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Spatiotemporal mapping of mesoscopic liquid dynamics
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The study of liquid dynamics at mesoscopic scales is still strewn with difficulty due to limitations in theory and
experiment. Historically, significant attention has been given to the analysis of space-time correlation functions
and their frequency-Fourier transforms at a few discrete wave numbers. The massive computing power afforded
by modern high performance computing clusters and the advent of a wide-angle neutron spin-echo spectrometer,
however, have unlocked a more intuitive and fruitful approach to this problem. Using molecular dynamics
simulations, here we demonstrate the benefits of spatiotemporally mapping intermediate scattering functions
on a dense grid of correlation times and wave numbers. Four model systems are investigated: a Lennard-Jones
liquid, a coarse-grained bead-spring polymer, a molten sodium chloride, and a poly(ethylene oxide) melt. We
show that the spatiotemporal mapping approach is particularly useful for elucidating the mesoscopic dynamics
in these liquids, where several underlying mechanisms, such as molecular relaxations, hydrodynamic modes, and
nonhydrodynamic excitations, are potentially at play. Compared to the traditional method, direct visualization
of density space-time correlation functions on two-dimensional color maps permits appraisals of complicated
dynamical behavior at mesoscales in a global manner. For example, the scaling relations between space and
time for different types of molecular motions can be straightforwardly identified on these plots, without
any model-dependent analysis. Additionally, we show how theoretical ideas regarding collective mesoscopic
dynamics, such as the classical hydrodynamic theory, the convolution approximation, and a recently proposed
phenomenological model, can be discussed in terms of the global features of spatiotemporal maps of intermediate
scattering functions. The new perspective offered by the spatiotemporal mapping method should prove useful
for the study of liquid dynamics in general.

DOI: 10.1103/PhysRevE.103.022609

I. INTRODUCTION

The dynamics of liquids on mesoscales is a problem of
longstanding interest for theorists and experimentalists alike.
A focal point of past and ongoing studies on this subject is the
understanding of spatial and temporal fluctuations of liquid
density, with the help of radiation scattering experiments and
computer simulations [1–4]. While extraordinary progress has
been made as a result of extensive investigations of more
than half a century, many problems remain unresolved. For
example, the collective mesoscopic dynamics of liquids is
still poorly understood: coherent inelastic neutron scattering
data in this regime are extremely limited [5–9] and there
are currently no universally accepted theory for interpreting
experimental results. From a theoretical perspective, it has
long been recognized that collective mesoscopic motions are
generally governed by complicated physical mechanisms and
considerations of both molecular dynamics and hydrodynam-
ics are required [4]. Computationally, the situation is much
better: a significant body of molecular dynamics simulation
data have been accumulated on collective dynamics of atomic,
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molecular, metallic, ionic, and polymeric liquids [10–17].
However, without an effective framework to guide the data
analysis, the true value of such simulations may yet be un-
earthed.

In this work we demonstrate and advocate a more nat-
ural way of thinking about mesoscopic liquid dynamics.
As is known, intermediate scattering functions [S(q, t ) and
Sinc(q, t )], as well as their spatial and temporal Fourier trans-
forms, are vehicles for characterizing the dynamical behavior
of liquids. Mathematically, they are mappings defined on a
two-dimensional plane of wave numbers q and correlation
times t . Due to historical and practical reasons, these time
correlation functions are typically determined at a few dis-
crete wave numbers (angles) in scattering experiments or
computer simulations—that is to say, only a small number of
one-dimensional slices of these functions are examined. An
alternative approach is to survey the entire two-dimensional
surface of the intermediate scattering functions. This is ex-
actly what the present study explores. We will refer to this
method as spatiotemporal mapping.

Computing time correlation functions from molecular dy-
namics simulations is generally straightforward. By contrast,
as we shall show in this work, frequency (energy) domain
analysis from simulations can be highly nontrivial for meso-
scopic collective liquid dynamics, because of the complicated
and subtle features involved. Experimentally, the advent of
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a wide-angle neutron spin-echo spectrometer [18] has made
it possible to efficiently map out the intermediate scatter-
ing function over a large swath of momentum transfers and
Fourier times in the mesoscopic region. It is worth mentioning
that presenting inelastic scattering results in terms of two-
dimensional color maps of momentum and energy transfers
has been a popular choice at many neutron and x-ray facili-
ties. Nevertheless, the potential benefits of 2D data analysis
have not been fully appreciated by the liquid and soft matter
dynamics community. Lastly, the advances in parallel comput-
ing technologies can be leveraged to significantly accelerate
spatiotemporal mapping of intermediate scattering functions
from molecular dynamics simulations, particularly for poly-
meric materials. These considerations provide the technical
motivation of this work.

The spatiotemporal mapping method affords a fruitful
paradigm for making new observations with inelastic scat-
tering experiments and computer simulations. For example,
we shall show that the scaling relation between space and
time for density fluctuations can be directly visualized by
examining the two-dimensional surfaces of intermediate scat-
tering functions. We shall also demonstrate how different
theories and ideas regarding mesoscopic liquid dynamics can
be appraised from a global perspective. This study employs
molecular dynamics simulations as the research tool, but the
same methodology is also applicable to neutron spin-echo
experiments, with some caveats.

II. COMPUTATIONAL METHODS

A. Molecular dynamics simulation

Molecular dynamics simulations were performed with
the LAMMPS package [19–21]. To showcase the poten-
tial of the spatiotemporal mapping approach in a general
manner, we report results on four representative systems: a
Lennard-Jones liquid, a coarse-grained bead-spring polymer,
a molten sodium chloride, and a poly(ethylene oxide) melt.
The velocity-Verlet integration algorithm is adopted for the
time integration. Equilibrium molecular dynamics simulations
are performed in three different ensembles, NVE, NVT, and
NPT, in order to obtain all the thermodynamic properties and
transport coefficients of interest. The details of the simulation
models and procedures are presented below.

1. Lennard-Jones liquid

The standard Lennard-Jones (LJ) model has been exten-
sively studied by molecular dynamics simulations in the past
60 years or so [10,22–26]. Historically, these simulations
have greatly facilitated theoretical understanding of current
and density fluctuations at finite wavelengths and frequencies
[10,22–24,27–31]. Nevertheless, to the best of our knowledge,
the space-time correlation functions of this model system have
never been mapped out in a two-dimensional (2D) fashion.
By revisiting this classical liquid, we wish to show how the
spatiotemporal mapping approach provides new perspectives
on the dynamics of this supposedly well understood system.

Here we adopt the usual Lennard-Jones liquid model with
the 6-12 potential [10,22–24,27,29–34], where the interac-
tion between any two atoms (beads) is described by the

following formula:

ULJ(r) =
{

4ε
[(

σ
r

)12 − (
σ
r

)6] − 4ε
[(

σ
rc

)12 − (
σ
rc

)6]
, r < rc,

0, r � rc,

(1)
with r being the distance between two beads, ε the energy
unit, and σ the bead diameter. The cut-off distance of rc

is set at 2.5 σ . To ensure that the LJ system is in a fluid
state, we consider a bead number density of ρ = 0.88 σ−3

and a temperature of T = 1.0 [29,35–37]. The entire system
consists of 32 000 beads, each with mass m. The time step �t
for the integration is 0.005 τ , with τ = σ (m/ε)1/2.

