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Multiple glass transitions and higher-order replica symmetry breaking of binary mixtures
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We extend the replica liquid theory in order to describe the multiple glass transitions of binary mixtures with
large size disparities, by taking into account the two-step replica symmetry breaking (2RSB). We determine the
glass phase diagram of the mixture of large and small particles in the large-dimension limit where the mean-field
theory becomes exact. When the size ratio of particles is beyond a critical value, the theory predicts three distinct
glass phases; (i) the one-step replica symmetery breaking (1RSB) double glass where both components vitrify
simultaneously, (ii) the 1RSB single glass where only large particles are frozen while small particles remain
mobile, and (iii) a glass phase called the 2RSB double glass where both components vitrify simultaneously but
with an energy landscape topography distinct from the 1RSB double glass.
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I. INTRODUCTION

Size dispersity of constituent atoms, molecules, or colloids
is ubiquitous in glassy systems. For most model glass for-
mers employed in numerical studies, the size dispersion is
deliberately introduced in order to avoid the crystallization.
In experiments of colloidal or polymeric glasses, it is simply
difficult to eliminate. When the size dispersity is small, it does
not affect the nature of the glass transition qualitatively; it only
shifts the transition point or changes the fragility slightly [1,2].
However, if the size dispersity is large, the nature of the glass
transition qualitatively and even dramatically changes. Due to
the separation of the associated length scales and timescales,
dynamics of constituent particles with different sizes decouple
from each other [3]. A wide class of glassy systems exhibit
such decoupling phenomena, which include ionic [4], metallic
[5], and polymeric glasses [6,7], as well as colloidal suspen-
sions [8–10]. The simplest model which shows the decoupling
is the binary mixture of large and small spherical particles
with the disparate size ratio R ≡ σL/σS � 1, where σL and
σS are the diameters of large and small particles, respectively.
In the limit of R = ∞, small particles behave as a solvent
and only large particles undergo the glass transition. As R is
reduced to the order of unity, dynamics of small and large
particles couple again and vitrify simultaneously. The ques-
tion is when and how the dynamics of the two components
decouple and the nature of the glass transition is altered as R
is systematically changed.1
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1We use a term “decoupling” to mean the decoupling of the glass

transition of small and large particles, and not necessarily mean the
decoupling of the self- and collective correlation functions. As shown

Several experimental studies on binary colloidal mixtures
[8–10] have reported such dynamical decoupling and the
existence of multiple phases called the single glass where
only large particles are frozen and double glass where both
components vitrify simultaneously. But, the properties of dif-
ferent glass phases remain elusive. Several simulation studies
[11–13] hint the onset of the decoupling of the dynamics
near the glass transition point. However, the size ratios and
timescales which can be covered by simulations are limited.
Currently, theoretical understanding of the decoupling phe-
nomena largely relies on the mode-coupling theory (MCT)
[14,15]. Early studies have shown the decoupling of dynamics
of small and large particles qualitatively [16,17] and a recent
detailed analysis predicted the emergence of rich multiple
glass phases [18]. However, due to the series of uncontrolled
approximations inherent in the MCT, it is difficult to as-
sess the interplay of separate length scales and the validity
of the theory. Also, the other dynamical theory called self-
consistent generalized Langevin equation predicts a slightly
different phase diagram for binary mixtures in three dimen-
sions [19,20]. One resolution is to take the large-dimension
limit where mean-field theories including the MCT are ex-
pected to become exact, but the validity of the current version
of the MCT in this limit remains controversial [21–25].

In this work, we tackle this decoupling problem of the
binary glasses by constructing a statistical mechanical mean-
field theory. Our theory is based on the replica liquid theory
(RLT) [26–28], which was originally developed based on the
classic mean-field spin-glass theory [21,29–31]. When the

later, the glass phase in the infinite-dimensional system is charac-
terized solely by the self-correlation functions, not by the collective
correlation functions.
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size dispersity is moderate, or the system is simply monodis-
perse, the output of the RLT can be summarized as follows.
The dynamic transition point which the MCT prescribes cor-
responds to the spinodal point in the RLT [21]. Beyond the
spinodal point, the RLT predicts the proliferation of expo-
nentially large number of metastable states, or minima, in
the free energy landscape. The logarithm of the number is
the so-called configurational entropy �. The RLT describes
the thermodynamic, or ideal, glass transition at the point
where � vanishes [26,30]. This transition is accompanied
by the one-step replica symmetry breaking (1RSB). This
scenario becomes exact in the mean-field (or large-d) limit
[28,32].

