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Spatial distributions of nonconservatively interacting particles
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Certain types of active systems can be treated as an equilibrium system with excess nonconservative forces
driving some of the microscopic degrees of freedom. We derive results for how many particles having both con-
servative and nonconservative forces will behave. Treating nonconservative forces perturbatively, we show how
the probability distribution of the microscopic degrees of freedom is modified from the Boltzmann distribution.
We then derive approximate forms of this distribution through analyzing the nature of our perturbations. We
compare the perturbative expansion for the microscopic probability distribution to an exactly solvable active
system. Finally, we consider how the approximate forms for the microscopic distributions we have derived lead
to different macroscopic states when coarse grained for two different kinds of systems, a collection of motile
particles, and a system where nonconservative forces are applied in space. In the former, we are able to show
that nonconservative forces lead to an effective attractive interaction between motile particles, and in the latter we
note that by introducing nonconservative interactions between particles we modify densities through extra terms
which couple to surfaces. In this way, we are able to recast certain active problems as the statistical mechanics
of nonconservative forces.
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I. INTRODUCTION

Nonequilibrium systems remain a frontier for physics.
Indeed, even the term “nonequilibrium” applies to a large
number of observed systems, and it is not immediately ap-
parent whether there would exist a single framework which
would unify all these disparate phenomena. One particular
class of nonequilibrium systems, deemed “active matter,” fo-
cuses on situations where the microscopic components are
being driven through continuous injection of energy [1].
Active matter has generated special interest as continual
consumption of energy microscopically is one of the charac-
teristic properties of life [2].

Even as nonequilibrium describes a wide variety of things,
active matter also applies to a very diverse variety of phe-
nomena, existing from subcellular length scales to interactions
among organisms. Theoretical treatments of these systems
often proceed from writing a model of the particular active
system in question, usually starting from considering the
forces involved [3,4]. One may then either simulate the mi-
croscopic equations of motion or coarse grain (either with top
down or bottom up approaches) the microscopic degrees of
freedom into effective field treatments that capture large scale
properties. These methods are usually able to be successfully
compared to the real experimental realizations [5]. Whether
there exists a more generic conceptual basis for such systems
is still a topic of ongoing research [6–8].

One salient difference between an active and an equilib-
rium system is the existence of nonvanishing microscopic
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currents [9]. In equilibrium all currents vanish, however, for
an active system this does not necessarily hold [10]. In-
deed, continual consumption of energy by the microscopic
components somewhat implies the existence of currents. Nev-
ertheless, active matter can relax to a nonequilibrium steady
state, where the relevant statistical properties of the system are
no longer changing in time, though microscopic currents may
still be present. However, while for an equilibrium system the
steady state properties can be calculated from the Boltzmann
distribution, which can relate the microscopic degrees of free-
dom to the macroscopic properties via the partition function,
steady state properties of active matter cannot necessarily be
calculated via this method, as they are fundamentally out of
equilibrium.

We can interrogate more deeply why exactly this may be.
In particular, when one writes a model for an active system
it may not be immediately apparent why this microscopic de-
scription would describe a nonequilibrium system. Were one
to perform a careful analysis of the equations, however, one
should find that there are terms in the dynamics which would
necessitate the continuous injection of energy in order to be
a realistic descriptor of a physical system. The microscopic
equations may, for example, break the fluctuation dissipation
theorem, corresponding to the fact that there may be active
noise driving the components [11]. Another option is that,
after one has written a microscopic description, one may see
that there exist effective currents in the deterministic force
part of the time evolution; a simple example could be that
one microscopic degree of freedom x1 is affecting the time
evolution of another microscopic degree of freedom x2 but that
x2 does not affect the time evolution of x1 (or does not affect
it in a commensurate way). Such a dynamical scheme would
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violate Newton’s third law and could only be maintained by
external energy input. This simple loop would correspond
to there being a nonconservative force in the system. The
presence of microscopic currents at steady state also implies
the existence of effective nonconservative forces in some of
the microscopic degrees of freedom. A more complicated
example of nonconservative forces in active matter would be
the microscopic descriptions of chemically active systems and
nonequilibrium systems with switchable interactions [12].

The stationary state of a system where some of the forces
are nonconservative can no longer be characterized as an
equilibrium one, nor could the microscopic probability distri-
bution be constructed from a Hamiltonian, as the forces in the
system no longer arise as the gradient of a Hamiltonian. More
broadly, the steady states of the system have to be understood
from a consideration of the dynamic processes involved rather
than from construction via the Boltzmann distribution.

In this paper, we therefore recast the stationary properties
of active systems as the stationary distributions of particles
evolving under a nonconservative force. We show how certain
active systems can be mapped to time evolution under the
interplay of conservative and nonconservative forces. We then
describe how the stationary states of systems with noncon-
servative forces can be written for systems of arbitrary size.
Previous approaches to this problem [13–17] are generally
considered low-dimensional systems (not many particles). In
Sec. II we discuss what effect a nonconservative force per-
turbing an equilibrium system has in terms of modifications
of the ordinary Boltzmann distribution, and obtain formally
exact results. As these forms are rather complicated, in Sec. III
we derive effective forms of the stationary distribution for
arbitrary nonconservative forces. Subsequently in Sec. III, in
order to test the validity of the perturbative expansion, we
apply these results to a simple active system (particles with an
active noise), where the microscopic probability distribution
for a force field with conservative and nonconservative parts
can be solved exactly using matrix methods. Following on
from this in Sec. IV we discuss how microscopic nonconser-
vative forces lead to changes on macroscopic observables such
as density, for two different test cases, where the nonconser-
vative forces are “internal” and “external” and demonstrate
the qualitative validity of our approach against simulations
of particles interacting under a nonconservative pair force.
Finally, we discuss in more depth the physics that emerges
from statistical ensembles of nonconservatively interacting
particles in Sec. V.

Nonconservative forces

Before we discuss our main results, we will briefly review
conservative and nonconservative forces, as these concepts
will appear repeatedly throughout the rest of the text. The
presence of nonconservative forces implies that the system has
some form of path dependence. A conservative force is one in
which the the total work done around any closed loop is zero:∮

Fc(r) · dr = 0 (1)

or, alternatively, the total work done along a path depends only
on the end points of the path. Nonconservative forces do not

have this property: ∮
Fnc(r) · dr �= 0. (2)

By the gradient theorem, a conservative vector field can be
written as a gradient of a scalar potential:

Fc(r) = ∇ f (r). (3)

However, nonconservative vector fields cannot be represented
in this way. For vector fields in three dimensions, it is well
known that any vector field (with proper conditions) can be
decomposed into a gradient part and a curl part through the
famous Helmholtz decomposition [18]:

F(r) = −∇ψ (r) + ∇ × a(r), (4)

where ψ is some scalar field and a is a vector field. From
now on we will use interchangeably the terminology that
gradients are conservative and curls are nonconservative. Cer-
tain generalizations to the Helmholtz decomposition exist for
vector fields in higher dimensions, through Hodge theory,
with mathematical assumptions over the domain and that F
is sufficiently well behaved. In equilibrium systems, the inter-
particle forces arise from potentials, and are thus conservative.
However, for nonequilibrium systems this will not be gener-
ically true. Additionally, a system which is being driven by
nonconservative forces would require there to be some energy
source in order to continue its drive. Thermal and other ran-
dom forces are also sometimes referred to as nonconservative
forces; we therefore clarify that when we say nonconservative
throughout the text we mean deterministic forces, where the
force is a specified function of spatial coordinates r.

The existence of vector field decomposition is suggestive
when considering some problems in active matter, as the
nonconservative part of the forces could be the part that is
necessary for driving the system out of equilibrium. These
terms could either be imposed or identified by hand or, for
more realistic forces, decomposition algorithms could identify
which part of the force field is either conservative or non-
conservative [19]. Were one to note that the nonconservative
part is zero, the system is either equilibrium with an effective
Hamiltonian, or is being driven out of equilibrium by another
mechanism.

Then, we have a twofold central question to address if
this suggestion is to be meaningful: (a) Can the stationary
properties of many-body systems with nonconservative forces
be written in a way which is tractable for calculation? (b) Can
we map real active systems onto a system evolving under a
nonconservative force? The greater part of this paper shall be
spent addressing these questions.

II. PARTICLES WITH NONCONSERVATIVE FORCES

We write the generic time evolution equations for the
microscopic degrees of freedom of a system of N particles
evolving under a force field inside a dissipative medium:

dr
dt

= p
m

, (5)

dp
dt

= F(r) − γ p + ξ(t ), (6)
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where r is the vector of all the positions of particles in the
system, and p is the vector of all the momenta in the system:

r = (r1, r2, . . . , rN ), (7)

p = (p1, p2, . . . , pN ). (8)

We have employed the assumption for this model that the
force field F depends on the position degrees of freedom
of the system only r. This assumption could in principle be
relaxed in order to describe different classes of active systems
where the forces depend on the momenta. We also assume
that these particles exist in a media with a dissipative term
γ and a white noise term ξ which has the property that
〈ξi(t )ξ j (t ′)〉 = 2kbT δi jγ δ(t − t ′). We assume that the friction
coefficient γ is constant. These equations apply well in a few
physical situations, such as large Brownian particles in a dense
fluid. This is the physical picture we have in mind for this
paper. It is also the case that the damping coefficient γ does
not depend on the particle speed, which in reality would not
be the case [20,21].