2. Coarse-grained polymer

Much of the analysis in this work centers around a
coarse-grained (CG) bead-spring model of polymer melts
[38–40]. The nonbonded interaction between beads is de-
scribed by the LJ potential given in Eq. (1), with the same
cutoff distance rc = 2.5 σ [39]. A finitely extensible nonlin-
ear elastic (FENE) potential coupled with purely repulsive
Weeks-Chandler-Andersen (WCA) potential [41] is used to
connect two neighboring beads along a polymer chain:

UFENE(r) = − 1
2 kR2

0 ln[1 − (r/R0)2] + UWCA(r), (2)

where R0 = 1.5 σ and k = 30 ε/σ 2. Additionally, a bond-
bending potential is considered:

Ubend(θ ) = kθ (1 + cos θ ), (3)

where θ is the angle between two subsequent bonds and kθ =
0.75 ε [40]. Each chain has N beads of mass m. For both the
LJ liquid and the CG polymer simulations, LJ units are used to
present the simulation results by setting σ = ε = m = 1 and
the Boltzmann constant kB = 1.

To systematically investigate the effect of temperature on
the mesoscopic dynamics of polymers, we considered an
unentangled melt consisting of M = 8000 chains, each with
N = 25 repeating units. Seven different temperatures were
investigated: T = 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, and 0.48. The
number density of beads was kept at a constant ρ = 1.0 σ−3.
As is the case with all the other simulations in this work,
equilibrium molecular dynamics simulations were carried out
in three different ensembles, i.e., NVE, NVT, and NPT, in
order to obtain all the relevant thermodynamic properties and
transport coefficients. To guarantee a fully equilibrated state
for the production run, the system was first relaxed under NVT
condition for more than 5000 τα at each temperature, where τα

is the α relaxation time. The time step �t for integration in the
CG polymer simulation was 0.01 τ .

3. Sodium chloride melt

To further explore the mesoscopic dynamics with the spa-
tiotemporal mapping approach, we considered a rigid-ion
atomistic model for sodium chloride (NaCl) melt. Specifically,
the interaction between any two ions i and j in the system is
described by the Mayer-Huggins-Tosi-Fumi potential of the
form [42–44]

U (r) = Ai j exp

(
σi + σ j − r

ρMH

)
− Ci j

r6
+ Di j

r8
− ziz j

r
, (4)
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where σi and σ j are the basic radii of the ions i and j, ρMH is
the characteristic “hardness parameter,” and zi and z j are the
ionic charges. All the potential coefficients in our simulations
follow those in Ref. [42]. The cutoff distance for the non-
Coulombic interaction is 10 Å.

In our simulation, 5000 pairs of Na and Cl ions were
initially randomly placed in a box of 80 × 80 × 80 Å3. To
ensure an equilibrium state before the production run, the
system was first relaxed at a high temperature of 1600 K with
a constant volume for 200 ps. Its pressure was then gradually
decreased to zero through the Nosé-Hoover barostat. After-
wards, the ionic melt was cooled down to T = 1480 K within
100 ps and further relaxed under zero pressure for 1 ns. This
fully equilibrated system served as the initial configuration
for molecular dynamics simulations in NVE, NVT, and NPT
ensembles. The step used in the time integration was 1 fs.
The long-range Coulombic interaction was calculated using
the particle-particle particle-mesh (PPPM) solver [45] with a
force tolerance of 10−5.

4. Poly(ethylene oxide) melt

Finally, we present results of atomistic simulations on
a representative polymer melt: poly(ethylene oxide) (PEO).
The chosen model of PEO was based on the General Amber
Force Field (GAFF) [46] with optimized coefficients for both
intra- and intermolecular potentials. Specifically, the poten-
tial coefficients were improved by comparing the force field
predictions for various conformations of 1,2-dimethoxyethane
[47] with density functional theory calculations performed at
B3LYP/6-31G* level with the NWChem software [48]. The
details of the force field are described in the Appendix.

This work focuses on an unentangled PEO melt with
64 chains, each containing 48 repeating units. The chains
were initially put in a simulation box at low density and
relaxed at 600 K and constant volume for 600 ps through the
Nosé-Hoover thermostat. Subsequently, the temperature was
gradually decreased to the target temperature of 363 K. At
the same time, the pressure of the system was ramped down
to 1 atm through the Nosé-Hoover barostat. The duration of
this relaxation process was approximately 1 ns. Afterwards,
further equilibration was carried out at the same temperature
(363 K) and pressure (1 atm) for 16 ns. The fully relaxed
system was used as the initial configuration in the subse-
quent equilibrium molecular dynamics simulations for NVE,
NVT, and NPT ensembles. The time step for the integration
was 1 fs.

B. Spatiotemporal mapping

In this work, the (normalized) coherent and incoherent
intermediate scattering functions of the aforementioned sys-
tems are computed on a dense grid of correlation times and
wave numbers, and the results are presented in the form of

two-dimensional color maps (heat maps). To discuss both
the coarse-grained and atomic models in a unified way, the
following definition of the coherent intermediate scattering
function (before normalization) is adopted:

S(q, t ) = 1

N

N∑
i, j

〈bib j exp[iq · (r j (t ) − ri(0))]〉, (5)

where N is the total number of beads or atoms, and bi is
the coherent scattering length. For the two coarse-grained
models, bi equals unity. For the NaCl melt, bNa = 3.63 fm
and bCl = 9.577 fm. On the other hand, we consider the PEO
melt as fully deuterated, for calculations of both coherent
and incoherent scattering functions. We have bc = 6.6511 fm,
bD = 6.67 fm, and bO = 5.803 fm [49,50]. ri(t ) is the position
of the ith atom or bead at time t . q are wave vectors that com-
mensurate with the periodical condition in simulations, i.e.,
q = (2π/L)(nx, ny, nz ), where nx, ny, nz are integers and L is
the length of the simulation box [3]. Similarly, the incoherent
intermediate scattering function is defined as

Sinc(q, t ) = 1

N

N∑
j=1

〈
b2

inc, j exp[iq · (r j (t ) − r j (0))]
〉
, (6)

where binc, j is the incoherent scattering length for the jth
atom or bead. binc is unity for the LJ liquid and CG polymer
systems. For the NaCl melt, bNa

inc = 3.59 fm and bCl
inc = 6.4943

fm. For the PEO melt, bc
inc = bO

inc = 0, and bD
inc = 4.04 fm

[49]. Since all the systems under investigation are isotropic
liquids in the equilibrium state, the reciprocal-space structure
does not depend on the orientation of q and the results are
discussed in terms of S(q, t ) and Sinc(q, t ). In this work, both
the coherent and incoherent intermediate scattering functions
are calculated in the NVT ensemble for all the systems.