The RLT was extended to the binary mixtures, but it fails to
predict the decoupling phenomena even when the size ratio is
large within the 1RSB ansatz [33–36]. For the spin-glass mod-
els which have the well-separated length and energy scales,
there arises the two-step replica symmetry breaking (2RSB)
phase as the stable solution [37–40], which naturally captures
the decoupling [37]. In this work, we develop the RLT of the
binary mixtures taking fully both one- and two-step replica
symmetry breakings into account. This RLT predicts both
single and double glass phases and the physical mechanism
can be explained in the context of the energy landscape picture
[41,42]. Interestingly, this theory also predicts a glass phase
which is characterized by the 2RSB hierarchical structure of
the free energy landscape.

II. REPLICA METHOD

The replica method allows us to calculate the number of
metastable states and their entropic contribution to the free
energy. Before going to the details of the model and calcu-
lations, here we briefly sketch the main idea of the replica
method.

A. 1RSB

In the case of the 1RSB, we may simply label the free
energy minima as α = 1, 2, . . . . We introduce m copies (repli-
cas) of the original system, which allows us to calculate the
number of the minima, as explained below. Then, the partition
sum of the system is [27,28]

Zm =
∑

α

e−Nmβ fα

=
∫

df eN[�( f )−β f ] = eN[�( f ∗ )−mβ f ∗], (1)

where N is the number of particles, β is the inverse tempera-
ture β = 1/kBT , and f ∗ is the saddle point of the integration
over f , which can be calculated as

f ∗ = − 1

β

∂ log Zm

∂m
. (2)

�( f ) is the configurational entropy

�( f ) ≡ 1

N
log

∑
α

δ( f − fα ). (3)

The saddle point value of � can be calculated as follows [26]:

log Zm

N
≈ −βm f ∗ + �( f ∗) → �(m) = log Zm

N
+ mβ f ∗

= −m2 ∂

∂m

(
log Zm

mN

)
. (4)

Finite configurational entropy limm→1 � > 0 means that the
system is glassy but still in the liquid state from the thermody-
namic point of view. Vanishing of the configurational entropy
limm→1 � → 0 means a thermodynamic transition to an ideal
glass state. Below the ideal glass transition point, m = 1 is no
longer the most stable solution, and m should be determined
by �(m) = 0, leading to m < 1. In the context of the 1RSB
formalism, m = 1 corresponds to the liquid state, while m < 1
corresponds to the thermodynamic glass state [26–28]. The
above scenario is established theoretically in the limit d → ∞
[28,32].

B. 2RSB

In the case of the 2RSB, it is natural to label different
free energy minimum with an index with two components
α = (αL, αS ), where αL = 1, 2, . . . represents configurations
of the large (L) particles. For each of such configurations of
the L particles, there are many configurations of the small
(S) particles for which we label as αS = 1, 2, . . . . This hi-
erarchical structure can be expressed by dividing m replicas
into m/m1 subgroups. The partition sum of the system can be
expressed as

Zm =
∑
αL

( ∑
αS∈αL

e−Nm1β fαL ,αS

) m
m1

=
∑
αL

e−N m
m1

β fαL ,

e−Nβ fαL ≡
∑

αS∈αL

e−Nm1β fαL ,αS . (5)

In the last equation, we have introduced fαL which is the
free energy associated with a given configuration αL of the L
particles obtained by taking a partial trace over the S particles.
Here, the sum

∑
αs∈αL

denotes a trace over the configurations
of the S particles associated with a configuration αL of the L
particles. The additional parameters m and m1 are introduced
as theoretical tools to detect the glass transitions. Note that, in
the special case m = m1, Eq. (5) reduces back to the normal
one Eq. (1). Then, we are naturally led to introduce two
kinds of configurational entropy associated with the L and S
particles:

�1( f ) ≡ 1

N
log

∑
αL

δ( f − fαL ),

�2( f ; αL ) ≡ 1

N
log

∑
αs∈αL

δ( f − fαL,αS ). (6)