We now restrict ourselves to analysis of the stationary dis-
tribution of systems with this time evolution. We further focus
our attention on the case where the system is overdamped, that
is, we ignore inertial terms. We wish to obtain knowledge of
the microscopic probability as a function of the positions of all
the particles P(r). The corresponding Smoluchowski equation
for the evolution of the probability density under these forces
is given by [22]

∂P(r, t )

∂t
= 1

γ m
∇ · [−F(r)P(r, t ) + kbT ∇P(r, t )], (9)

where we have introduced the ∇ differential operator, which
is given by ∇ = ( ∂

∂r1
, ∂

∂r2
, . . . , ∂

∂rN
). The validity of the

overdamped approximation in leading to this Smoluchowski
equation is itself also assumed [23–25], corresponding to
situations where the force is considered constant over long
periods of time, however, we shall proceed on the assumption
that Eq. (9) is accurate. As the probability must be greater
than or equal to zero, we represent the probability density
as P(r) = exp[−φ(r)]. The stationary state distribution is the
one in which the time derivative of the probability is zero, in
other words, the left hand side of Eq. (9) is equal to zero. From
Eq. (9), the stationary probability density in this system must
obey the following relationship:

∇ · (exp[−φ(r)][−F(r) − kbT ∇φ(r)]) = 0. (10)

One can see trivially if the forces in the system arise from
the gradient of a function (such as the Hamiltonian) F (r) =
−∇H (r) that the stationary probability distribution over mi-
crostates will be given by the Boltzmann distribution P(r) ∼
exp[−H (r)/kbT ]. For systems in which the forces do not arise
as the gradient of a function, the solutions are not so trivial.
We remind readers that we use the terms conservative to de-
scribe forces which are expressible as the gradient of a scalar
function, and nonconservative to describe forces which cannot
be expressed in this way. Following Risken and others [16,22],
we imagine that the force can be split into two components:

F (r) = f (c)(r) + f (a)(r), (11)

where the new conditions that have to be specified for the
probability distribution to be stationary are given by

f (c)(r) = −kbT ∇φ(r), (12)

∇ · (e−φ(r)f (a)(r)) = 0. (13)

However, this is only a redefinition of the problem (10). Were
we to be able to find the proper splitting of the force fields,
we could in principle solve for the stationary distribution. We
will now focus our attention on an example system given by
forces

F(r) = −∇H0(r) + m(r), (14)

where H0 defines some equilibrium Hamiltonian, but we keep
m(r) to be as general as possible, such that it may include
conservative and nonconservative elements. We here note that
the splitting operation defined in Eqs. (12) and (13) is not the
same as merely separating the conservative and nonconserva-
tive components of the force, as can be seen from Eq. (13),
which will not generally be equal to zero even if ∇ · m(r) =
0. The challenge is therefore to find the splitting of the force
field which satisfies these conditions. This is a difficult prob-
lem, but can be recast into the form of a differential equation
by making the following addition, introducing the new scalar
field χ :

f (c)(r) = −∇H0(r) − ∇χ (r), (15)

f (a)(r) = m(r) + ∇χ (r). (16)

This trivially satisfies the conservative condition of the log
probability (12). In order to find the probability distribution,
we are then left with satisfying the following differential equa-
tion for χ from Eq. (13) [Eq. (17)]:

∇2χ (r) − β[∇H0(r) + m(r)] · ∇χ (r) − β(∇χ (r))2

= β∇H0(r) · m(r) − ∇ · m(r), (17)

where we have introduced the notation that kbT = β−1. This
is an N-dimensional nonlinear partial differential equation
in the unknown χ (r), which is by itself still a challenging
proposition. However, if we define the following substitution
χ (r) = −β−1 log [μ(r)] we are left with the following linear
equation in μ(r):

[∇2 − q1(r) · ∇ + q2(r)]μ(r) = 0, (18)

q1(r) = β[∇H0(r) + m(r)], (19)

q2(r) = β2∇H0(r) · m(r) − β∇ · m(r), (20)

where only solutions with μ(r) > 0 are physical [χ (r) is real].
We assume a perturbative expansion exists in the magnitude
of the additional forces m, parametrizing the additional forces
with a parameter ε,

m → εm, (21)

and seeking solutions of μ(r) of the form μ(r) ≈∑
n=0 εnμn(r).
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Substitution of this expansion leads to the following differ-
ential equation for the nth order perturbation:

[∇2 − β∇H0(r) · ∇]μn(r) = [βm(r) · ∇ − q2(r)]μn−1(r),
(22)

where, additionally, the perturbative expansion equation (22)
can be factorized as

∇ · (exp[−βH0(r)]∇μ(r)) (23)

= exp[−βH0(r)][βm(r) · ∇ − q2(r)]μn−1(r). (24)

The expression on the left is a linear operator acting on μn(r)
and the term on the right is some forcing term. This series
would be supplemented by the condition that μ0 = const. The
equation for each individual μn is acted upon by the same
linear operator for every n, the only differences are the source
terms on the right hand side of the equations. Therefore, were
one to be able to find a Green’s function of the linear operator
acting on each individual μn, given by the following equation

[∇2 − β∇H0(r) · ∇]G(r, r′) = δ(r − r′) (25)

with the appropriate boundary conditions that G vanishes at
infinity. Then, one may express the entire series solution in
terms of this function as

μ0(r) = const, (26)

μ1(r) = −μ0

∫
G(r, r′)q2(r′)dr′, (27)

... (28)

μn(r) =
∫

G(r, r′)[βm(r′) · ∇′ − q2(r′)]μn−1(r′)dr′. (29)

As the Green’s function only depends on the equilibrium
properties of the system, this representation shows the ef-
fect of nonconservative force fields in terms of integrals over
effective source terms arising from the imposition of the non-
conservative force.

This series would be the steady state solution of the micro-
scopic probability for a system evolving under a generic force
field. However, the complexity of this representation is hardly
less than the original equation, given the difficulty in evalu-
ating the coordinate space Green’s functions. We will revisit
this question in a later section and for now also discuss the
physical significance of the perturbations. For completeness,
we note that the first order perturbation is given by

P(r)≈ exp

(
−βH0(r)+εβ

∫
dr′G(r, r′)[β∇′H0(r′) · m(r′)

− ∇ · m(r′)]
)

, (30)

which is already a familiar result in the recent literature
[13,14], though we here display it in terms of the Green’s
function. For extensions to the above for underdamped sys-
tems see Ref. [17], as well as cases where one can solve
the Green’s function by inspection and comparison to real
experimental cases [26]. The application of these equations
to active systems constitutes the central goal of this paper.

Conservative and nonconservative perturbations

In the previous section, we showed the modification to the
Boltzmann distribution from the action of a generic additional
vector field of forces m. The modified distribution can be seen
to be equal to the Boltzmann distribution with an additional
series of perturbations for higher order effects, which are
represented as integrals over effective source terms with an
integral kernel derived from the corresponding equilibrium
system (the Green’s function). Thus far, we kept the form of
the additional forces m general. We now analyze the nature
of this perturbation with respect to two different extremes,
one of which is that the additional forces are themselves
conservative, and another where the additional forces are di-
vergence free, corresponding to a “purely” nonconservative
perturbation.

First, we imagine that the perturbation is solely made up
of a gradient part m(r) = −∇H1(r). For this special example
we can calculate the perturbative terms exactly, for example,
the first order perturbation given by

μ1 = −μ0β

∫
G(r, r′)β−1q2(r′)dr′, (31)

where for a conservative perturbation the function q2 from
Eq. (20) is given by

β−1q2 = ∇2H1 − β∇H0 · ∇H1. (32)

However, the Green’s function is just the inverse of this opera-
tor acting on H1, thus the integral in expression (31) becomes
simply −μ0βH1, which is what we would expect from ordi-
nary perturbations to the original Hamiltonian with an extra
potential term. In fact, it is possible to prove that the full series
expression for μ when the imposed field is conservative is
given by

μ = exp(−βH1). (33)

In other words, the Hamiltonians are additive, as we might
have expected. When the imposed field is divergence free,
∇ · m(r) = 0, with no gradient component, simple closed
form expressions cannot be found, however, we note the
source term has the form q2(r) = β2∇H0(r) · m(r). From
here on, we shall refer to this term ∇H0(r) · m(r) simply
as “the source,” for if this expression is equal to zero, the
entire coordinate space distribution will reduce back to the
Boltzmann distribution.

From the above, it is clear that conservative perturbations
are naturally included within the new perturbed expression in
a simple way. However, we have established that the perturb-
ing forces do not necessarily have to be nonconservative to
reproduce the probability distribution. In principle, we can do
the perturbation around any force, which would modify the
Green’s function. The particular choice will depend on the
ease of the calculation and the physics relating the magnitude
of perturbations.

III. STATIONARY PROBABILITY DISTRIBUTIONS IN
NONCONSERVATIVE SYSTEMS

In the previous section, we defined the distribution of
particles with both conservative and nonconservative forces
as integrations over integral kernels. In the following, we
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show the full form of the Green’s function, and then derive
approximate forms of the Green’s functions, and discuss what
physics they entail. Then, taking an example of a real active
system, we then show how the perturbative scheme described
in the previous section can be used to derive the first order
microscopic probability distribution function and we test its
validity by comparing it to an exact numerical calculation.

A. Coordinate space Green’s functions and
effective distributions

We observed in Sec. II that the full solutions to any system
could be represented by integrations of various source terms
with Green’s function kernels. The kernels are the solutions to
the following equation:

[∇2 − β∇H0(r) · ∇]G(r, r′) = δ(r − r′). (34)

Physically, the Green’s function is a linear operator which
characterizes the modification of a microscopic distribution to
the effect of a microscopic nonconservative perturbation. We
can think of it as a microscopic response function that tells
us how an equilibrium system is modified by the presence of
nonconservative forces. A key question is as follows: Can we
say anything at all about the states for a general nonconser-
vative system of arbitrary size? Analyzing the form of these
Green’s function can give us an insight into the physics of mi-
croscopic distributions under nonconservative forces. While a
full analytic form of these Green’s function kernels is difficult
to work with, it can be written as a series expansion. The full
Green’s function can be written as a Liouville-Neumann series
in the Boltzmann factor β:

G(r, r′) =
∞∑

n=0

βnGn(r, r′). (35)

The first few terms in this series can be written as

G0(r, r′) = c

|r − r′|N−2 , (36)

G1(r, r′) =
∫

dr1G0(r, r1)G0(r1, r′)[−∇H0(r1) · q̄(r1, r′)],

(37)

G2(r, r′) =
∫

dr1dr2G0(r, r1)G0(r1, r2)G0(r2, r′)

× [−∇H0(r1) · q̄(r1, r2)][−∇H0(r2) · q̄(r2, r′)],
(38)

where we introduce the vector q̄(r1, r′) = r1−r′
|r1−r′ |2 . It is per-

haps easier to see how each term in this expansion can be
written graphically, which we include in Fig. 1. The graphical
representation of each term in Fig. 1 makes more clear the
physical aspects of the Green’s function. Despite the fact we
have not introduced any path integrals in our analysis so far,
the solution to the deceptively simple Eq. (34) takes the form
of integrating over all paths connecting the points r and r′.
This path is weighted by the zeroth order Green’s function,
which strongly suppresses overly long paths connecting the
two points, and by the factor [−∇H0(r1) · q̄(r1, r2)] which
weights how “helpful” (work done) the equilibrium forces at
each point along the path are, by calculating the magnitude of
their projection to the next point along the path. In this figure,

FIG. 1. Graphical representation of the nth term of the Green’s
function series solution (in this case n = 6). One draws a line of n
segments connecting the points r and r′. Associated with each inte-
rior vertex is a factor corresponding to the projection of the force at
the point along the next line segment. Along each edge is associated
a zeroth order Green’s function. The final form is integrated along all
the interior points, giving an effective sum over paths of n links.

the path dependence of the Green’s function becomes clear,
in that the effect of a source at point r′ is strong at point r if
there is a path of “helpful” forces connecting the two points.
We also mention that as the operator acting on the left hand
side of Eq. (34) is not self-adjoint for a general Hamiltonian,
the Green’s function does not display symmetry in its argu-
ments nor does it necessarily form a complete set such that
an eigenfunction expansion is always valid. In other words,
G(r, r′) �= G(r′, r). Therefore, to first order, the probability
of each microstate of the system with nonconservative forces
is weighted by the sum over all paths (weighted by the path
length) over all space of how much “work” the nonconserva-
tive forces are doing on the conservative forces.