Instead of analyzing one-dimensional slices of intermedi-
ate scattering functions at a few discrete q values, the dynamic
landscape is systematically mapped out and visualized over
a large swath of correlation times and wave numbers. This
seemingly simple extension of the traditional method turns
out to be a highly productive approach. From a technical
point of view, such calculations are well suited for parallel
computing. The data analysis code in this investigation is
optimized for the computational architecture of the Summit
supercomputer at the Oak Ridge National Laboratory, through
a hybrid framework that utilizes both the message passing
interface (MPI) and OpenACC [51].

C. Classical hydrodynamic theory

To get a general concept of how the hydrodynamic inter-
actions play a role in the collective dynamics of liquids and
polymers, we need to investigate the hydrodynamic modes
in theory. According to the classical theory, the normalized
intermediate scattering function S(q, t )/S(q) of the density
fluctuations is described by the following equation [4,52–54]:

S(q, t )

S(q)
= γ − 1

γ
e−χq2t + 1

γ
e−�q2t cos(cqt ) + 1

γ

q

c
[� + (γ − 1)χ ]e−�q2t sin(cqt ), (7)
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where γ is the specific heat ratio, χ is the thermal diffusiv-
ity, c is the adiabatic sound velocity, and � is the acoustic
attenuation coefficient. The first term on the right-hand side
of Eq. (7) comes from the Fourier transform of the Rayleigh
central line, whereas the second and third terms are associated
with the Brillouin doublet.

It is generally expected that the classical hydrodynamic
theory cannot fully describe the density fluctuations at
mesoscales, where nonhydrodynamic modes likely play an
important role as well. However, the transition from contin-
uum to molecular behavior should occur smoothly, making
it difficult to pinpoint any prominent dynamical features for
constructing a successful theory. As we shall show in Sec. III,
the global perspective offered by the spatiotemporal mapping
method can be instrumental in further development of this
field. On the other hand, it is not the intention of this work to
critically examine various theoretical approaches for treating
current and density fluctuations in the “molecular hydrody-
namic” regime [4]. Nor can such a task be accomplished
without a herculean effort. Our goal here is to illustrate the
essential idea of analyzing mesoscopic dynamics from MD
simulations by comparing the results with simple models. A
full critique of all the major theories will be deferred to future
investigations.

To predict the normalized coherent intermediate scattering
function S(q, t )/S(q) with the classical hydrodynamic the-
ory [Eq. (7)], four parameters are required: γ , χ , c, and �.
Methods for evaluating these coefficients from MD simula-
tions have been well established in the literature [3,22,24].
Nevertheless, we briefly describe such procedures below, for
the convenience of the readers. First, to compute the specific
heat ratio γ = cp/cv , molecular dynamics simulations are
performed in two different ensembles: NVT and NPT. The
specific heat at constant volume cv can be estimated from
the NVT simulation as 〈δH2〉NVT = NkBT 2cv , whereas the
specific heat at constant pressure cp can be calculated from the
NPT simulation as 〈δ(H + PV )2〉NPT = NkBT 2cp. Here H is
the total energy, N is the total number of beads or atoms, and
V is the volume of the system. Second, the thermal diffusivity
χ is related to the thermal conductivity κ as χ = κ/(ρcp/m),
ρ is number density and m is the averaged mass per bead
or atom in the simulation box. The thermal conductivity can
be evaluated from the autocorrelation function of the energy
current jεα in the NVE simulation by using the Green-Kubo
formula [55,56]:

κ = V

kBT 2

∫ ∞

0

〈
jεα (t ) jεα (0)

〉
dt . (8)

Third, the adiabatic sound velocity can be computed from the
specific heat ratio γ and the isothermal compressibility χT

as c = √
γ /(ρmχT ). And χT can be derived from the zero-

angle scattering as χT = limq→0 S(q)/(ρkBT ), where S(q) is
defined by the particle number density (bi = 1). Lastly, to
obtain the acoustic attenuation coefficient �, the information
about longitudinal viscosity ηL is needed: � = 1

2 [(ηL/ρ +
(γ − 1)χ ]. Once again, one can employ the Green-Kubo rela-
tion [3]:

ηL = V

kBT

∫ ∞

0
〈δPαα (t )δPαα (0)〉 dt . (9)

Here δPαα is the fluctuation of the diagonal component of the
pressure tensor in the NVE simulation: δPαα (t ) = Pαα (t ) −
〈Pαα〉, with α = x, y, or z.

III. RESULTS AND DISCUSSION

The discussion of simulation results is divided into three
sections. We first analyze in detail the behavior of the coarse-
grained polymer melt through the lens of spatiotemporal maps
of intermediate scattering functions. Specifically, we discuss
the results in light of the classical hydrodynamic theory, the
convolution approximation idea of Vineyard, de Gennes, and
Sköld [57–60], and a recently proposed phenomenological
model for mesoscopic collective liquid dynamics by Novikov
et al. [61]. Our intention is not to present a systematic cri-
tique of the existing experiments, simulations, theories, and
models regarding mesoscopic liquid dynamics. Instead, the
primary goal of this work is to illustrate the usefulness of the
spatiotemporal mapping method with clear and simple exam-
ples. In Sec. III B we discuss the similarities and differences
between the two coarse-grained systems: the bead-spring
polymer melt and the Lennard-Jones liquid. Finally, Sec. III C
shows the application of the spatiotemporal mapping analysis
to more “realistic” systems by presenting the results on atom-
istic models of sodium chloride and poly(ethylene oxide).

A. Coarse-grained polymer

Some of the basic structural, thermodynamic, transport
properties of the coarse-grained polymer melt are shown in
Fig. 1. Additionally, tabulated data for all the simulated liq-
uids: the Lennard-Jones liquid, coarse-grained bead-spring
polymer, molten sodium chloride, and poly(ethylene oxide)
melt are reported in Table I. As indicated in Sec. II, these
simulations probe the behavior of the polymer melt at various
temperatures with fixed number density (isochoric condition).
The static structure factor S(q) is given in Fig. 1(a). Consis-
tent with reports in the literature, the first structural peak is
observed around qmax � 7.1 σ−1 and the peak height slightly
increases with decrease of temperature [62]. The static struc-
ture factor is flat in the low q region, and the zero-angle
scattering amplitude at each temperature S(0) ≡ limq→0 S(q)
is obtained by fitting S(q) at small q (q < 1 σ−1) to a hori-
zontal line. As shown in Fig. 1(b), S(0) increases from 0.017
at T = 0.48 to 0.023 at T = 1.0, implying a relatively weak
temperature dependence of isothermal compressibility within
the tested temperature range χT (please also see Table I). The
specific heats at constant volume and constant pressure cv

and cp are presented in Figs. 1(c) and 1(d), and both of them
decrease with increase of temperature. On the other hand, the
longitudinal viscosity ηL and thermal conductivity κ become
slightly larger as the temperature is raised [Figs. 1(e) and
1(f)]. Because the particle number density is fixed in these
simulations, the equilibrium pressure drops considerably at
low temperatures. This helps to explain the somewhat coun-
terintuitive decrease of longitudinal viscosity with decrease of
temperature. Overall, these thermodynamic and transport co-
efficients of the CG polymer melt do not change significantly
over the examined temperature range.
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TABLE I. Basic properties of different systems: zero-angle scattering S(0) ≡ limq→0 S(q), longitudinal viscosity ηL , thermal conductivity
κ , specific heat at constant pressure cp, specific heat at constant volume cv , specific heat ratio γ , thermal diffusivity χ , acoustic attenuation
coefficient �, and adiabatic sound velocity c. For both the LJ liquid and CG polymer, the reduced LJ units are used. For the NaCl and PEO
melt, the units of ηL , κ , and cp(cv) in the table are mPa s, W/(mK), and, J/(mol K), respectively. cp and cv are normalized by the corresponding
total number of Na and Cl ions pairs and PEO repeating units. Additionally, χ , �, c are expressed with the units of Å2/ps, Å2/ps, and Å/ps,
respectively. Monoatomic assumption is used for NaCl and PEO to obtain the zero-angle scattering S(0) for the hydrodynamic theory.