The latter represents the number of energy minima with differ-
ent configurations of the S particles with a fixed configuration
αL of the L particle. Repeating the similar argument of that of
the 1RSB, we can calculate the entropic contributions from L
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particles �1 and S particles �2 as [37,43]

�1 = −m2 ∂

∂m

(
log Zm

mN

)
,

�2 = −m2
1

∂

∂m1∂m

(
log Zm

mN

)
. (7)

In the 2RSB case, thermodynamic glass transitions of the
L and S particles can take place either simultaneously or
separately. Physically, we anticipate the following two ideal
glass phases [37,43]. One possibility is that both the L and
S particles are in an ideal glass state such that �1 = �2 = 0
and thus m < 1 and m1 < 1. The other possibility is that only
the L particles are in an ideal glass state while the S particles
still remain in the liquid state so that �1 = 0 but �2 > 0 thus
m < 1 but m1 = 1.

III. MODEL

We consider a binary mixture of large (L) and small
(S) spherical particles interacting with a potential with a fi-
nite range, such as a harmonic potential, given by vμν (r) =
φ(r/σμν )θ (1 − r/σμν ), where θ (x) is the Heaviside step func-
tion, μ, ν ∈ {L, S} denotes the type of particles, and σLL and
σSS are the diameters of large and small particles, respec-
tively. We also assume that the potential is additive, i.e.,
σLS = (σLL + σSS )/2. The reason to consider a finite ranged
potential is merely for technical simplicity; as shown later,
the functional form of φ(r) and temperature become irrele-
vant parameters in the large-dimension limit. There are only
two relevant parameters to characterize the thermodynamic
phase diagram; the volume fractions of each component ϕμ =
NμVd (σμμ)/V (μ ∈ {L, S}) or, equivalently, the total volume
fraction ϕ = ϕS + ϕL and the concentration fraction (of small
component) x = ϕS/(ϕL + ϕS ). Here, Vd (σ ) is the volume of
a d-dimensional hypersphere with the diameter σ , Nμ denotes
the particle number of the μ component, and V is a volume of
the system. We represent the size ratio as

σLL

σSS
≡ 1 + R

d
, (8)

so that the volume ratio Vd (σLL )/Vd (σSS ) = (σLL/σSS )d re-
mains finite in the limit of d → ∞.

IV. 1RSB ANALYSIS

First, we consider the conventional RLT with the 1RSB
ansatz (1RSB-RLT). The landscape considered in the 1RSB
formalism is schematically drawn in Fig. 1(a). In the fluid,
or the replica symmetric (RS) phase, the free energy has a
single minimum corresponding to equilibrium fluid, while in
the 1RSB phase, the free energy has multiple minima each
of which represents a different glass state. The main idea of
the RLT is to introduce the m copies (replicas) of the origi-
nal system to distinguish the different glass states, which is
referred to as the overlap. The overlap, or similarity, between
the configurations of different replicas is finite within a same
glass state, but zero between different minima [26–28,35].
The 1RSB-RLT for monodisperse systems is well developed
[28] and the extension to binary mixtures is straightforward

FIG. 1. Schematic depiction of the free energy landscape.
(a) 1RSB formalism where the horizontal axis represents the config-
uration of both large and small particles. (b) 2RSB formalism where
the coordinates labels “L” and “S” represent the configurations of
large and small particles, respectively.

[28,35], aside from a subtlety related to the particle exchange
in a glass state [33,44–47]. Following the strategy of Ref. [28],
we introduce the density distribution function in the replica
space as density of molecules made of replicas,

ρμ(r) =
∑

i for μ particles

〈
m∏

a=1

δ
(
ra − ra

i

)〉
, (9)

where r = {r1, . . . , rm} represents the set of the particle posi-
tions in the replica space [28,35], and μ ∈ {L, S} denotes the
particle species. Expanding the free energy of the replicated
system by ρμ(r), we obtain

log Zm =
∑

μ∈{L,S}

∫
dr ρμ(r)[1 − log ρμ(r)]

+
∑

μν∈{L,S}

1

2

∫
dr dr′ρμ(r)ρν (r′) fμν (r − r′)