Equation (35) is of physical interest as the full solution of
the Green’s function for any system, however, it is difficult to
make use of it in calculation. Therefore, we supplement it with
the following two well founded approximations, which allow
us to calculate approximate forms of this Green’s function that
give analytic more tractability for calculation in many-body
systems.

The first approximation can be obtained by assuming that
the Green’s function integrals from Fig. 1 are path indepen-
dent (see Appendix A for details). This effective Green’s
function is given by

G(r, r′) =
∫

dr′′e−[βH0(r′ )−βH0(r′′ )] (r′′ − r′) · (r − r′′)
AN |r′′ − r′|N |r − r′′|N ,

(39)

where AN is some constant related to the surface area of the
N sphere. We compare the solutions given by these Green’s
functions and some real solutions to Eq. (22) in Fig. 2. It can
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FIG. 2. Comparison of the full numerical solution for a given
system compared to the solution calculated from the approximate
Green’s function in Eq. (A3). Shown are the numerical solutions
(solid lines) to the differential equation (22) compared against
solutions obtained by integrating the source with the Green’s func-
tion (points). For all these problems we use a source term that
goes as ρ(r) = φ2 exp[−(r − r2)2] and a Hamiltonian that goes as
φ1 exp[−(r − r1)2]. We show the comparisons for different values
of all these parameters (indicated in the caption). The approximate
Green’s function correctly captures the features of the solution.

be seen in Fig. 2 that this approximate Green’s function does a
good job at capturing the features of the solution compared to
the full numerical solution (22). The error associated with this
Green’s function goes as ∼β2|∇H0(r)|2, i.e., this approxima-
tion is poor for states which are unlikely anyway. It can also
be seen that even for large values of the force in Fig. 2 that
the solutions are still reasonably accurate. This approximate
form of the Green’s function is useful in analyzing the physics
due to nonconservative perturbation. Physically, the Green’s
function characterizes the effect that an impulse at some point
r′ has at point r. The asymmetry in the Green’s function is
then explicative of the structure of the equilibrium landscape,
it is clear that if there is a unit impulse at a point r′ the effect
at point r will be minimal if that point r′ was very unlikely in
the original system. However, the converse is not true, in that
the effect of a unit impulse at a local minimum will strongly
affect all the points around it. Due to the contribution of the
∇2 term, the entire Green’s function G(r, r′) is peaked around
r = r′. As can also be seen from Fig. 2, this is the case even if
we have a large repulsive potential at r = r′.

This form of the Green’s function includes all the corre-
lations present in H0. However, certain other simplifications
exist that make this problem much simpler for large systems.
One of the main difficulties of problems of this type is that
the addition of a single nonconservative force acting on one
particle would in principle modify the form of the microscopic
probability distribution of all the particles, due to the corre-
lations in the Green’s function. Most source terms that we
encounter for large systems only exist in a few of the variables
of the system, for example, if we were to introduce parti-
cles interacting with some pairwise nonconservative source
between them, our total source term would go something as

ρS (r1, r2, . . . , rN ) =
∑
i �= j

ρSu(ri, r j ). (40)

For some general function ρSu. A great simplification can
result from considering the fact that the Green’s function is a
linear operator, it is applied independently to each term on the
right hand side of Eq. (40). Therefore, we have the situation
where the Green’s function is being integrated over a source
term which exists in only a few variables, despite the fact that
in principle the Green’s function depends on the position of
every particle in the system. Another very useful assumption
that can employed in this case is that the integration over all
other variables not present in the source term is given by

μ(r) =
∫

dr′G(r, r′)ρS (r′
1, r′

2)

≈
∫

dr′
1dr′

2GR(r1, r2, r′
1, r′

2)ρ(r′
1, r′

2), (41)

where GR is the Green’s function in reduced dimensions. This
assumption is well founded as we approach the thermody-
namic limit N → ∞, and is also exact at high temperatures. In
Appendix B we show how this assumption can be justified for
systems with a pairwise Hamiltonian, relying on the fact that
ordinary Hamiltonians are symmetric. In general, there will
be some extra three body terms introduced into the statistical
weight (exponent), but they go as O(1/N ) so we feel safe in
discarding them when we are trying to understand the prop-
erties of many particle systems. Physically, this assumption
amounts to the idea that if we introduce nonconservative pair
sources, the dominant contributors to the statistical weight
will themselves be pairwise, which means that the relevant
correlations in the Hamiltonian when calculating the pertur-
bations are those that exist in the subset of the variables of
the perturbing source term, i.e., if we have some operator
equation O(r)μ(r) = ρS (r1, r2), then μ(r) is approximately
the solution to O(r1, r2)μ(r) = ρS (r1, r2). It can be seen, for
example, if O is the Laplacian, that this is exactly true.

This leads to a drastic simplification of the problem. For
example, if we were to introduce a pair nonconservative
source acting between every particle, we would only need
to calculate the value of the perturbation for these two parti-
cles, and our full solution to (22) would be given by a sum
over all pairs over this reduced solution. Thus, the physi-
cal meaning of the Green’s function becomes clearer in this
light. They map the real nonconservative forces in the sys-
tem to effective “potentials” that enter into a modified distri-
bution given by Eq. (41). One can then use the approximate
form of the Green’s function given in Eq. (A3) or else solve
the associated differential equations directly in order to map
a particular form of nonconservative force to the effective
“potential” that appears in the exponent of the distribution.
This will then allow one to calculate microscopic properties
of a system containing nonconservative forces by taking the
sum over all these effective potentials arising from the non-
conservative force.

The results of the previous sections suggest a possible path
about answering questions about the distributions of particles
subject to nonconservative forces. The steps can be roughly
summarized as follows:

(1) Write the forces for the system of interest.
(2) From these generic force fields, establish the con-

tribution that is conservative, and the contribution that is
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nonconservative. This can either be done by inspection, where
possible, or through the use of decomposition theorems where
it is not so.

(3) From the conservative part, establish the effective
Hamiltonian. This is the effective state around which the sys-
tem is being perturbed by the nonconservative contribution.

(4) Using this Hamiltonian, calculate the modification to
the microscopic probability due to perturbation by the non-
conservative fields, up to whichever order. For large systems,
we can achieve this by splitting the full problem into subprob-
lems over only a few coordinates in the system. We can then
combine these results together to form the full perturbation up
to whichever order.

B. Validity of first order perturbation:
Particles with active noise

As the list at the end of the previous section remains rather
abstract, we shall apply it definitively to a simple system
describing some active process, and also illustrate how well
the perturbative approach is able to capture the features of
this system. As we wish to test how accurate the first order
perturbation is, we need to compare against a system which is
in principle exactly solvable. We take one of the simplest ex-
amples of an active system, for example, an optically trapped
colloidal bead inside a bath of bacteria, whose time evolution
of position x can be modeled through the following equation
[11]:

ζ
dx(t )

dt
= −kx(t ) + ξ (t ) + A(t ), (42)

where we assume that this colloid is overdamped and ex-
ists in a media with a dissipative term ζ (distinct from γ

used in the previous sections, as this is an overdamped equa-
tion) and a white noise term ξ which has the property that
〈ξ (t )ξ (t ′)〉 = 2kbT ζ δ(t − t ′). Supplementing this is an active
noise A(t ) where 〈A(t )A(0)〉 = α

τa
exp(−t/τa) where τa is the

timescale of the active noise, establishing the system as break-
ing the fluctuation-dissipation relation. By representing the
active forces in terms of an extra degree of freedom, we get
an expression in two degrees of freedom describing the same
equation:

ζ
dx(t )

dt
= −kx(t ) + ξ (t ) + A(t ), (43)

dA(t )

dt
= − 1

τa
A(t ) + ξ2(t ), (44)

where we introduce another fluctuating white noise process
ξ2(t ), which will have a similar correlation property as ξ (t ),
〈ξ2(t )ξ2(t ′)〉 = 2kbT ζ δ(t − t ′). This system can be defined in
terms of a matrix of forcings:

ζ
d

dt

(
x(t )
A(t )

)
= −

(
k βα/τ 2

a

0 ζ

τa

)(
x(t )
A(t )

)
+

(
ξ (t )
ξ2(t )

)
. (45)

This leads to generic forces corresponding to this process
given by

F = Cr, (46)

where the deterministic forces are nonconservative in the ex-
panded space r = (x, A), defining the system as an out of

equilibrium one in this expanded state space. For a many-body
system, this can be written in block matrix form as

C = −
(

K βα/τ 2
a I

0 ζ

τa I

)
, (47)

where I is the identity matrix, and K is some matrix of springs
connecting our particles. These “forces” act on both the real
position degree of freedom and the extra degree of freedom
that represents the active force. If the colloidal particles are
not interacting with each other in any way, this matrix K
would be diagonal. If, for example, we allowed the colloidal
particles to be tied together by springs, and if we additionally
allowed different active process to collectively impact on the
colloidal particles, this would serve to make the matrix K
and the off-diagonal block matrices dense. We shall see that
mathematically it makes no difference (as long as the full
matrix C is positive definite) which particular form we wish
to consider, as the system for the linear forces in (46) can
be solved for any matrix C, which we shall proceed to do in
order to demonstrate that the perturbative solution reproduces
approximately correct solutions. We shall then discuss the
physics of system (45).

In order to be able to compare the validity of our perturba-
tive approach, we need to know the real solution. Fortunately,
a numerical scheme exists for solving (17) which gives a
solution that looks like φ ∼ rT Br or, more precisely, that the
probability distribution has the form P(r) = exp[−φ(r)] =
exp(−β 1

2 rT · B.r) where B is a matrix. We omit the details for
how the numerical solutions are obtained, and direct interested
readers to Appendix C instead.