Systems S(0) ηL κ cp cv γ χ � c

LJ liquid 0.0351 6.277 8.434 4.385 2.612 1.68 2.19 4.31 6.91
NaCl melt 0.1986 2.400 0.500 69.93 51.75 1.35 30.5 93.0 14.9
PEO melt 0.3067 0.794 1.226 215.2 193.9 1.11 23.8 39.0 13.2
CG polymer, T = 1.0 0.0232 6.673 8.759 4.201 3.039 1.38 2.08 3.73 7.71
CG polymer, T = 0.9 0.0220 6.619 8.700 4.306 3.094 1.39 2.04 3.70 7.51
CG polymer, T = 0.8 0.0208 6.632 8.326 4.307 3.167 1.36 1.86 3.70 7.36
CG polymer, T = 0.7 0.0202 6.577 8.220 4.565 3.280 1.39 1.79 3.65 6.97
CG polymer, T = 0.6 0.0191 6.570 8.014 4.873 3.377 1.44 1.67 3.63 6.67
CG polymer, T = 0.5 0.0177 6.581 7.990 5.064 3.500 1.45 1.63 3.61 6.27
CG polymer, T = 0.48 0.0172 6.526 7.942 5.281 3.518 1.50 1.58 3.60 6.32

1. Collective dynamics and hydrodynamic modes

The spatiotemporal maps of the normalized coherent inter-
mediate scattering function S(q, t )/S(q) of the coarse-grained
polymer melt are shown in Fig. 2(a), with the magnitude of
S(q, t )/S(q) described by the “jet” color scheme [63]. The

FIG. 1. Basic properties of the coarse-grained polymer melt at
various temperatures: (a) static structure factor S(q), (b) zero-angle
scattering S(0) ≡ limq→0 S(q), (c) specific heat at constant volume
cv , (d) specific heat at constant pressure cp, (e) longitudinal viscosity
ηL , and (f) thermal conductivity κ . Black horizontal lines in (a):
fitting used to extract S(0). The reported data are based on five
independent simulations.

reddish part of the spectrum implies strong correlation, i.e.,
S(q, t )/S(q) ≈ 1, whereas the blue color indicates loss of
correlation, i.e., S(q, t )/S(q) ≈ 0. Generally speaking, two
slowly relaxing regions are observed in the 2D map of the
coarse-grained polymer. One is located around the first struc-
tural peak qmax � 7.1 σ−1, which is widely known as the
de Gennes narrowing [57,64–67]. This phenomenon is com-
monly attributed to collective motions of atoms to escape
their preferred structural positions. The characteristic relax-
ation time of S(q, t )/S(q) at qmax increases dramatically as the
temperature is lowered. Beyond the first peak, another slowly
relaxing region is found at q < 1 σ−1, which is approximately
ten times smaller than qmax and usually called mesoscale or
intermediate q range.

An immediate benefit of presenting the intermediate scat-
tering function as a two-dimensional color map is that the
intrinsic relation between space and time for a certain type
of molecular motion can be directly revealed by analyzing the
slope of the contour lines. Interestingly, for the mesoscopic
dynamics featured on the bottom left corners of these plots,
the decay of intermediate scattering function is underpinned
by an inverse relation between wave number and correlation
time [Fig. 2(a)], with a characteristic slope of −1 on the 2D
map. It is easy to verify that contour lines of a normal Fickian
diffusion exhibit a slope of −1/2 on such a map, whereas any
sub-diffusive behavior leads to a (negative) slope of smaller
magnitude.

What does the slope of −1 imply? Recall that accord-
ing to the classical hydrodynamic theory, the characteristic
frequency shift associated with the Brillouin doublet is pro-
portional to the scattering wave number: �ω ∝ q. Analyzing
this directly in the time domain, we see from Eq. (7) that the
thermal diffusivity mode (first term) should produce contour
lines with a slope of −1/2 on the 2D map; the sine and
cosine functions in the Brillouin doublet terms, on the other
hand, should give rise to a characteristic slope of −1; addi-
tionally, these spatiotemporal oscillations should be further
modulated by acoustic attenuation, which is a normal diffusive
process with a slope of −1/2. Using the thermodynamic and
transport coefficients obtained from the equilibrium molecular
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FIG. 2. Spatiotemporal mapping of normalized coherent intermediate scattering function of the coarse-grained polymer melt. (a) 2D maps
of S(q, t )/S(q) obtained from the simulations at various temperatures. (b) Corresponding predictions by the classical hydrodynamic theory.
The white dashed lines indicate the characteristic slope for the hydrodynamic modes.

dynamics simulations, we can visualize the predictions of the
classical hydrodynamic theory for the coarse-grained polymer
melt on a spatiotemporal map as well. The results of these
calculations are presented in Fig. 2(b).

As expected, the Brillouin doublet reveal themselves as
sinusoidal oscillations on the spatiotemporal map, with a char-
acteristic slope of −1. Furthermore, they are enveloped by a
diffusive mode with a slope of −1/2. Evidently, the classical
hydrodynamic theory is able to capture the major decay of the
intermediate scattering function on the mesoscopic scale in
a nearly quantitative manner. However, the predicted “higher
order” oscillations at long correlation times are not observed
in the molecular dynamics simulations, suggesting a stronger
attenuation effect that is not considered by the theory. In
addition, while the theory is able to depict the location of
the “second ridge” of oscillation beyond the first decay, the
theory and simulation do not agree on details. The simula-
tion not only shows a stronger damping at low wave number
and long correlation time, but also produces small peaks that
are not foreseen by the theory. Lastly, as the temperature is
lowered, higher correlation of density fluctuation is found
in the molecular hydrodynamic regime. This phenomenon is
likely to stem from a coupling between structural relaxation
and hydrodynamic modes. We note that many of the subtle
features discussed here cannot be easily identified without
a systematic mapping of the normalized coherent intermedi-
ate scattering function—the traditional one-dimensional data
analysis approach would fall short in comparison.