+ O(ρ3), (10)

where we introduced the Mayer function defined by

fμν (r − r′) =
m∏

a=1

e−βvμν (ra−r′a ) − 1. (11)

In the d → ∞ limit, the O(ρ3) term is negligible compared
to the first and second order terms [48]. Furthermore, in this
limit, only the first and second cumulants of ρμ(r) are relevant
[48], meaning that Eq. (9) can be represented by the Gaussian
function as [28,35]

ρμ(r) = ρμ

∫
dR

m∏
a=1

γAμ
(ra − R), (12)

where γA(r) = (2πA)−d/2e− |r|2
2A . Aμ represents the strength of

the correlation between m replicas. This is to be determined
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FIG. 2. Dynamic phase diagram for R = 0.5 and 3.0: the circles
and filled squares denote the dynamical transition points of large and
small particles, respectively. The y axis is scaled by the dynamical
transition point of the monodisperse system ϕ̃mono

d .

by the saddle point condition, as described below. Substituting
Eq. (12) into Eq. (10), we obtain

log Zm =
∑

μ

Nμ

[
−d

2
(1 − m) log 2πAμ − d

2
(1 − m − log m)

]

+
∑

μ

Nμ(1 − log ρμ) + 1

2

∑
μν

NμNν

V

∫
dr

[
qm

μν (r) − 1
]
,

(13)

with

qμν (r) =
∫

dR γAμ+Aν
(r + R)e−βvμν (R). (14)

We first calculate the dynamical transition point ϕd of our
model at which the nontrivial solution of Aμ arises. Aμ can
be calculated from the saddle point condition ∂Aμ

log Zm = 0
by taking m → 1 limit for fixed d and then taking the limit
of d → ∞ afterwards. For simplicity, below, we investigate
the hard-sphere limit (T → 0+). The result of monodisperse
hard spheres in the large-dimension limit [28] can be easily
extended to binary mixtures. The saddle point condition leads
to

1

ÂL
∼ ϕ̃

[
(1 − x)M(ÂL ) + xer/2M

(
ÂL + ÂS

2

)]
,

1

ÂS
∼ ϕ̃

[
xM(ÂS ) + (1 − x)e−r/2M

(
ÂL + ÂS

2

)]
, (15)

where we defined Âμ = d2Aμ/σ 2
μμ and introduced the re-

duced density as

ϕ̃ = 2dϕ

d
. (16)

M(Â) is the auxiliary function defined by

M(Â) = −
∫

dy ey log

[
�

(
y + Â√

4Â

)]
∂

∂Â
�

(
y + Â√

4Â

)
,

�(x) = 1

2
[1 + erf (x)]. (17)

Solving Eqs. (15) numerically, we obtain Aμ and ϕd . We show
the resultant (dynamic) phase diagram in Fig. 2. When the size
ratio between large and small particles, R defined by Eq. (8),
is small, the dynamical transitions of large and small particles

FIG. 3. 1RSB phase diagram for R = 0.5 and 3: the solid line
denotes the normalized thermodynamic glass transition point ϕ̂K .

take place simultaneously (see the left panel of Fig. 2). One
observes only the double glass phase in which all particles
are frozen. Contrarily, if R is sufficiently large (�Rc ≈ 0.6),
the glass phase splits into the two phases. See the right panel
of Fig. 2. At small x and at moderate densities, one obtains
the single glass phase in which only large particles are frozen.
As the density further increases, small particles undergo the
dynamical transition and enter to the double glass phase. At
large x’s, on the contrary, the system enters to the double glass
phase from the fluid phase without bypassing the single glass
phase.

Next, we discuss the thermodynamic glass transition point
ϕK , where the configurational entropy vanishes. In the large-
dimension limit, the thermodynamic glass transition density
scales as ϕK = O(2−d d log d ) and the cage size scales
as Aμ = O(1/d2 log d ) [28], leading to γAμ

(x) ∼ δ(x) and
qμν (r) ∼ e−βvμν (r). Substituting this into Eq. (13), we obtain
the asymptotic form of the free energy near the thermody-
namic glass transition point

log Zm

Nm
= 1

m

[
d

2
log d − ϕ

2

(1 − x + xeR/2)2

1 − x + xeR
I (m)

