. 4(a). The plotted Smaxz (z)
profiles correspond to the average of the 100 instantaneous
steepness profiles extracted from each frame of the video. In
order to avoid noise-induced hot spots and small-scale trans-
verse instabilities in the calculation of S, the Savitzky-Golay
algorithm is applied to smooth the signal. It is observed that
above P ≈ 135-mW power, the evolution of Smaxz (z) always
reveals the occurrence of a maximum [Fig. 4(a)]. It indicates
that the jump distribution of the index profile self-steepens
during the propagation distance z before “relaxing” or being
“regularized” by the dispersive and dissipative medium. This
is the characteristic of a shocklike dynamics. Such observation
is also reported by Wan et al. [30] for the diffraction from an
edge but in a local self-focusing medium.
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Steepness oscillations Smaxz along the propagation direc-
tion are linked to the corresponding transverse oscillations
on the intensity profiles [Fig. 3(d)]. This feature is found in
the numerical simulations carried out without noise nor losses
(ε = 0 and β = 0) but taking into account for the nonlocal re-
sponse of the nonlinearity (K2 = 6.57 × 10−12 N) [Fig. 4(b)].
These oscillations come from the transverse modulations pre-
viously discussed [Figs. 3(a)–3(c)] and their interactions due
to nonlocality. The location of the S(z) maximum never occurs
above approximately 600 μm propagating distance. The rea-
son is certainly due to losses that overcome nonlinearity for
this distance. Such a limitation in the nonlinear effects was
already reported in [35]. We extract the longitudinal coordi-
nate Zs corresponding to the maximum value of Smaxz (z) that
measures the propagating distance needed for the focusing
shocklike dynamics to occur. This distance Zs moves towards
the cell entrance when increasing the initial beam power P
as reported for shocks in optical defocusing media (see, e.g.,
[42]) and in hydrodynamics [20,21]). Indeed, it is known that
the shock distance Zs scales with power P according to the law
Zs ∝ Pχ , with χ = −0.5 in the hydrodynamic limit. The evo-
lution plot of Zs versus P for our experimental recordings is
drawn in Fig. 4(c). It clearly evidences a power law Zs ∝ P4/3

for powers larger than P ≈ 135 mW [ln(P) ≈ −4.9]. Thus,
as for shocks in defocusing media, a power law in the form
of Zs ∝ Pχ is found. Our χ = −4/3 value is related to the
nonlocal nature of our system as shown by Conti et al. and
Ghofraniha et al. in [21,42]. A numerical study would report
on the influence of the level of nonlocality on the χ parameter
in our system.

VI. CONCLUSIONS

In conclusion, we experimentally show that the propa-
gation of an optical intensity jump discontinuity (Riemann
problem) in a nonlocal focusing Kerr medium follows a tra-
jectory that bends with the injected beam power P due to the
nonlocal nature of the nonlinearity. The transverse beam non-
linear deviation/shift Ys follows a power law with Ys ∝ P

1
25 .

This opens an all-optical route towards beam steering. We also
evidenced that the profile of the refractive index self-steepens
along propagation and leads to a focusing shock dynamics.
It is characterized by a power law, as for self-defocusing local
Kerr media, for the shock distance to occur versus the injected
beam power P, namely, P−4/3. Focusing on the dispersive
shock oscillatory structure that should result from the regu-
larization of the discontinuity, it is not observed due to the
intrinsic noise that sustains wandering small-scale transverse
instabilities. Further investigations are in progress to reduce
the stochasticity level in order to experimentally evidence
focusing dispersive dam break flow or maybe dissipative flow
due to losses.
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