The dynamics of liquids at mesoscopic scale is known to
have a complicated molecular origin. Although the concept
of molecular hydrodynamics has long been recognized [4],
the transition from molecular dynamics to hydrodynamics is
also expected to be smooth. Moreover, most of the theoretical
studies focus on relatively simple liquids, whereas interest-
ing systems in the real world are mostly complex fluids that

require further careful consideration. Even if we wish to an-
swer the simplest question—where do hydrodynamic modes
matter—this generally cannot be done without doing some se-
rious calculations. In this regard, the spatiotemporal mapping
approach demonstrated here is of vital importance: to obtain
a lucid understanding of molecular motions on mesoscale, we
need to first systematically map out the dynamic landscape.

2. Self-dynamics and convolution approximation

Having examined the collective dynamics of the coarse-
grained polymer melt, we now turn our attention to the
spatiotemporal map of the incoherent intermediate scatter-
ing function Sinc(q, t ) [Fig. 3(a)]. In the region of small t
and large q, the slope of the contour lines is found to be
−1, which corresponds to the ballistic motions of atoms.
The slope of the contour lines decreases beyond this free-
motion regime and enters into a region with a slope of −1/4
at high temperature (e.g., T = 1.0). This scaling of −1/4
is associated with the well-known Rouse dynamics [68]:
Sinc(q̃, t̃ ) = exp(− 2

π3/2 q̃2t̃1/2), where q̃ = qRG and t̃ = t/τR.
Here RG is the radius of gyration of the polymer chain and
τR is the Rouse relaxation time. It is worth noting that the
traditional Rouse scaling analysis is accomplished by plot-
ting S(q, t )/S(q) against the reduced variable q2t1/2 [69]. By
contrast, the spatiotemporal mapping method permits direct
visualizing of scaling relations without the requirement of
presenting data in an ad hoc manner. At lower temperatures
(T = 0.6 and T = 0.48), the Rouse regime is eroded by an
additional subdiffusive behavior on the intermediate time and
length scales, which arises from the so-called cage effect in
supercooled liquids [70,71].

To further demonstrate the usefulness of the spatiotem-
poral mapping approach, we now turn to a widely used
phenomenological model known as the Vineyard–de Gennes–
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FIG. 3. (a) Spatiotemporal mapping of incoherent intermediate scattering function Sinc(q, t ) of the coarse-grained polymer melt at various
temperatures. (b) Normalized coherent intermediate scattering function S(q, t )/S(q) generated by the convolution approximation. Note that
hydrodynamic modes produce a characteristic slope of −1, which is not observed in (b).

Sköld convolution approximation [57–60], which relates the
collective and self-dynamics:

S(q, t )/S(q) ≈ Sinc[q/
√

S(q), t]. (10)

With the two-dimensional maps of S(q, t )/S(q) and Sinc(q, t )
at hand [Figs. 2(a) and 3(a)], the merits and shortcomings of
the convolution approximation can be evaluated in a global
and comprehensive way. Figure 3(b) shows the predictions
of the convolution approximation for the normalized inter-
mediate scattering function S(q, t )/S(q). These 2D plots are
obtained by performing a mapping of q → q/

√
S(q) for the

incoherent intermediate scattering function Sinc(q, t ) from the
simulation. Comparing these theoretical predictions with the
S(q, t )/S(q) 2D maps from simulations [Fig. 2(a)], we see that
Eq. (10) only gives a qualitatively reasonable estimation in
the high q region. On the other hand, the convolution approx-
imation completely breaks down in the mesoscopic regime
beyond the first structural peak, producing qualitatively in-
correct behavior. Indeed, this failure itself has long been
recognized [4,6]. Nevertheless, the spatiotemporal mapping
approach allows one to better appreciate how the approxi-
mation fails. We further note that the major features of the
mesoscopic collective dynamics in Fig. 2(a) do not change
significantly within the probed temperature range, whereas the
convolution approximation paints an entirely different picture.

3. Application to a phenomenological model

As another illustration of the power of the spatiotempo-
ral mapping analysis, we shall examine in this subsection
a recently proposed phenomenological model by Novikov,
Schweizer, and Sokolov [61] for mesoscopic collective dy-
namics. This model has been applied to neutron spin-echo
data on sodium potassium nitrate (CKN) [5,61] and an ex-
tension of it to polyisobutylene [72,73] in the intermediate

q range. The model claims that the q-dependent relax-
ation rate of the normalized intermediate scattering function
S(q, t )/S(q) can be approximated by the following formula
[61]:

1

τ (q)
= 1

τα (0)
e−q2ξ 2

c + q2D

S(q) + q2ξ 2
D

. (11)

The first term in Eq. (11) represents the contribution from
a q-dependent, nondiffusive structural relaxation (α relax-
ation): τα (0) is the α relaxation time in the zero-angle limit;
exp(−q2ξ 2

c ) is a Gaussian cutoff factor which ensures that
the α relaxation term is only operative beyond a character-
istic length of ξc ≈ 2π/qmax. The second term in Eq. (11)
approximates the relaxation rate on the molecular scale in
the high q region, by employing the convolution approxi-
mation [Eq. (10)] and the jump diffusion model [74]. Here
D is a diffusion constant and ξD is a characteristic length
scale. To evaluate D and ξD, the incoherent scattering function
Sinc(q, t ) from simulation is fitted by the jump diffusion model
as Sinc(q, t ) = A(q) exp[−�(q)t], where A(q) is the Debye-
Waller factor and �(q) = Dq2/[1 + (qξD)2] is the relaxation
rate. The second term in Eq. (11) is obtained by performing a
mapping q → q/

√
S(q) for the relaxation rate �(q). We note

that the original form of the jump-diffusion term in Ref. [61]
is not fully consistent with the convolution approximation.
The corrected formula [Eq. (11)] is used in our calculation,
although this minor difference does not affect the result in any
substantial way.

Figure 4 compares the normalized coherent intermediate
scattering function from the molecular dynamics simulation
with that predicted by Eq. (11) at T = 0.48. The theoretical
q-dependent relaxation time τ (q) is shown as dashed lines in
Fig. 4(a). Additionally, using the τ (q) from Eq. (11), the theo-
retical spatiotemporal map can be computed as S(q, t )/S(q) ≈
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FIG. 4. Comparison between (a) the normalized coherent intermediate scattering function S(q, t )/S(q) from simulation and those obtained
from (b) Eq. (11) and (c) Eq. (12). The theoretical S(q, t )/S(q) is computed as S(q, t )/S(q) = exp[−t/τ (q)]. The black dashed line in
(a) indicates the relaxation time τ (q) given by Eq. (11). The stretching exponent β for Eq. (12) is 0.59.

exp [−t/τ (q)] [Fig. 4(b)]. It is helpful to keep in mind
that when the intermediate scattering function decays to
∼ exp(−1) ≈ 0.37 of S(q), the corresponding color on the
2D map should be cyan. Evidently, Eq. (11) is only able to
give a qualitatively reasonable estimation in the de Gennes
narrowing region at qmax, which is hardly surprising given
the general success of the convolution approximation at high
q. On the other hand, poor agreement is found between the
model and simulation in the mesoscopic regime. Additionally,
this qualitative failure of the model is insensitive to the choice
of ξc: no physically reasonable values of ξc can produce the
correct behavior for S(q, t )/S(q). This analysis shows that
the spatiotemporal mapping method translates the abstract
mathematical formula [Eq. (11)] into a more tangible object,
from which the strengths and weaknesses of the model can be
better appraised.