]
− d log d,

(18)

where

I (m) =
∫ ∞

−∞
dy ey[1 − e−mβ̂φ̂(y)] (19)

with φ̂(y) = d2φ(1 + y/d ). ϕK is calculated by
limm→1 �(m) = 0 [28], where the configurational entropy
�(m) is given by Eq. (4). After some manipulations, we
obtain

ϕ̂K (x) = ϕK (x)

ϕmono
K

= 1 − x + xeR

(1 − x + xeR/2)2
, (20)

where ϕmono
K = 2−d d log d/h(1) with h(m) =

−m2∂m(I (m)/m) denotes the thermodynamic glass transition
density for the one-component system. Equation (20) implies
that the thermodynamics transition point does not depend on
β and vμν , if one uses the reduced density

ϕ̂ = ϕ

ϕmono
K

. (21)

Typical phase diagrams predicted by Eq. (20) are shown in
Fig. 3. As mentioned before, the 1RSB RLT fails to describe
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the decoupling of the thermodynamic glass transition points
of large and small particles.

V. 2RSB ANALYSIS

Next, we introduce the 2RSB ansatz into the RLT, moti-
vated by the recent study of a binary version of mean-field
spin-glass model [37]. To discuss the decoupling, we sepa-
rately consider the configuration of large and small particles,
as shown in Fig. 1(b). For sufficiently small ϕ, the system
is in the RS fluid phase, where the free energy has a single
minimum [Fig. 1(b) left]. For intermediate ϕ’s, there appears
the single glass phase described by the 1RSB, where large
particles are vitrified while small particles are mobile. The
minimum of the free energy splits into multiple glass states
due to the configuration of large particles [Fig. 1(b) middle).
For sufficiently large ϕ, small particles also vitrify, as a conse-
quence, the minima further split due to the emergence of the
multivalley for the configuration of small particles [Fig. 1(b)
right]. Only the 2RSB formalism can describe this hierarchi-

cal structure and the decoupling of the thermodynamic glass
transition points of large and small particles. The RLT with the
2RSB ansatz is formulated by dividing m replicas into m/m1

subgroups, each of which contains m1 replicas. The m1 repli-
cas of small particles within a same subgroup are constrained
around their center of mass, whereas the replicas of different
subgroups can move independently. For large particles, all
m replicas are constrained around their center of mass. In
other words, the replicated liquid is a (m/m1 + 1)-component
molecular mixture which consists of m/m1 types of molecules
composed of m1 small particles and one type of molecules
composed of m large particles. Note that the higher-order
RSB is a natural consequence of consecutive transitions of
each component, and this picture is distinct from the full RSB
transition recently studied in the context of the marginal glass
transition where each RSB state corresponds to one frozen
state [49].

Based on the 2RSB ansatz, one can write the free energy
of the replica liquid using the virial expansion of the standard
grand canonical partition function, which reads as

log Zm =
∫

dr ρL(r)[1 − log ρL(r)] +
m/m1∑
k=1

∫
drkρSk (rk )[1 − log ρSk (rk )] + 1

2

∫
dr dr′ρL(r)ρL(r′) fLL(r − r′)

+
m/m1∑
k=1

1

2

∫
drkdr′kρSk (rk )ρSk (r′k ) fSS (rk − r′k ) +

m/m1∑
k=1

∫
dr dr′kρL(r)ρSk (r′k ) fLS (rk − r′k ) + O

(
ρ3

L, ρ3
Sk

)
. (22)

In this expression, ρSk is the density field of small
particles of the kth type.2 r = {r1, . . . , rm} and rk =
{r1,k, . . . , rm1,k} represent their coordinates in the replica
space. fμν (r − r′) (μ, ν ∈ L, Sk ) is the Mayer function
defined by

fμν (r − r′) =
∏

a

e−βvμν (ra−r′,a ) − 1, (23)

where the product over a is made only for the replicas com-
monly included in the μ and ν molecules. The first and second
terms of Eq. (22) are the ideal gas parts and the third to
fifth terms represent the interaction contributions [28]. As
before, we give the profiles of ρL(r) and ρSk (rk ) as Gaus-
sian [28], which is known to be exact in the large-dimension
limit [32].