We will compare the exact numerical exact solution for a
linear system of size 10 in one dimension, with forces given
by

F(r) = −kI · r + δMS · r + εMAS · r, (48)

where I is the identity matrix and MS and MAS are, re-
spectively, a symmetric and antisymmetric random matrix of
couplings uniformly distributed between 1 and −1 and where
every diagonal element is zero, and k, ε, and δ are parameters
that set the strength of the different matrices and are chosen
such that the full matrix is positive definite. For linear systems,
identification of conservative and nonconservative forces is
very straightforward, symmetric matrices are conservative,
and antisymmetric matrices are nonconservative (point 2 of
the itemized list in the last section). For the particles with
active noise system, it is obvious that the matrix of forcings
is not symmetric, thereby establishing it as nonconservative.

The first order perturbation with these forces would be
given by

P(r) = exp
(− 1

2βrT · (kI + δMS ) · r − 1
2βμ1

)
, (49)

where μ1 is the solution to Eq. (22):

[∇2 − βrT · (kI + δMS ) · ∇]μ1(r)

= β2rT · (kI + δMS ) · (εMAS ) · r. (50)

Fortunately for this problem, the solution can be written ex-
actly without having to perform the Green’s function integral,
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FIG. 3. Average error between perturbative solutions and real
solutions for a linear system for 100 different realizations of the
perturbation matrices MS, MAS for each magnitude of perturbation
ε, δ (with k = 10). (a) Shows the relative error as a function of mag-
nitudes of perturbations ε and δ are inreased. (b), (c) Show slices at
one point in ε = 2.5 and δ = 2.5, respectively. As expected, the per-
turbation theories become worse for larger perturbations. However,
the relative error is acceptable even for large perturbations (∼50% of
the magnitude of the equilibrium problem has a 10% relative error in
the microscopic probability).

and is given by the solution to the following commutator
equation:

μ1 = βrT · (X ) · r, (51)

{(kI + δMS ), X } = [(kI + δMS ), εMAS], (52)

where the curly brackets denote an anticommutator and the
square brackets are a normal commutator. This equation can
be solved using the eigendecomposition of the symmetric
force matrix so long as X is symmetric and traceless.

The perturbative and exact solutions to this problem can
be written in the form 1

2 rT B · r where r are the coordinates
and B is the solution. We compare the similarity of the two
solutions as a way of probing the effectiveness of the perturba-
tive approach ||Bsol − Bperturb||/||Bsol|| where Bsol is the actual
solution and Bperturb is the perturbative solution. We calculate
the error by taking the matrix norm of the differences divided
by the norm of the exact solution. The average error is shown
in Fig. 3 for different magnitudes of the perturbation.

As seen in Fig. 3, the error between the real and perturba-
tive solutions for this system becomes larger as the size of the
perturbation increases, but it gives good agreement to the real
solution even for perturbations which are half the size of the
original problem (∼10% error). This is not a rigorous proof
that a perturbative expansion always exists in the nonconser-
vative forces, however, we also note that for the case where
there are only divergence-free nonconservative forces in the
system, the probability is constant across all coordinate space

(for any force with this property). Therefore, even in the case
where the nonconservative forces were very much stronger
than the conservative ones, we could imagine performing an
expansion around the homogeneous state in order to obtain
physically meaningful results.

Having established how well the first order perturbation
does mathematically, we can also use it to describe what
happens to our original system of interest, particles with an
additional, active, noise. For one, the addition of the term
going as β2 plays havoc with the ordinary potentials of sta-
tistical mechanics. For example, there is no simple way of
calculating the average energy of the system any more, in
fact, it is not clear that energy is meaningful in any sense any
more, as the occupation of states is no longer just related to
a gradient of a potential, nor does there exist any constant
of motion which can be called energy. We shall revisit the
question of observables under this distribution in the next
section. Performing the integration over the subspace of the
“hidden” active parameters can give us the effective distribu-
tions in x. In principle, it is possible to get these formulas
analytically, but they are very long so will not be reproduced
here. The main features arising from the consideration of the
nonconservative part of the force for the model system (45)
is a broadening of the microscopic distribution, as one would
expect. This applies whether the matrix of connections K is
dense or not. By itself, this effect is not so interesting or
difficult to understand, as the nonconservative forces roughly
seem to have the same effect as temperature, broadening of the
microscopic distribution. In the next section, we shall consider
systems where more interesting phenomena can arise, as well
as macroscopic effects.

IV. LARGER SCALE EFFECTS: DENSITY IN
NONCONSERVATIVE SYSTEMS

Despite having a full microscopic form of the probability
distribution in the preceding sections, of more immediate
importance in experimental realizations would be the larger
scale properties of such systems. In this section we will try to
more qualitatively understand how microscopic driving will
lead to macroscopic effects. The correct macroscopic degrees
of freedom for nonequilibrium system are not obvious [27], so
we will choose to focus on the density of the particles, which
always exists and is well defined in and out of equilibrium.
Rather than treating the density as a conserved field and rea-
soning over the form of the density currents from physics in a
continuity equation like scheme, we instead wish to focus on
how our microstate probability would modify the macroscopic
density that one would observe for nonconservative systems.
We are particularly interested in the generalities that might
arise on a large scale from a consideration of any nonconser-
vative force, as opposed to model-dependent effects. We wish
to see if we can qualitatively understand the behavior that we
see in real systems this way.

We can do this by transforming our microstate probability
into a probability for a macroscopic property, such as the
density. Proceeding from the microscopic probability

P(r) ∼ exp[−βH0(r) − β2μ1(r)]. (53)
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Analogously to ordinary statistical mechanics, we can take the
normalization constant associated with the probability distri-
bution (53) as the integral over all the microstates:

Z =
∫

dr exp[−βH0(r) − β2μ1(r)]. (54)

We can then calculate observables in the standard way for
a probability distribution:

〈O〉 = 1

Z

∫
dr O(r) exp[−βH0(r) − β2μ1(r)]. (55)

In the absence of nonconservative driving, Z would just be
the normal partition function. In the presence of it, as we
mentioned previously, we can see that simple relationships in
statistical mechanics do not hold. For example, if we were to
take the derivative of this log(Z ) with respect to β we would
no longer have anything that looked like energy, or even the
average of the Hamiltonian (which is itself a representation
of the conservative part of the force), due to the term which
goes as β2. Thus, as one might expect, a lot of the standard
quantities and relationships of statistical mechanics no longer
apply in this new situation where nonconservative forces are
present.

The observable quantity we are most interested in is the
density of a fluid of particles interacting nonconservatively,
which corresponds to the average of the density operator un-
der the stationary distribution

ρ(x, r) =
N∑

i=1

δ(x − ri), (56)

〈ρ(x)〉 =
∫

dr ρ(x, r)P(r), (57)

where x now refers to ordinary three dimensional space.
Calculation of Eq. (54) is hard, but it is not different in kind

to the calculation of partition functions in ordinary statistical
mechanics. In fact, we merely have an additional temperature
dependent potential that has been introduced into the statis-
tical weight for each state. In order to reason about possible
effects of nonconservative driving, we shall use mean field
theory. We introduce a mean field into (53) by splitting the
contributions due to the interactions. After some derivation
(see Appendix D for details) one obtains that the effective
bound on (54) can be found using the following equation:

−β−1 log(Z ) � Feq[ρ] + βμ1[ρ], (58)

where we write out in full the the term on the left hand side
in full rather than calling it a free energy, even though it has
the same form, as terminologically free energy implies some
sort of equilibrium situation, which we are not in. However,
there is a contribution to the evaluation of the nonequilibrium
partition function arising from the equilibrium system which
does not contain any nonconservative forces Feq[ρ] (the mean
field theory of the corresponding equilibrium or conservative
system). Finding the density field ρ which minimizes the right
hand side of Eq. (58) is equivalent to choosing the mean field
which best satisfies all the interactions present in the exponent
of Eq. (54). In order to reason about the density then, at any
particular temperature we map our nonconservative system
to an effectively conservative one, but where the interactions

depend on the temperature. This is then the first order ap-
proximation to the full nonconservative system. Establishing
a functional connection between the single particle density
ρ(x) and the other terms in the exponent H0(r) = H0[ρ],
μ(r) = μ[ρ] would therefore allow us to derive densities
of the first order nonconservative system by considering a
simpler mean field estimate to the calculation of Eq. (54)
[28].

We shall use the above to consider two kinds of noncon-
servative systems, which we label internal and external. By
internal we mean that, if a particle is described by a set of
degrees of freedom, all the nonconservative forces exist within
that set, and by external we mean that the nonconservative
forces act between particles, so outside just the set of its own
degrees of freedom. The next sections should illuminate these
two scenarios.

A. Internally imposed nonconservative field: Motile particles

Similarly to the previous section describing particles in an
active bath, we can apply the same analysis to motile particles,
motile meaning a system where particles are consuming fuel
and transforming it to motion.

Applying our method more concretely, we take as an ex-
ample a system of particles with positions r = (x, y) and
orientation θ . Additionally, they have some motility, where
the time evolution of the degrees of freedom is given by [29]

γ ṙ(t ) = −∇H0(r) + ξ(t ) + v0θ̂, (59)

θ̇ (t ) = ξ (t ), (60)

where θ̂ = ( cos(θ ), sin(θ )) and ξ is some white noise pro-
cess. These equations correspond to particles being propelled
along their axis with some parameter v0 characterizing the
swim speed. The potentials in the Hamiltonian H0 are taken
to be just hard sphere potentials. Therefore, each particle is
described by three numbers (x, y, θ )

At first sight, it would appear that our theory would not
be applicable to this situation. However, by thinking carefully
about this system it can also be shown to fit within this
framework. In fact, we merely have a collection of points in
a three-dimensional space, where one of those dimensions is
taken to be an orientation. The position along the orientation
dimension affects the time evolution in the other dimensions,
but not vice versa, establishing the self-propulsion as a non-
conservative force in this three-dimensional space. Hence, this
is why we refer to this as an internally imposed nonconser-
vative field, as each particle has an extra degree of freedom
affecting its evolution in the other degrees of freedom in a
way which breaks Newton’s third law, but only within the set
of its own coordinates (x, y, θ ).

From our scheme in Sec. III A, we are left with the question
of separating the nonconservative and conservative contribu-
tions to the deterministic forces in this space. Fortunately,
this is not complicated, and it can be observed that the two
contributions for each particle are given by

F (c)(r, θ ) = ( − ∂xH0(r),−∂yH0(r), 0), (61)

F (nc)(r, θ ) = ( cos(θ ), sin(θ ), 0), (62)
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where it is clear that the divergence of the nonconservative
force F (nc)(r) is zero and that the curl of the conservative part
is F (c)(r) is zero, thus establishing this as a valid splitting of
the forces.