A simple extension of Eq. (11) has been proposed
by Colmenero and co-workers [72,73,75] to account
for stretched-exponential relaxation. The original equation
[72,73] given by Colmenero et al. was in fact inconsistent with
the convolution approximation, and this issue was addressed
by their recent publication [75]. The correct equation reads

1

τ (q)
= 1

τα (0)
e−q2ξ 2

c + D

ξ 2
D

(
1 + S(q)

q2ξ 2
D

)− 1
β

, (12)

where β is the stretching exponent, and D and ξD are
obtained by fitting the corresponding stretched-exponential
function. To determine β for the CG polymer at T = 0.48,
the incoherent scattering function Sinc(q, t ) is fitted by the
stretched-exponential function at q values close to qmax, yield-
ing a best fit of β = 0.59. Using this exponent, we produce
the prediction of Eq. (12) for S(q, t )/S(q) in Fig. 4(c). In-
terestingly, the revision proposed by Colmenero et al. does
not improve the prediction of the model for the CG polymer
system in any substantial way. In fact, it results in poorer per-
formance in the high-q region. We emphasize that the analysis
presented here should not be construed as a direct critique
of the model of Novikov and co-workers. First, the model
was apparently motivated by the experimental data on CKN
[5], which were obtained and analyzed in the traditional way:
the intermediate scattering function was determined at a few
discrete wave numbers and the relaxation time was extracted
via fitting by stretched-exponential functions. Given the com-
plicated behavior of collective mesoscopic dynamics revealed
by simulations, it is not obvious if the reported q-dependent

relaxation times should be taken at their face value. Second,
it is well known that CKN displays intermediate-range or-
der, as reflected in a “prepeak” in the static structure factor
S(q) [76–78]. This undoubtedly further complicates the meso-
scopic collective dynamics. None of the systems simulated
in this work exhibits intermediate-range order. It remains to
be seen whether the reported nonmonotonic q dependence of
relaxation is robust and if it is a consequence of intermediate-
range order. To faithfully incorporate all the essential physics
for mesoscopic dynamics in a simulation model for CKN is
not a trivial matter. We therefore defer the analysis of CKN to
a future publication, for the reasons stated above. It is helpful
to point out that the model of Novikov et al. is intended for
length scales above intermolecular distances and yet below the
“long wavelength hydrodynamic limit.” However, our simula-
tions show that hydrodynamiclike modes are operative almost
immediately beyond the first structural peak. In this regard,
the model of Novikov et al. does seem to miss an important
theoretical ingredient for the spatiotemporal region of current
interest.

B. Lennard-Jones liquid

The preceding discussions demonstrate that the spatiotem-
poral mapping approach affords a convenient and powerful
platform to study the mesoscopic dynamics of the coarse-
grained polymer melt. In the following sections we will
provide additional examples to show that it indeed can serve
as a general method to investigate the dynamics of different
fluids. The systems reported here include a Lennard-Jones
liquid, an ionic liquid (NaCl melt), and an atomistic polymer
model (PEO melt). In each example, we will investigate its
collective dynamics by comparing 2D maps of S(q, t )/S(q)
generated by simulation and hydrodynamic theory. Addition-
ally, the self-dynamics and the corresponding convolution
approximation will also be discussed with the aid of spa-
tiotemporal maps.

As noted in Sec. II, the standard Lennard-Jones model is
a classical system that has been widely studied. For historical
reasons, most of the investigations were conducted in an era
when direct visualization of space-time correlation functions
on two-dimensional color maps was generally difficult or even
impossible. Here we show that in such a thoroughly plowed
field the spatiotemporal mapping approach can still offer new
insight into the mesoscopic dynamics.
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FIG. 5. Spatiotemporal mapping of the intermediate scattering functions of the Lennard-Jones (LJ) liquid at ρ = 0.88 σ−3 and T = 1.0:
(a) normalized coherent intermediate scattering function S(q, t )/S(q) from simulation. (b) S(q, t )/S(q) predicted by the classical hydrodynamic
theory, (c) incoherent intermediate scattering function Sinc(q, t ) from simulation, and (d) S(q, t )/S(q) given by the convolution approximation.

The normalized coherent intermediate scattering functions
from the simulations and hydrodynamic theory are given in
Figs. 5(a) and 5(b), respectively. The de Gennes narrowing
occurs around qmax ≈ 7.09 σ−1. Similar to the case of the
coarse-grained polymer melt, the classical hydrodynamic the-
ory does a reasonable job describing the major decay of the
intermediate scattering function on the mesoscale at short
correlation times. Interestingly, as we have already observed
in the CG polymer melt, the “second ridge” of the hydrody-
namic modes appears as a series of localized peaks in the
simulation—a feature that is not captured by the continuum
theory. It remains to be seen whether this phenomenon can
be explained by any other existing theories. The incoherent
scattering function is shown in Fig. 5(c). Since the liquid is
not in a supercooled state, the ballistic regime is followed im-
mediately by the normal diffusive behavior, i.e., Sinc(q, t ) ≈
exp(−Dq2t ), with a characteristic slope of −1/2. Figure 5(d)
presents the intermediate scattering function predicted by the
convolution approximation. In the mesoscopic regime, the
theoretical contour lines of S(q, t )/S(q) exhibit a character-
istic slope of −1/2 [Fig. 5(d)], which is at odds with the true
behavior from simulation [Fig. 5(a)].

It is helpful to point out that the mesoscopic collective dy-
namics of the CG polymer melt and LJ liquid are qualitatively
similar [Figs. 2(a) and 5(a)]. On the other hand, their self-
dynamics are drastically different in this regime: subdiffusive
Rouse dynamics dominates the CG polymer melt (with a char-
acteristic slope of −1/4), whereas the Lennard-Jones liquid
displays free diffusion (with a slope of −1/2). Therefore, it is
unlikely that one can treat both polymeric and nonpolymeric
systems using the same model that employs the convolution
approximation [61]. A comparison of the simulation data and
the prediction of Eq. (11) is presented in Fig. 6. Similar to
the results of the CG polymer system, the model of Novikov
et al. fails to capture the qualitative features of the coherent
intermediate scattering function in the mesoscopic regime.

C. NaCl and PEO melts

In this section we move beyond coarse-grained models and
present results on more realistic and complicated systems,
molten sodium chloride and poly(ethylene oxide). In these
all-atom molecular dynamics simulations, we explore the
wave number down to q ≈ 0.1 Å−1, which is considered the

mesoscale region in experiments. As we have emphasized in
the preceding discussions, whether hydrodynamic modes play
a role in a specific spatiotemporal regime generally should not
be a matter of speculation, but should instead be settled by
computation.