It should be emphasized that, in the large-dimension limit,
only the lowest order term in the Mayer expansions survives,
which simplifies the analysis considerably. This implies that,
in the large-dimension limit, the so-called depletion force,
a short-ranged attraction between large particles induced by
small ones, is absent [50,51], which is intrinsically the higher-
order effect.

The glass phases are determined by optimizing the free
energy (22), with respect to m, m1, and the cage sizes. The
thermodynamic glass transition density ϕK is the point at

2Note that ρα have only the information of the tagged variables and
not of the collective variables.

which the configurational entropy vanishes. In the vicinity of
ϕK ∼ O(d log d ) [28], the free energy can be simplified and
written by an asymptotic expression

log Zm

Nm
= g1(m) + g2(m1) − d log d, (24)

with the auxiliary functions defined by

g1(m) = 1

m

[
1 − x

1 − x + xeR

d

2
log d − 2dϕ

2

(1 − x)2

1 − x + xeR
I (m)

]
,

g2(m1) = 1

m1

[
xeR

1 − x + xeR

d

2
log d

− 2dϕ

2

x2eR + 2x(1 − x)eR/2

1 − x + xeR
I (m1)

]
. (25)

Inside the glass phases ϕ > ϕK , m and m1 become smaller
than unity. There are two possibilities, m < m1 < 1 and m =
m1 < 1, which should be treated separately.

In the case of m < m1 < 1, the glass phase is characterized
by the 2RSB free energy [Fig. 1(b)]. m and m1 are determined
by solving the saddle point equations �1 = 0 and �2 = 0.
Substituting Eq. (24) into Eqs. (7), we get

h(m)

h(1)
= ϕmono

K

ϕ(1 − x)
,

h(m1)

h(1)
= ϕmono

K

ϕ[x + 2(1 − x)e−R/2]
.

(26)
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FIG. 4. Full phase diagram for R = 3. x is the concentration
fraction of small particles. ϕ̂ is the packing fraction divided by the
glass transition point of the one-component system. The broken line
is the glass transition line obtained by the 1RSB-RLT.

ϕK for large particles is obtained as the 1RSB solution by
setting m = 1 in the first equation of Eq. (26) as

ϕ1RSB
K (x) = ϕmono

K

1 − x
. (27)

Similarly, ϕK for small particles is obtained as the 2RSB
solution by setting m1 = 1 in the second equation of Eq. (26):

ϕ2RSB
K (x) = ϕmono

K

x + 2(1 − x)e−R/2
. (28)

In the case of m = m1 < 1, on the other hand, the glass phase
is described by the 1RSB free energy (see Sec. IV). The 1RSB
and 2RSB free energies become identical when the fraction is

xc = 1 − 2e−R/2

2(1 − e−R/2)
. (29)

This equation determines the phase boundary between the
1RSB and 2RSB glass phases. When x < xc, the 2RSB phase
is more stable than 1RSB phase and vice versa for x > xc. For
xc to be positive, R must be larger than Rc = 2 log 2, which
is the necessary condition for the 2RSB phase or equivalently
the decoupling of the two glass transitions. Note that all the ar-
guments above are independent of the temperature and shape
of the potential vμν (r), as it is obvious by rescaling the density
by

ϕ̂ = ϕ

ϕmono
K

. (30)

Combining all results discussed above, we draw the
thermodynamic glass phase diagram. If R < Rc, the phase
diagram is determined by the 1RSB-RLT and only a single
glass phase exists. If R > Rc, four different phases emerge as
shown in Fig. 4. At very low densities, the system is in the
RS (fluid) phase where the solution with m = m1 = 1 is the
most stable. If ϕ is large and x is close to 1, the solution
with m = m1 < 1 is the most stable, and the system is in
the 1RSB phase where all particles are frozen. We refer to
this phase as the 1RSB double glass phase. In this phase, the
majority are small particles, and they drive the system into the
glass phase. In other words, large particles are embedded in
vitrified small particles. Indeed, ϕK (x) smoothly converges to

FIG. 5. The density dependence of the configurational entropy
for R = 3 and x = 0.2 which is smaller than xc < 0.36. The solid
and dashed lines represent the 2RSB and 1RSB results, respectively.
The arrows indicates the transition point from the fluid to 1RSB(2)
and the transition point from the 1RSB(2) to 2RSB phases.