We can thus go through the steps outlined in the previous
section, where we now imagine a situation of N such particles
all being driven in this way. We use the approximation to
the full distribution given in Sec. III A where bulk properties
of the system can be understood through the construction of
effective pair “potentials.” (See Appendix E for more details
about this for this system in particular.) For the example where
the H0 is just a hard sphere potential, this will lead to a first
order perturbation term of the form (for every particle pair)

μ1(r1 − r2, θ1, θ2)=�(r1, r2){(x1−x2)[cos(θ1)−cos(θ2)]

+(y1−y2)[sin(θ1)−sin(θ2)]}, (63)

where �(r1, r2) is some function arising from the hard sphere
potential (depending on our choice of this). Its precise form
will depend on the details of the interaction, but it will have
a minima at |r1 − r2| = σ where σ is the hard sphere inter-
action. The form of this first order interaction is displayed in
Fig. 4(a). The important aspect arising from a consideration of
the forces in this way is that there is now an effective attractive
interaction arising between particles, solely due to the pres-
ence of the nonconservative forces. Moreover, the coupling
due to the nonconservative force now explicitly includes a
term that depends on the orientations of the particles θ , thus
leading to the possibility of alignment effective interactions
being present in the stationary distribution [30]. The physics
arising from Eq. (63) and seen in Fig. 4 is not too difficult to
understand. It corresponds to a situation where states where
two particles are being propelled into each other are much
more likely to occur that two particles propelling away from
each other. In fact, to first order, the effective attraction due to
particles propelled into each other is exactly balanced by the
effective repulsion from particles propelling away from each
other.

What happens to collection of particles interacting under
the first order interaction? Were one to calculate the effective
perturbation in the mean field theory arising from this first
order potential for some density of particles ρ(r, θ ),

μ1[ρ] ∼
∫

dr1dr2

∫
dθ1dθ2μ1(r1, r2, θ1, θ2)

× ρ(r1, θ1)ρ(r2, θ2). (64)

It would always be equal to zero due to the linear terms in
the trigonometric functions. Thus, the form of pair potential
defined here would not in itself lead to any change in density,
due to the symmetry in the orientation term. (The equilibrium
theory is just a hard sphere gas.) Physically, we cannot arrange
particles in ways where there is any extra statistical weight
associated with a particular density, as all the attractive inter-
actions in the interaction (63) are exactly counterbalanced by
the repulsive interactions. So, to first order, our observation
of the density in this system would look like the equilibrium
one, just a constant, flat density profile. However, the situation
is rather different once we extend the argument to include
interactions up to second order. The second order term, as
can be seen in Fig. 4, breaks the symmetry between the sit-

FIG. 4. Effective interactions arising between two motile parti-
cles as a function of distance. (a) The interaction in space arising
from considering the first order perturbation, (b) the interaction
arising from considering what happens to second order. (c) A slice
along y = 0 comparing the interactions for the first and second
order perturbations. All interactions arise from a particle placed at
(0,0) with an orientation of θ1 = π (swimming in negative x) and
particle 2 having an orientation π = 0 (swimming in positive x).
The presence of nonconservative interactions biases the system to
favor situations where the particles are propelling into one another.
This leads to the introduction of an effective attractive interac-
tion between the particles, as can be observed by the presence of
wells.

uations where the particles are propelling towards each other
and propelling away from each other, leading to a deeper
well for the propelling-into-each-other situation. The second
order term introduces both three- and four-point interactions
in the statistical weight, but we here only display the two-point
interaction in Fig. 4. With such an interaction, the integral in
Eq. (64) is no longer zero for any density, and in fact can be
minimized by concentrating density as the size of the well
is deeper than the size of the peak. However, this effect is
obviously weak as the potential is both (a) short ranged and
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(b) not very deep, the relevant quantity being the difference
between the size of the well and the size of the peak. In the
second order theory, this difference goes as β2v2

0γ /DR, i.e.,
we can expect that as we increase the swim speed or decrease
the rotational diffusion of the motile particle we can transition
to a situation where dense phases are favored over dilute ones,
thus allowing for phenomena such as motility induced phase
separation. In principle, one could use this method to predict
effective pair correlation functions for a system of motile
particles, however, a full analysis of this system is beyond
the scope of this paper and shall be left for future work. We
have shown qualitatively that effects seen in active matter
systems, such as motility induced phase separation [29], can
also be understood through the interplay of conservative and
nonconservative forces.

B. Interacting nonconservative systems

In all the previous applications we have made to a specified
system, the nonconservative aspect of the problem was in
some respect “nonspatial” in that what we had was some
internal parameter which affected the evolution of the position
degree of freedom but which was not affected explicitly by
the real space position. The particles were not interacting
nonconservatively in the sense that the presence of absence
of particles nearby one another were not exerting nonconser-
vative forces on each other in themselves. We here consider
what would happen if instead of being internally driven,
the interactions between particles were nonconservative in
themselves. Therefore, in this section, we shall explore what
occurs when this is the case, when we have a “real” non-
conservative force acting between any pair of particles, not
unlike particles interacting with some potential, which we
call “externally driven.” This is a better description of sys-
tems where a particle might exert a nonconservative force on
its neighbor, representing a different class of active systems
(for example, subunits that update their motion depending
on their neighbors) or systems with modifiable interactions
[12].

Statistical mechanics benefits from the intuitive connection
we can often draw between the action of the microscopic
potentials and the macroscopic structure. For example, we
know that attractive forces have a tendency to concentrate
density, and repulsive ones have a tendency to reduce density.
Can we say something similar about a system of particles
interacting with a nonconservative force? As force decom-
position for interacting particles is more challenging than
for internally driven particles (like in the last section), we
introduce by hand such systems interacting with both con-
servative and nonconservative parts by introducing an extra
pair force exerted on particle i by particle j which is given
by a curl of some vector mi(ri j ) = ∇i × α(ri j ), but stress
these are not meant to represent real physical systems. In
particular, by choosing a pair nonconservative force arising
in this way we have chosen axes of the system. The closest
physical picture that would correspond to this kind of system
would be one in which a global field (such as a magnetic
field) induces a constant angular momentum in the particles
relative to the imposed field, and then these angular momenta
interact with each other according to some effective curl,

reminiscent of some experimentally realized systems [31]. In
order to model real active matter systems, we would have
to introduce particles with their own orientational degrees
of freedom, Alternatively, nonconservative three body forces
between particles could be introduced. This notwithstanding,
these toy models can show us qualitatively the effect that non-
conservative microscopic forces have on spatial distributions
of the system, as any vector field in three dimensions (3D)
can be decomposed into a gradient and curl part, this would
at least approach what one may expect in reality. We are
particularly interested in whether any generalities arise from
the consideration of the modified Boltzmann distribution in
(30).

As we mentioned, the observable quantity we are most
interested in is the density of a fluid of particles interact-
ing nonconservatively, which corresponds to the statistical
average of the density operator under the stationary distribu-
tion, which we reproduce here:

ρ(x, r) =
N∑

i=1

δ(x − ri), (65)

〈ρ(x)〉 =
∫

dr ρ(x, r)P(r). (66)

We can reason about what the effect of pairwise non-
conservative driving is by considering the effective source
term that appears in the modified microscopic probability
∇H · m, where H and m are some functions arising from
our microscopic forces (assuming we already performed the
Green’s function integral), and m is divergence free. There
are several salient facts about this source term, the most im-
portant of which is that if it is equal to zero, either from the
nonconservative force being zero, or the angle between the
nonconservative force and the conservative force is always
equal to π/2, then the stationary properties of the system will
be given by a Boltzmann distribution arising from the conser-
vative part. This source can also be described using the density
operator in the same way as the equilibrium Hamiltonian,
using pairwise additive curl force between particles (ignoring
density correlations) and a pairwise potential between parti-
cles U (ri − r j ):

μ1(r) ≈
∑
i �= j,k

∇iU (ri − r j ) · [∇i × α(ri − rk )], (67)

μ1(r)[ρ] ≈
∫∫∫

dx dx′dx′′ρ(x)ρ(x′)ρ(x′′)[∇U (x − x′) · ∇
× α(x − x′′)], (68)

where now the differential operators ∇ in the second equation
are with respect to ordinary three-dimensional space.

While the contribution to the partition function due to
interparticle potentials is fairly unconstrained, the term cor-
responding to nonconservative pair forces is more interesting.
A salient mathematical fact of integrals of this type is that∫

all space
dx ∇U (x) · ∇ × A(x) = 0. (69)

Therefore, the contribution to the first order theory in Eq. (58)
arising from any nonconservative forces will always be equal
to 0 when the density is constant (this was not the case
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for the self-propelled particle system as the nonconservative
force was not translation invariant in orientation). Taking this
logic further, pairwise nonconservative interactions, if they do
anything to the density, would be to drive the density profiles
of the system from the homogeneous state by coupling to
surfaces. For real physical systems with an orientation degree
of freedom, we would have to consider higher order terms
in order to capture the relevant physics, however, a similar
picture would emerge for terms which depend on this source
squared and so on. This interesting result arises solely from
the fact that the forces are nonconservative and decomposable
in terms of curls.