Figure 7(a) shows several spatiotemporal maps of the NaCl
melt, including the normalized coherent intermediate scatter-
ing function S(q, t )/S(q) from simulation, the S(q, t )/S(q)
predicted by the hydrodynamic theory, the normalized inco-
herent intermediate scattering function Sinc(q, t )/Sinc(q) from
simulation, and the S(q, t )/S(q) predicted by the convolu-
tion approximation. A small de Gennes narrowing “peak”
is observed near qmax ≈ 1.744 Å−1, in the S(q, t )/S(q) 2D
map from simulation. At the simulation temperature of T =
1480 K, the NaCl is not too far away from its melting point of
Tm ≈ 1074 K. Unlike the van der Waals interaction dominated
systems in this investigation, the collective density fluctua-
tions around the first structural peak in NaCl are not well
separated from the modes on the mesoscopic scale. Whether
this is a direct consequence of the long-range Coulombic
interactions is not immediately apparent. What is clear, how-
ever, is that the spatiotemporal mapping method is effective
in capturing such global features and raising new questions
for future studies. Examining the slope of the contour lines of
S(q, t )/S(q), we find a scaling of −1 near q ≈ 0.1 Å−1, which
is qualitatively consistent with the location of the hydrody-
namic modes predicted by the classical theory. Nevertheless,

FIG. 6. Spatiotemporal mapping of the LJ liquid. Compari-
son between (a) the normalized coherent intermediate scattering
function S(q, t )/S(q) from simulation and (b) that obtained from
Eq. (11). The theoretical S(q, t )/S(q) is computed as S(q, t )/S(q) =
exp[−t/τ (q)]. The black dashed line in (a) indicates the relaxation
time τ (q) given by Eq. (11).
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FIG. 7. Spatiotemporal mapping of the intermediate scattering functions of (a) NaCl and (b) PEO melt. The S(q, t )/S(q) 2D maps obtained
from simulation and hydrodynamic theory, the Sinc(q, t ) 2D map, and S(q, t )/S(q) 2D map estimated by the convolution approximation are
generated for each system. In the test of the convolution approximation, the systems are treated as monoatomic in order to yield a more
self-consistent comparison.

in contrast to the cases of the coarse-grained polymer and
LJ liquid, the theory does not work nearly as well here, fail-
ing to describe the decay of S(q, t )/S(q) at long correlation
times. Interestingly, while the normalized coherent interme-
diate scattering function of NaCl looks considerably different
from that of the LJ liquid, their incoherent scattering functions
are similar [Figs. 5(c) and 7(a)]. Lastly, the convolution ap-
proximation breaks down completely for NaCl, even around
the first structural peak, i.e., the de Gennes narrowing region.

Figure 7(b) presents the results for the PEO melt. Once
again, the classical hydrodynamic theory is able to capture
the initial decay of the normalized coherent intermediate
scattering function S(q, t )/S(q) in the mesoscopic region.
However, the simulation data exhibit a long tail that persists
till tens of picoseconds. This feature is missed entirely by
the theory. Note that the discrepancy between theory and
simulation is much smaller in the case of the coarse-grained
polymer melt. A major difference between the coarse-grained
and atomistic models is that the PEO model includes a tor-
sional potential in the intrachain interaction. Nevertheless, it
is unclear if the long tail in the coherent intermediate scat-
tering function should be attributed to the presence of the
torsional potential. We note that a long tail is also observed in
the NaCl simulation. More likely, the explanation lies in the
multiatomic nature of the NaCl and PEO simulations. What
we can conclude is that the mesoscopic collective dynamics
in the examined spatiotemporal regime should involve both
hydrodynamics and molecular physics. The incoherent scat-
tering function Sinc(q, t )/Sinc(q) of PEO is characterized by
a slope of −1/4 on the 2D map around q ≈ 0.5 Å−1 and
t ≈ 103 ps, indicating the Rouse dynamics of the polymer
chain. Finally, the convolution approximation does not work

in the mesoscopic regime, which should not be surprising in
light of the results for all the other systems.

To further evaluate Eq. (12), we compare the q-dependent
relaxation time τ (q) from the PEO simulation with that pre-
dicted by Eq. (12) in Fig. 8. For simplicity, the τ (q) from
the simulation is estimated as the correlation time at which
S(q, t )/S(q) = exp(−1). On the other hand, we follow the
same procedure that we have described for the CG polymer
system to determine the fit parameters. Equation (12) gives a
reasonable description of τ (q) at the first structural peak, but
fails to produce the correct results in both the high- and low-q
regions.

FIG. 8. Comparison of the q-dependent relaxation time τ (q)
from the PEO simulation and the prediction by Eq. (12). Solid line:
Simulation result based on S(q, t )/S(q). Symbols: Predictions by
Eq. (12) with different values of ξc.
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IV. CONCLUDING REMARKS AND SUMMARY

From a mathematical point of view, space-time correla-
tion functions are mappings defined on a four-dimensional
space [(r, t ) or (q, t )], and should be treated as such. For
isotropic liquids at equilibrium, angular dependence van-
ishes, and one is concerned with the dynamic landscape on
a two-dimensional plane [(r, t ) or (q, t )]. In other words, the
spatiotemporal mapping method described in this work in
fact is a natural way to think of the intermediate scattering
functions as well as other space-time correlation functions in
liquids. However, this is far from a prevailing practice in the
field of liquid dynamics research. On the contrary, for histor-
ical reasons, the existing paradigm predicates on examining
one-dimensional slices of these functions.

In this work we systematically demonstrate the benefits of
adopting the spatiotemporal mapping approach by focusing
on mesoscopic liquid dynamics. Our goal is not to resolve the
complex origin of mesoscopic collective and self-dynamics
in a single strike. Instead, we try to paint a broad picture
about the usefulness of this different way of investigating
liquid dynamics. Using a Lennard-Jones liquid, a coarse-
grained bead-spring model, a molten sodium chloride, and a
poly(ethylene oxide) as examples, we show that spatiotem-
poral maps of intermediate scattering functions provide a
forum in which theories and simulations as well as inelastic
scattering experiments can be conveniently explored. Specif-
ically, we illustrate how different types of molecular motions
can be identified by analyzing the slope of contour lines on
two-dimensional maps. In addition, many subtle dynamical
features that otherwise would be missed in the traditional
one-dimensional analysis, can be easily revealed by the spa-
tiotemporal mapping method. Most importantly, by surveying
the global characteristics of these 2D maps, many new ques-
tions now can be asked. For example, how to explain the
apparent difference between the coherent intermediate scat-
tering functions of the coarse-grained and atomistic models
in the mesoscopic regime? What is the origin of the localized
hydrodynamic modes observed in the coarse-grained models?
Is the overall enhanced correlation in collective dynamics of
the coarse-grained polymer melt with decrease of temperature
a signature of increasing molecular cooperativity? None of
these questions could have been raised without the lens of
the spatiotemporal mapping approach. As we have previously
stated, it is not the intention of this work to give definitive
answers to these questions. Addressing them requires careful
experimental, computational, and theoretical investigations,
which is beyond the scope of the present study. Lastly, while
this work deals with density space-time correlation functions,
the same spatiotemporal mapping method can be straightfor-
wardly applied to other correlation functions.