ϕmono
K in the one-component limit x → 1. As x decreases and

crosses xc, the system undergoes the transition from the 1RSB
(m = m1 < 1) to 2RSB (m < m1 < 1). We refer to this phase
as the 2RSB double glass. As x decreases further, m < m1 = 1
becomes stable and small particles melt into a fluid phase
whereas large particles remain frozen. We refer to this phase
as the 1RSB single glass. The difference between the 1RSB
and 2RSB double glass phases should be emphasized.

As the density is increased for a fixed x below xc,
the system undergoes the two-step glass transitions: first
from the fluid to the 1RSB single glass and then to the 2RSB
double glass phase. In order to clarify the nature of these
multiple transitions, we calculate the configurational entropy
� from the 2RSB free energy given by Eq. (22). It can
be written as a sum of the two contributions � = �1 + �2

[43]. Here, �1 is the configurational entropy of large parti-
cles corresponding to the large metabasins generated by large
particles. �2 is the configurational entropy of small particles
corresponding to the basins inside the one of the metabasins.
We evaluate � using the asymptotic expression of the free
energy (24) and (7). Figure 5 is the density dependence of �

for R = 3 and x = 0.2. The result of the (metastable) 1RSB
solution is also shown with the dashed line for a reference.
One observes that � bends twice; first at ϕ̂1RSB

K , where �1

vanishes and the second at ϕ̂2RSB
K , where �2 vanishes, and thus

the whole configurational entropy dies out. w

VI. SUMMARY AND CONCLUSIONS

In summary, we developed a formalism of the RLT for
binary mixtures of large and small particles based on the
2RSB ansatz. We determined the glass phase diagram for a
hard-sphere-like fluid in infinite dimension. The theory pre-
dicts that when the size ratio R is larger than a critical value Rc,
the hierarchical energy landscape emerges and the decoupling
of the glass transition of large and small particles takes place.
As a consequence, there arise several distinct glass phases: the
1RSB double glass, 1RSB single glass, and the 2RSB double
glass phases.

It should be addressed that the 1RSB and 2RSB double
glasses are distinct phases with qualitative and topographi-
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cal differences in their free energy landscapes. The energy
landscape in the 2RSB phase has the two-step hierarchical
structure where the two levels correspond to the configura-
tions of large and small particles, respectively. It is desirable to
design experimental setup or simulation method which allows
to delineate the difference of the two phases. We suspect that
a mechanical response or nonlinear rheology measurement
would be one of the ideal candidates [52–55]. For example,
an anomalous two-step yielding in colloidal binary mixtures
has been reported [56], which may be a reflection of complex
and hierarchical energy landscape. Note that in a recent simu-
lation study of hard spheres near the jamming transition, two
glass phases characterized by different status of the replica
symmetry breaking are indeed separated well by rheological
measurement [57]. The shape of the phase diagram predicted
by our theory is qualitatively consistent with experiment and
numerical results [8–12]; the single glass phase is located at
high density and small x region while the double glass phase
is at high density and large x region. For more quantitative
comparison, it is necessary to extend our theory to finite
dimensions.

The relationship of our theory with the MCT, on the other
hand, remains somewhat elusive. First, our theory does not
distinguish the self- and collective density correlations, in
contrast to the MCT in finite d . This simplifies the analysis
but simultaneously reduces the diversity of the phase diagram.
Second, the MCT is usually identified with the dynamical

transition point of the replica liquid theory.3 However, our
theory shows that the description of the single and double
glass phases at smaller x requires the 2RSB ansatz. This
means that the nature of the decoupling predicted by the MCT
is essentially different from those of thermodynamic theory.

We believe that our higher-order replica symmetric break-
ing picture is not restricted to binary mixtures of disparate size
ratios, but can be adapted for other decoupling phenomena of
the glass transitions, e.g., the decoupling of translational and
rotational motions in anisotropic particles. These are left for
the future work.
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3In the mean-field p-spin spherical model, the MCT is unambigu-
ously the dynamical counterpart of the replica theory [58]. In the
infinite dimensional monodisperse particles, the dynamical transition
predicted by the replica theory shares the common features with the
one predicted by the MCT [25,28].
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