We can understand why this is for particular kinds of
density field ρ(x). If the source has a finite length scale and
the density is approximately constant over this length scale,
then the contributions to F (nc) from these terms are effectively
zero (ignoring fluctuations). Therefore, the main contribution
to Eq. (69) from nonconservative forces happens due to sur-
faces. This can be proven using the divergence theorem for a
constant but finite density field. Due to all the complexities in-
cluded in the derivations thus far, we wish to demonstrate this
for a “real” system. Therefore, we introduce a toy model of
particles interacting with pairwise nonconservative forces, via
simulation. In order to test this, we simulate 10 000 particles
in a box with periodic boundary conditions interacting with
both an ordinary Lennard-Jones potential

U (r) = 4εLJ

[(σ

r

)12
−

(σ

r

)6]
(70)

and where we now introduce an extra divergence-free force
between the particles, again not meant to represent a real
physical system, but rather as a qualitative representation for
how nonconservative forces affect spatial density. We choose
this force such that it obeys some simple pair conditions.
We would like F(x) = −F(−x), so that the force exerted by
particle 1 on particle 2 is the same force as exerted on particle
2 by particle 1 (though in principle this does not need to be the
case for a nonconservative system). We also would like this
force to be spatially limited, such that it decays quickly as the
distance between any two particles increases. Additionally,
the force must be divergence free for it to apply to our theory
as derived thus far (but not zero). In contrast to the previous
section, we do not wish to include self-propulsion, as we are
interested in the minimal effect. A simple example would be a
force of the following form being exerted on a particle i from
a particle with j with orientation θ j in three dimensions:

Fi j (ri − r j ) = ε

λ
[θ j × (ri − r j )] exp[−(ri − r j )

2/λ2]

which obeys all the conditions above. It corresponds to a
particle of exerting an additional nonconservative force on its
neighbor due to its orientation. For simulation purposes, we
treat this force first by (a) fixing all the particles orientation
with respect to a chosen system axis, rather like imposing a
strong field aligning all the particles, thus breaking the rota-
tional symmetry of the system. Another modification is due to
the fact the nonconservative force in the above Eq. (71) is at a
maxima at zero, the effect of the nonconservative force does
not extend far beyond the hard sphere potential defined in the
Lennard-Jones potential. Thus, we shall also shift the potential

FIG. 5. Snapshots of simulations of particles interacting under a
Lennard-Jones potential and a pair nonconservative force given in
Eq. (71). In (a) we show different viewpoints of the start point of
the simulation with a roughly spherical droplet of the particles, after
relaxation under only the Lennard-Jones potential and immediately
after imposition of the nonconservative force. In (b) we show the
stationary droplet shape after time evolution of the microscopic equa-
tions after switching on the nonconservative forces. The particles,
which would under the ordinary (equilibrium) Lennard-Jones form a
spherical droplet, are instead driven away from the spherical shape
through their nonconservative interactions, adopting an elliptical
shape with respect to the axes where their internal degrees of freedom
are fixed.

so nonconservative effects are observable by including an
additional factor going as r2

i j in our force. For the following,
we consider therefore the following nonconservative force:

Fi j (xi j, yi j, zi j ) = ε

λ2
∇i

1

λ2

((
y2

i j, z2
i j, x2

i j

)
× exp

[ − (
x2

i j + y2
i j + z2

i j

)
/λ2

])
. (71)

But, we also note that under a range of different choices of
this force yields qualitatively similar results.

In order to show qualitative variation from expected equi-
librium density profiles, we first simulate the relaxation of
the system to an equilibrium state, and then switch on the
nonconservative forces. In addition, as we expect noncon-
servative forces to mainly affect surfaces, we keep the total
particle volume fraction of the system small Nπσ 3

6V = 0.01. The
other parameters we choose are that kbT = 1, λ = 1.5, σ = 1,
εLJ = 2.0, ε = 1.

We show a particular example of the shape adopted by
this system in Fig. 5. This simple simulation already shows
qualitatively the effects that we were able to reason about
through a consideration of the source term. The extra term
in the effective “free energy” drives the system away from its
equilibrium shape (which would be a spherical droplet), lead-
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FIG. 6. Characterization of the final states of the system in terms
of the effective sources we defined in the main text. (a) The average
value of the source term ∇H0 · m during the run of the simulation
snapshots seen in Fig. 5. The total value of the source term increases
with simulation time, and saturates at the pancakelike shape shown
in Fig. 5. (b) The probability distribution of the source term, skewed
somewhat towards positive values. (c) How the value of the source
is distributed over space, with a color scheme selected from the
standard deviation of the distribution. One can observe that the far
outer edge of the pancake is blue, corresponding to negative values
of the source term, but all the surfaces inside are slightly positive.
There exists a subsurface layer that is also positive, below the outer
edge.

ing to the formation of a pancakelike shape. It should be noted
that while this appears to be similar to elastic deformation of a
sphere, the system is heavily overdamped and the states arise
from microscopic pair forces. From the preceding discussion
we stated that the source term ∇H0 · m would act primarily
through surfaces. We can now quantify this effect by looking
at the same snapshots of system evolution with the color scale
of the particles equal to their total value of this source and
also see how the average value of this term changes during
our simulation run.

These results are presented in Fig. 6. Several trends are
visible from this figure. First, the mean value of ∇H0 · m per
particle changes during the simulation as it moves from the
spherical shape to the pancake shape. However, the distribu-
tion of ∇H0 · m over all the particles is very broad compared
to the mean. Moreover, these values are not distributed equally

across the final state, but are instead localized in different
parts of the pancake. As can be seen, there exists a strong
surface layer across one axis of the pancake, and a differently
valued one across another surface, according well with the
mathematical arguments which we presented earlier.

This simple phenomenology and simulations show us qual-
itatively the effect nonconservative microscopic interactions
can have on larger scale observations. We kept our discussion
general up until the point of simulating the particles. Interest-
ingly, a natural result of a framework considering the interplay
of microscopic nonconservative interactions was that it will
subsequently manifest itself through density inhomogeneities,
and most strongly through surfaces. In particular, the impo-
sition of given forms of microscopic driving naturally leads
to particular shapes when considering aggregates of such
particles, given by the interplay of the conservative and non-
conservative forces. In this system, the nonconservative and
conservative forces compete against each other over which
shape they find preferable, settling on the pancake shown.

V. DISCUSSION

We have in the preceding displayed results relating to both
the microscopic and macroscopic treatments of nonconser-
vative forces in a system of particles. We will now proceed
to discuss some broader aspects of the physical relevance
of these results, in both its microscopic and macroscopic
manifestations.

A. Physical intuition of microscopic perturbations to Boltzmann
distributions by nonconservative vector fields

The linear system provides a useful avenue to test our
intuition regarding the effects of nonconservative force. We
imagine the coordinate space of the equilibrium problem as a
surface embedded in three dimensions, where the x, y axes
correspond to different points in coordinate space and the
height in z is the energy. For a harmonic system we plot
the coordinate space of the system and imagine what would
happen upon imposition of a nonconservative vector field at
every point on the surface. It is easy to see visually (Fig. 7)
that the average effect of this vector field will be zero if the
divergence is zero and the dot product of the nonconservative
field with the equilibrium forces is zero. For such a nonconser-
vative vector field, the motion due to that force in coordinate
space proceeds along the equilibrium constant energy surface,
and the probability along each point on that surface is not
modified.

This helps to motivate our understanding of the “source”
term ∇H0 · m, which we refer to throughout the text. In a
system being driven out of equilibrium by nonconservative
forces, states where the nonconservative force is balancing the
equilibrium one are stabilized with respect to the equilibrium
distribution. This is by itself not a particularly complex idea,
though its manifestations can lead to rather complicated ef-
fects. For an active particle in a well, this simply leads to a
broadening of the distribution that looks a lot like increasing
temperature, but, for example, we saw that for motile parti-
cles, the addition of such a term leads to effective attractive
interactions, by favoring states where particles are propelling

022610-13
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FIG. 7. Impact of imposing a nonconservative field (−εy, x) on
a harmonic equilibrium system (all units arbitrary). On the left hand
side we display the potential energy landscape and the noncon-
servative vector field at each point, which leads to the probability
distribution displayed on the right hand side. In (a), for ε = 1, the
probability distribution is unmodified as the nonconservative field
and the equilibrium forces always move orthogonal to each other (the
divergence of the nonconservative field is zero) (b) as ε is varied, the
vector fields are no longer orthogonal, so the distribution is modified.
The nonconservative vector field “pushes” against the equilibrium
one, leading to modifications of the probability distribution.

into one another, which may be a signature of motility induced
phase separation. When the nonconservative force is acting
in space it leads to very nonequilibrium density profiles. It is
clear from the models considering that nonconservative forces
cannot just be considered through renormalizing temperature.
Every term in the perturbative expansion depends on this
source, so if it is zero the system will relax to an equilibrium
distribution over states.

We also note that while this term would appear in the total
dissipated power of the system, given by 〈∑i Fi

dxi
dt 〉, it is not

by itself the total dissipated power of the system [32]. We have
in this paper framed our approach towards nonequilibrium
steady states in terms of analyzing the dynamics of systems
with unspecified nonconservative forces. Another approach,
which we did not take in this paper, would be to analyze
such systems more generically in terms of quantities such
as entropy production, work, and dissipation. Some of the
same concepts seem to arise from the microscopic picture,
as should be expected, however, future work should relate
both the thermodynamic picture and the microscopic picture
presented here to each other.

B. Microscopic nonconservative forces and larger scale effects

Proceeding from microscopic consideration of nonconser-
vative forces led to particular features when analyzing average
properties such as the density. Our simple phenomenological

picture led to the coupling of terms in the effective nonequi-
librium “free energy” to surfaces of the density. However,
in this simple picture we also ignored the effects of den-
sity fluctuations, which nonconservative forces would also
affect.

Despite this, even the simplest phenomenological consider-
ation of nonconservative forces results in the system having a
preference for selecting certain density profiles, as was seen in
the results of Sec. IV. We analyzed the results in terms of two
classes of systems, which we referred to as internal or external
nonconservative forces. In both cases, the presence of the
nonconservative forces in some of the degrees of freedom was
seen to be consistent with large scale differences in the den-
sity. In the former, by favoring aggregation, and in the latter
case, a natural consequence of nonconservative over con-
servative perturbations is that nonconservative perturbations
couple to surfaces (inhomogeneities) rather than to bulks. This
is the main difference to a conservative perturbation, which
would modify effective free energies in the bulk phase as
well.