TABLE II. Lennard-Jones potential coefficients.

Atom ε (kcal/mol) σ (Å)

C 0.1078 3.3977
H 0.0208 2.4220
O 0.0726 3.1561

TABLE III. Partial atomic charges.

Atom q (e)

Methyl carbon (C) 0.09
Methylene carbon (C) 0.21225
Methyl hydrogen (H) 0.04375
Methylene hydrogen (H) 0.00450
Oxygen (O) −0.4425

At this point we return to a question that we have inten-
tionally avoided so far: what is mesoscale anyway? In some of
the previous discussions on this topic [61,72,73], mesoscales
are considered as length scales above intermolecular distances
and below the long wavelength hydrodynamic limit. Our cur-
rent study has revealed, however, hydrodynamiclike modes
contribute substantially to the dynamics immediately beyond
the first structural peak, in all the four simulated liquid sys-
tems. In light of this finding, we instead define mesoscale
as a spatiotemporal regime beyond intermolecular distances,
where liquid dynamics is still influenced by local molecular
structures.

Finally, we mention some caveats regarding application
of the 2D analysis approach to neutron spin-echo (NSE) ex-
periments. It is well known that the normalized intermediate
scattering function SNSE(q, t ) from a typical NSE experiment
contains contributions from both coherent and incoherent
scattering processes:

SNSE(q, t ) = Icoh(q, t ) − 1
3 Iinc(q, t )

Icoh(q, 0) − 1
3 Iinc(q, 0)

, (13)

where Icoh(q, t ) and Iinc(q, t ) are coherent and incoherent in-
tensities, respectively. In certain systems such as CKN [5],
incoherent contributions are negligibly small and SNSE(q, t )
is dominated by coherent dynamics. For some polymeric
materials such as polyisobutylene [6], it is possible to deter-
mine the coherent normalized intermediate scattering function
S(q, t )/S(q), by polarization analysis and measurement of a
fully hydrogenous sample. In general, however, coherent and
incoherent contributions may not be easily separated by NSE
in the mesoscopic regime. Nevertheless, even in this case,
data analysis can still potentially benefit from a 2D analysis
approach, as coherent and incoherent dynamics exhibit rather
different spatiotemporal characteristics on mesoscopic scales.
Lastly, we note that there are limitations on the spatial and
temporal regimes that can be accessed by the NSE technique.
In particular, correlation times shorter than ∼1 ps cannot be
easily probed, making it difficult to fully resolve hydrodynam-
iclike responses in many systems.

TABLE IV. Harmonic potential coefficients.

Bond ks
i j (kcal/mol Å−2) r0

i j (Å)

C-C 232.52 1.5215
C-H 375.92 1.1025
C-O 284.76 1.4134
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APPENDIX: FORCE FIELD FOR POLY(ETHYLENE
OXIDE)

Our atomistic model of poly(ethylene oxide) (PEO) melt
is based on the General Amber Force Field (GAFF) [46]. The
interaction energy between atoms is expressed by the sum of
both nonbonded and bonded potentials as

E =
∑

nonbonded
pairs

ENB(ri j ) +
∑
bonds

Es(ri j ) +
∑

angles

Eb(θi jk )

+
∑

torsions

Et (φi jkl ),

(A1)

where ri j is the separation between atoms i and j, ENB(ri j )
and Es(ri j ) are the nonbonded and bonded pairwise potentials,
respectively, Eb(θi jk ) is the angular potential due to bending
of the valence angle between atoms i, j, and k, and Et (φi jkl ) is
the torsional potential associated with twisting of the dihedral
angle defined by atoms i, j, k, and l . The force field parame-
ters were optimized by comparing molecular dynamics (MD)
simulation results with density functional theory (DFT) calcu-
lations, as stated in the main text. The optimized parameters
are detailed below.

The nonbonded interaction in GAFF is given by

ENB(ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6]
+ Cqiq j

ri j
, (A2)

where the constant C is 332.0636 kcal Å/(mol e2). In our
simulations, the values of ε and σ were directly adapted from
GAFF without any further modification (Table II) [46]. As is
the convention, the Lorentz-Berthelot combining rules were
used for pair coefficients for atoms of different types. The
Lennard-Jones interaction was truncated at 10 Å. The atomic

TABLE V. Angular potential coefficients.

Angle kb
i jk (kcal/mol) θ0

i jk (deg)

C-C-H 46.868 109.6844
C-C-O 85.306 107.6154
C-O-C 66.293 112.7511
H-C-H 38.802 107.4976
H-C-O 62.377 111.1791

point charges were obtained from ab initio calculations using
the restrained electrostatic potential (RESP) method [79,80]
with the ANTECHAMBER software [81]. The charges were fur-
ther adjusted to ensure electrical neutrality of the PEO chain,
regardless of the degree of polymerization. The final charges
for each type of atom are listed in Table III. The harmonic
potentials for the covalent bonds are of the form

Es(ri j ) = ks
i j

(
ri j − r0

i j

)2
, (A3)

where the force constant ks
i j is directly adopted from GAFF,

and the equilibrium atomic distance r0
i j is based on the

ab initio calculations. The values of ks
i j and r0

i j for each bond
type are shown in Table IV. The potential energy due to
bending of the covalent bond is expressed as

Eb(θi jk ) = kb
i jk

(
θi jk − θ0

i jk

)2
. (A4)

Similarly, the bending force constant kb
i jk is taken from GAFF,

and the equilibrium valence angle θ0
i jk is from the ab initio

structure. The values of kb
i jk and θ0

i jk for each bond type are
given in Table V. Lastly, the dihedral terms are described by

Et (φi jkl ) =
∑

n

kt
i jkl

[
1 + cos(nφi jkl − φ0

i jkl )
]
, (A5)

where φi jkl is the dihedral angle formed by the four atoms i,
j, k, and l in sequence, kt

i jkl is the torsional force constant, n
is multiplicity, and φ0

i jkl is the phase angle. The parameters for
these torsional potentials are shown in Table VI. Following the
conventions used for Amber-type force fields, the intramolec-
ular nonbonded interactions between atoms separated by one
or two bonds (“1-2” and “1-3” interactions) were set to zero in
the simulations. Additionally, the Lennard-Jones and electro-
static pairwise interactions between atoms separated by three
bonds (“1-4” interactions) are scaled by 0.5 and 0.8333, re-
spectively. The interactions for atom pairs separated by more
than three bonds were unscaled.

TABLE VI. Dihedral potential coefficients.

Dihedral angle Multiplicity φ0
i jkl (deg) kt

i jkl (kcal/mol)

C-C-O-C 1 0 0.0675
C-C-O-C 2 0 0.0625
C-C-O-C 3 0 0.2500
H-C-C-H 3 0 0.1556
H-C-C-O 1 0 0.2500
H-C-C-O 3 0 0.1375
H-C-O-C 3 0 0.3370
O-C-C-O 1 180 0.6520
O-C-C-O 2 0 0.3094
O-C-C-O 3 0 0.1375
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