For the case where the nonconservative driving is inter-
nal to the particles, where we reiterate that the meaning of
internal here is that when each particle is described by a
set of coordinates (x, y, . . .), that the nonconservative forces
exist solely within these degrees of freedom, and interactions
between particles can be described using a potential. This is
an apt descriptor of active systems such as particles in an
active bath [internal coordinates (x, A)] or of active Brown-
ian particles [coordinates (x, y, θ )]. In these internally driven
systems, which usually mean the particles have some effec-
tive motility, we favor states where the motility is maximally
working against the conservative forces. For a hard sphere
interaction it is not to difficult to see what this means in
practice, as the work will be maximized when the hard spheres
are being pushed into one another. In principle, this reason-
ing could be applied to any conservative interactions though,
leading to more complex behaviors. This case is slightly
modified in the case of external (interactions) nonconserva-
tive forces. In the example we have chosen, the conservative
(equilibrium) interactions would lead to the formation of
a spherical droplet. The introduced pairwise nonconserva-
tive interactions, which favor surfaces, lead to the formation
of a pancake phase. The interplay of bulk favoring con-
servative interactions and surface favoring nonconservative
interactions could in principle lead to many unique and inter-
esting steady states. We have here shown only one example,
but the principle perhaps could be extended further to un-
derstand interactions among multiple species. Moreover, the
way in which complex equilibrium interactions supplemented
with microscopic driving between components could manifest
themselves macroscopically could be suggestive for analysis
of biological systems. In principle, this defines a route to at-
tempt to understand the formation of complex nonequilibrium
patterns from a consideration of microscopic forces. Intrigu-
ingly, the fact that nonconservative forces couple strongly
to density surfaces suggests that complicated systems, with
many species, where there are a lot of effective “surfaces”
may behave in ways that are very different to single com-
ponent fluids which are also being driven out of equilibrium
microscopically.
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C. Active matter and force decomposition

In this paper, instead of solving for a particular active mat-
ter system, we have presented results in terms of the interplay
between conservative and nonconservative force fields, and
then mapped those results onto real systems. This approach is
not generally standard in current treatments of active matter.
However, we argue that such analysis is not without merit.
Particular models of active matter may display the features we
have discussed here. We created nonconservative systems by
construction in Sec. IV. For a real system, we would instead
proceed by writing the realistic forces, and then we could
attempt to decompose the forces mathematically into their
conservative and nonconservative parts. While this may sound
complicated, the fact that in most realistic systems forces are
pairwise between particles would reduce the complexity of
the problem massively and leave it amenable to numerical
fitting techniques if mathematical solutions are impossible.
We would expect such systems to qualitatively obey the dis-
tributions we described here. However, an extension of the
currently presented theory would have to be derived in order
to describe systems coupled to different temperature baths. In
this way we treat the problem of finding the steady state dis-
tributions of active matter systems as the statistical mechanics
of nonconservative vector fields, and consider equilibrium as
the statistical mechanics of conservative vector fields.

In many other systems, the nonconservative forces exist in
degrees of freedom that are not necessarily spatial, for exam-
ple, internal degrees of freedom such as orientation may apply
effective forces in space. We analyzed two such examples in
this paper (active noise driving trapped colloids and motile
particles). In both of these cases, the nonconservative nature
exists in the presence of an extra variable carried by each
particle which affects its evolution in time, such as memory
of noise or orientation. In such systems, the decomposition
into conservative and nonconservative parts of the force is
trivial due to the fact that particles themselves are not coupled
to each other nonconservatively. This makes these systems
particularly attractive for studying stationary states of many
particles with nonconservative forces.

VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have analyzed the steady state distribution
that arises from particles interacting with both conserva-
tive and nonconservative forces. We have shown that the
Boltzmann distribution is modified by the addition of excess
convolution integrals over effective source terms that arise
when treating the system perturbatively in the nonconserva-
tive elements. We have shown results for two different classes
of nonconservative system, one of which there is some process
leading to additional translation, and another where there are
nonconservative interactions. We give some indication for
how nonconservative forces in space affect more macroscopic
observables, and find that generic nonconservative forces in
space couple to density surfaces rather than volume terms.
The consequences of this are that microscopic driving im-
plemented between pairs of particles leads to the adoption of
different density profiles and shapes than would be expected
from the same system with only the conservative interactions.

However, the fact that such deformations arise can be under-
stood from the source terms we derived in the microscopic
theory, where differences from Boltzmann distributions arise
due to operators acting on ∇H0(r) · m(r), and this perturba-
tion, when course grained, naturally couples to surfaces. We
believe the framework we have presented so far is suggestive
of future directions.

On the mathematical level, the full microscopic probability
distribution is very complicated. The probability distribu-
tion due to nonconservative forces can be written as a
series of integrals over source terms with Green’s functions,
where the Green’s function is some equilibrium path integral.
Nevertheless, certain simplifications exist that make the prob-
lem tractable for large numbers of particles.

While in this paper we have mainly focused on the
static distributions of matter being driven by nonconservative
forces, a whole other aspect that was ignored in this work
was the dynamics. The steady states arising from these forms
of nonequilibrium systems may still have net currents acting.
How these steady states then behave when perturbed by an ex-
ternal field, their response properties and dynamic relaxation
are all ongoing topics of research [33]. An additional as-
sumption we employed was that the system was overdamped.
Upon relaxation of this assumption, many other interesting
phenomena may result.

In the latter sections, we noted that nonconservative sys-
tems adopt particular shapes compared to conservative ones.
We believe this is an interesting avenue of potential explo-
ration. In particular, one may be able to relate particular
mesoscopic patterns or shapes to the interplay of microscopic
conservative and nonconservative forces. Additionally, one
may be able to reformulate this theory in terms of conservative
and nonconservative stress tensors [34].
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APPENDIX A: APPROXIMATE SOLUTION FOR
GREEN’S FUNCTION

The Green’s function equation is given by

(∇2 − β∇H0 · ∇)G(r, r′) = δ(r − r′). (A1)

We supplement this with another different equation for a vec-
tor g(r, r′):

(∇ − β∇H0) · g(r, r′) = δ(r − r′). (A2)

It is clear that g(r, r′) = exp[βH0(r) − βH0(r′)]∇G0(r, r′)
solves Eq. (A2) where G0 is the Green’s function in the ab-
sence of any Hamiltonian ∇ · ∇G0(r, r′) = δ(r − r′).

However, this is not the Green’s function as there is no
guarantee that g is expressible as a gradient. An approximate
solution involves just taking the gradient part of g(r, r′) which
leads to the approximate solution in the main text:

G(r, r′) =
∫

dr′′e−[βH0(r′ )−βH0(r′′ )] (r′′ − r′) · (r − r′′)
AN |r′′ − r′|N |r − r′′|N ,

(A3)
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DINO OSMANOVIĆ PHYSICAL REVIEW E 103, 022610 (2021)

which becomes exact if the divergence free part of g(r, r′) is
equal to zero.

APPENDIX B: CORRELATIONS IN GREEN’S FUNCTION

In the main text we were faced with the problem of calcu-
lating the perturbations due to a source term which is given
as some pairwise sum over all the particles in the system. In
this Appendix we shall demonstrate that this approximation
becomes exact for large systems. In order to demonstrate this,
we shall use the series form of the Green’s function. We wish
to calculate

[∇2 − β∇H0(r) · ∇]μn(r) =
∑
i �= j

ρSu(ri, r j ), (B1)

which is the generic form of the perturbative expansion of
any order n. All the sums are taken to go over all the par-
ticles in the system, which is of size N , corresponding to
N particles. We restrict the right hand side to be pairwise
in two of the variables of the system, though in principle
the following argument could be applied to any subset size.
The form of ρS is kept general, however, we can addition-
ally employ the assumption that it is translationally invariant
ρS (ri, r j ) = ρS (ri − r j ).

This equation can be formally solved as a series solution in
the inverse temperature β, which is how the Green’s function
in the main text is solved. This leads to an expansion of the
form

μn(r) =
∑

m

βmμ(m)
n (r), (B2)

where each term m > 0 is given as the solution to

∇2μ(m)
n (r) = ∇H0(r) · ∇μ(m−1)

n (r) (B3)

with the condition for m = 0 being given by

∇2μ(0)
n (r) =

∑
i �= j

ρSu(ri, r j ). (B4)

For equations of the form (B4), the integral over the Green’s
function kernels are exactly decomposable into the constituent
parts in the sum. This is perhaps easiest seen in the Fourier
representation. For a generic system of dimension N but with a
source term that depends only on a few variables, the solution
(in Fourier space) is given by

μ̂(0)
n (k) =

∫
dr exp (ik · r)

1

|k|2 ρSu(k), (B5)

where we have used that the Green’s function for the Lapla-
cian in Fourier space is given by 1/|k|2. For the case that the
source term only depends on r1, r2 then the Fourier transform
source term ρSu(k) is given by

ρSu(k) = ρSu(k1, k2)δ(k3)δ(k4) . . . δ(kN ). (B6)

We can substitute this into Eq. (B5), where the integrals over
all the delta functions can be easily performed, leaving

μ̂(0)
n (k) =

∫
dk1k2 exp[i(k1, k2) · (r1, r2)]

× 1

|k1|2 + |k2|2 ρSu(k1, k2), (B7)

where we can identity the new integral as just the Green’s
function in reduced dimension. As the Green’s function is a
linear operator, it can be applied independently to each term
in the sum. Following on from this, the solution to the m = 0
equation can then be seen to be equal to

μ(0)
n (r) =

∑
i �= j

�(ri − r j ), (B8)

where � is just the solution of the reduced dimension prob-
lem, where we introduce again the translational symmetry of
the problem. What happens when we then try to work out the
m = 1 term arising from this m = 0 term? In the following,
we assume that we are working with a pairwise Hamiltonian,
such that

∇H0(r) = (F1, F2, . . . , FN ) (B9)

=
(∑

k �=1

f (r1 − rk ),
∑
k �=2

f (r2 − rk ), . . . ,
∑
k �=N

f (rN − rk )

)
, (B10)

where for any real physical system, the pairwise forces are antisymmetric in the arguments f (ri ) = −f (−ri ). The function f is
the microscopic forces in the system. Applying the Hamiltonian in Eq. (B9) to the solution for m = 0 to obtain the source term
for the m = 1 perturbation ∇H0(r) · ∇μ(0)

n (r) gives us the following equation:

∇2μ(1)
n (r) = ∇H0(r) · ∇μ(0)

n (r) (B11)

=
∑
i �= j

[ f (ri − r j ) · ∇i + f (ri − r j ) · ∇ j]�(ri − r j )

+
∑
i �= j

( ∑
k �=i, j

f (ri − rk ) · ∇i +
∑
k �=i, j

f (r j − rk ) · ∇ j

)
�(ri − r j ). (B12)

We see that this source introduces new three point correlation
functions, depending on all the positions i, j, and k. However,
closer analysis of this equation yields a very useful result.

Employing the fact that � are even functions in the arguments,
it can be seen that the first sum in the source term expression
is summing over symmetric functions, and the second term
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is summing over antisymmetric functions (as microscopic
force functions are antisymmetric). Therefore, in the limit of
N → ∞ the first sum will dominate over the second sum.
However, the first term is just a sum of pairwise expressions
again, thus, the same analysis we used for the m = 0 theory
can be used again, and we get that the m = 1 term of the
solution is pairwise. Moreover, as the m = 2, 3, etc., terms
also follow the same pattern, it can be shown that we can
get similar results for any term of order m. Thus, in the limit
N → ∞ we feel justified in assuming that the solution μ is
also pairwise. This result means that when we consider a
source term in some subset of variables in the system, we
can treat it by solving it in that subset rather than solving the
differential equation over all N variables in the system. This
dramatically reduces the difficulty of problems we encounter
as we now only need to solve a two- or three-dimensional par-
tial differential equations (doable) rather than N-dimensional
partial differential equations (not doable).

We can interrogate this assumption as a function of N by
reinserting it into the full equation. For example, in the case
that an operator equation is given by

Lμ(x, X) = [L(x) + L(X)]μ(x, X) = ρ(x), (B13)

we have introduced the generic operator L, where x and X
refer to different degrees of freedom. In this case, the solutions
we posited can be seen to be (for a linear operator L)

μ(x) = L−1(x)ρ(x) (B14)

if the action of the operator L(X ) on this function is zero, this
will be a solution to this equation.

Returning again to the fact that our total equation is given
by

Lμ(r) = ρ(r), (B15)

where r = (r1, r2, . . . , rN ) and now the operator is equal to
L = ∇2 − β∇H0 · ∇. Again, assume that the density is usu-
ally in terms of sums over terms involving only a few of the
total degrees of freedom of the system:

ρ(r) =
∑
i, j

ρSu(ri, r j ). (B16)

The operator L is a linear operator, and so is its inverse (the
Green’s function), therefore, the full solution μ(r) is given by

μ(r) = L−1
∑
i, j

ρSu(ri, r j ), (B17)

μ(r) =
∑
i, j

L−1ρSu(ri, r j ), (B18)

where the second equation arises due to the linearity of the
operator. L−1ρSu(ri, r j ) is merely the solution to the full equa-
tion where the only source is ρSu(ri, r j )

In order to progress with this we represent the full solution
to an equation with a subset source as

(Li, j + Lcorr + LR)μi, j (r) = ρSu(ri, r j ), (B19)

which arises from splitting the contributions of our full oper-
ator into the terms that depend on (ri, r j ), Li, j , all the other
terms with no dependence on ri and r j , LR and all the cross
terms are in Lcorr. For our Green’s function system each of
these operators can be written out in full as

Li, j = ∇2
i + ∇2

j + f (ri − r j ) · ∇i + f (r j − ri ) · ∇ j, (B20)

L(i, j)
R =

∑
k �=(i, j)

∇2
k +

∑
k �=(i, j)

∑
l �=(i, j,k)

f (rk − rl ) · ∇k, (B21)

L(i, j)
corr =

∑
k �=(i, j)

f (ri − rk ) · ∇k +
∑

k �=(i, j)

f (r j − rk ) · ∇k.

(B22)

It is clear that in the absence of correlation Lcorr = 0, the
solution will be given by

μ
(0)
i, j (r) = L−1

i, j ρSu(ri, r j ) (B23)

as the action of the operator L(i, j)
R on this function is equal to

zero. We can thus interrogate the full solution by setting every
term in the series as being equal to sum over this result:

μapp(r) =
∑
i �= j

μ
(0)
i, j (r). (B24)

The action of the operator L on this approximate solution is
given by

L
∑
i �= j

μ
(0)
i, j (r) =

∑
i �= j

ρSu(ri, r j ) +
∑
i �= j

L(i, j)
corr μ

(0)
i, j (r). (B25)

The action of the correlation operator on μ
(0)
i, j is zero if it is being acted on by the derivative which does not contain either i or j,

therefore, we are left with the following:

∑
i �= j

L(i, j)
corr μ

(0)
i, j (r) =

∑
i �= j

(∑
k

f (ri − rk ) · ∇i +
∑

k

f (r j − rk ) · ∇ j

)
μi, j . (B26)

The relative error between the action of the operator on the real solution and the approximate one goes as

|Lμapp − Lμ|
|Lμ| =

∑
i �= j

( ∑
k f (ri − rk ) · ∇i + ∑

k f (r j − rk ) · ∇ j
)
L−1

i, j ρSu(ri, r j )∑
i �= j ρSu(ri, r j )

(B27)

which decays rapidly as a function of N again due to the antisymmetry of the forces. The solution scales with N in the same way
as the operator acting on the solution does.
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APPENDIX C: SOLUTION OF SMOLUCHOWSKI
EQUATION FOR LINEAR SYSTEMS

Starting from the stationarity condition:

∇ · [exp (−φ(r)][−∇H0 + m + kbT ∇φ)] = 0 (C1)

and introducing a new vector L = −∇H0 + m + kbT ∇φ,
leading to L − F = kbT ∇φ where F is the vector of all the
forces in the system we obtain the condition that

kbT ∇ · L − L.(L − F) = 0 (C2)

with the additional condition that L − F is conservative. Now,
we say that F = Ax where A is a matrix which does not
depend on position and searching for solutions L = Bx we
have the following conditions that must be satisfied in order
for Eq. (C1) to hold:

Tr(B) = 0, (C3)

xT (BT B − BT A)x = 0, (C4)

(A − B)T = A − B. (C5)

Condition (C4) is true if the combined matrix is antisymmet-
ric. Upon decomposition of the two matrices A, B into their
symmetric and antisymmetric components

A = S + Q, (C6)

B = � + �, (C7)

we can find the elements of matrix B as a function of the given
matrix A, where condition (C5) immediately leads to � = Q,
and we have upon expansion the following equation for �:

2�2 − � · (S + Q) − (S + Q)T · � + [Q, S] = 0, (C8)

where the square brackets denote a commutator. This equation
is known as the continuous time algebraic Riccati equation
and has well developed methods of solution, for example, by
eigendecomposition of a larger system. We omit full details
of how this equation is solved and let the reader consult [35].
Any matrix � that solves this equation in addition to being
symmetric and traceless will be a solution to the Smolu-
chowski equation. We can then compare these solutions to the
perturbative expansion and see how well it describes the true
solutions to the equations.

APPENDIX D: MEAN FIELD THEORY FOR FIRST ORDER
NONCONSERVATIVE SYSTEMS

We show here that the Gibbs-Bogoliubov inequality as
applied to nonconservative systems still produces an effective
mean field description. The probability distribution for the
first order nonconservative system is given by

P(r) = 1

Z exp[−βH0(r) − β2μ1(r)]. (D1)

The statistical weight (the factor inside the exponential) of
each state goes as

W (r) = H0(r) + βμ1(r). (D2)

We introduce an external field acting on all the particles:

V (r) =
∑

i

Vext(ri). (D3)

We then consider the total statistical weight to be made up of
two parts:

W (r) = W1(r) + W2(r), (D4)

where W1(r) = V (r) and W2(r) = H0(r) + βμ(r) − V (r).
The partition function is given by

Z =
∫

dr exp(−β[W1(r) + W2(r)]). (D5)

Dividing through by Z1 = ∫
dr exp[−βW1(r)] leads to

Z
Z1

= 1

Z1

∫
dr exp(−β[W1(r) + W2(r)]). (D6)

The term on the right hand side is just the average of
exp(−βW2) in the system with statistical weight W1:

Z
Z1

= 〈exp[−βW2(r)]〉1. (D7)

Using the property of exponentials 〈exp(x)〉 � exp(〈x〉) we
obtain

−β−1 log(Z ) � −β−1 log(Z0) + 〈W2(r)〉1. (D8)

The terms depending explicitly on V (r) in the above equation
cancel with each other, and due to the additive nature of the
contributions in W2 (i.e., when the nonconservative forces are
zero we just have the theory for the equilibrium system) we
are left with

−β−1 log(Z ) � F0[ρ] + βμ1[ρ], (D9)

where we make explicit that this is a functional of the den-
sity [ρ]. F0 contains the contributions due to the equilibrium
system, and μ1 is the perturbation. Finding the density field
ρ which minimizes the right hand side of Eq. (D9) is equiv-
alent to finding the mean field which best captures all the
interactions in W2((r)), so long as we are able to establish a
functional connection between the single particle density and
the interactions in the system.

APPENDIX E: SOLUTION OF PERTURBATION
EQUATION FOR SELF-PROPELLED PARTICLES

We start from the factorized form of the perturbation equa-
tion

∇ · [e−βH0(r)∇μ1(r)] = e−βH0(r)ρS (r), (E1)

where the interaction between any two particles is given by a
hard sphere repulsion

φHS (r) =
{

4εLJ
((

σ
r

)12 − (
σ
r

)6) + ε if r < 21/6σ ,

0 otherwise
(E2)

with the total equilibrium Hamiltonian being given by

H0 =
∑
i �= j

φHS (ri j ), (E3)

where ri j is the radial distance between particles i and j. Each
particle has three numbers identifying its state: two positions
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and an orientation (x, y, θ ). Therefore, the conservative force
between any two particles i and j in these coordinates will be
given by

∇iH0(ri j ) = (xi − x j, yi − y j, 0)φ′(ri j ); (E4)

there is no force acting on the orientation degree of freedom.
Between two particles, we can extend this vector to encom-
pass all six coordinates:

∇H0(r1, r2) = (xi − x j, yi − y j, 0, x j − xi, y j − yi, 0)φ′(ri j ).

(E5)

The nonconservative forces in this space are given by

F(nc)(r1, r2) = v0( cos(θ1), sin(θ1), 0, cos(θ2), sin(θ2), 0).
(E6)

The dot product of these two is then the source term entering
the right of Eq. (E1):

ρS (x1, x2, y1, y2, θ1, θ2)

= (xi − x j, yi − y j, 0, x j − xi, y j − yi, 0)φ′(ri j )

· ( cos(θ1), sin(θ1), 0, cos(θ2), sin(θ2), 0), (E7)

where as the expansion is being performed in v0 (per the main
text), we suppress its appearance in the above.

To make progress, we assume that the exponential of the
hard sphere term is approximately a Heaviside function

e−βφHS (r) = 0 if r < σ, (E8)

i.e., we treat the hard sphere energy as an effective boundary
condition in the solution to Eq. (E1). Expanding out Eq. (E1)
leads to(

∇2
x1,y1,x2,y2

+ γ

DR
∇2

θ1,θ2

)
μ(x1, y1, x2, y2, θ1, θ2) (E9)

= ρS (x1, x2, y1, y2, θ1, θ2)

with the boundary conditions that μ(|ri − r j | = σ ) =
0, μ(∞) = 0. We have additionally included the approxima-
tion that as there is translational symmetry in x, y, we can set
one of these positions to zero and solve for the other. The
orientation dependent coordinates can be solved by using a
Fourier series expansion for Eq. (E9) in θ1 and θ2. Once the
solution has been obtained for one perturbation, one can then
continually reapply it to get the solution to any order for the
pairwise interactions.
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