
PHYSICAL REVIEW E 103, 022605 (2021)

Mechanical disorder of sticky-sphere glasses. I. Effect of attractive interactions
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Recent literature indicates that attractive interactions between particles of a dense liquid play a secondary role
in determining its bulk mechanical properties. Here we show that, in contrast with their apparent unimportance
to the bulk mechanics of dense liquids, attractive interactions can have a major effect on macro- and microscopic
elastic properties of glassy solids. We study several broadly applicable dimensionless measures of stability and
mechanical disorder in simple computer glasses, in which the relative strength of attractive interactions—referred
to as “glass stickiness”—can be readily tuned. We show that increasing glass stickiness can result in the decrease
of various quantifiers of mechanical disorder, on both macro- and microscopic scales, with a pair of intriguing
exceptions to this rule. Interestingly, in some cases strong attractions can lead to a reduction of the number
density of soft, quasilocalized modes, by up to an order of magnitude, and to a substantial decrease in their core
size, similar to the effects of thermal annealing on elasticity observed in recent works. Contrary to the behavior
of canonical glass models, we provide compelling evidence indicating that the stabilization mechanism in our
sticky-sphere glasses stems predominantly from the self-organized depletion of interactions featuring large,
negative stiffnesses. Finally, we establish a fundamental link between macroscopic and microscopic quantifiers
of mechanical disorder, which we motivate via scaling arguments. Future research directions are discussed.
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I. INTRODUCTION

One of the key challenges in glass physics is establishing
robust relations between structure and dynamics [1–17]. The
various approaches to assessing glassy matter’s structure can
be roughly partitioned into two schools: approaches that focus
on positional disorder [2,10,17,18], and those that focus on
mechanical disorder [1,6–8,14]. Mechanical disorder refers to
the various forms of mechanical fluctuations that are seen to
emerge in structural glasses, ranging from localized soft spots
[6,19–21] to mesoscopic fluctuations in elastic moduli fields
[22–25].

The future utility of glasses in technological innovations
and industrial applications depends both upon improving
glass formation processes [26–30] and upon understanding
the relations between glasses’ composition—which, in turn,
determines the nature of interactions between the constituent
particles—and their mechanical properties [31–35]. While the
process of glass formation and glass-forming ability have been
the subject of enormous research efforts [36,37], the effects of
different types of microscopic interactions on the emergent
mechanical disorder of glasses have not been fully explored
yet.

One field in which substantial success has been achieved
in understanding relations between microscopic observables
in disordered materials, and their macro- and microscopic
elasticity, is that of unjamming [24,38–40]. The unjam-
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ming scenario precisely describes the changes in microscopic
elasticity—in terms of, e.g., characteristic frequency and
length scales featured by vibrational modes [41–45]—and the
changes in macroscopic elasticity—in terms of, e.g., various
elastic moduli ratios [24,46,47]—upon reducing the degree
of connectedness of the network of interactions between the
constituents of an amorphous solid.

While the phenomenology associated with the unjamming
scenario has been largely understood, less focus has been
dedicated by the materials-physics community to studying the
effects of the form of interactions between the constituent
particles of a glass on its elasticity, in systems largely removed
from the unjamming point [34,48–58]. In Ref. [59] an effort
was made to identify, trace and quantitatively compare be-
tween some of the trends observed in macroscopic elasticity of
simple computer glasses, under changes of various parameters
of interest. Here we adopt a similar strategy, except that we
focus in particular on the role of attractive terms in pairwise
interaction potentials on the elastic properties of the result-
ing glasses, in system for which the unjamming scenario is
irrelevant [60]. To this aim, we employ two computer-glass
models put forward in Refs. [51,61], in which particles in-
teract via a pairwise potential whose attractive term can be
straightforwardly tuned. We study these models to shed light
on the question: how do attractive interactions affect elastic
properties, mechanical disorder and stability of glassy solids?

Comparing the elastic properties of different types of
glasses, with the aim of cleanly distilling the effects em-
anating from different features in the form of interparticle
interactions, is generally not straightforward to accomplish.
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The difficulty to do so stems from the history dependence
that glasses’ properties are notorious for, that might hinder
comparison of elastic properties between different types of
glasses on an equal footing. In computer experiments, this
difficulty can be circumvented; several works have shown
that elastic properties of glasses instantaneously quenched
from parent temperatures Tp—larger than some onset temper-
ature Ton—become nearly independent of Tp [11,59,62–65].
The onset temperature Ton is found to be roughly twice the
computer glass transition temperature Tg, defined here as the
temperature at which the primary relaxation time is of order
104τ0, where τ0 is a microscopic timescale. Here we follow
Refs. [59,66] and exploit this feature of glass-forming models,
in order to achieve a meaningful, quantitative comparison
between them. We create glassy samples by quenching high-
temperature liquid states equilibrated at temperatures that are
roughly a factor of four higher than their respective com-
puter Tg, and therefore much larger than the onset temperature
Ton. The effects of varying Tp from high-temperature liquid
states to supercooled viscous liquid states, on micro- and
macroscopic elasticity of computer glasses featuring attractive
interactions, is the focus of an accompanying paper [67].

In addition to studying the effects of strong attractions
between a glass constituents on its macroscopic elastic prop-
erties, here we focus much of our attention to the investigation
of the effects of attractive interactions on what is referred to
here as microscopic elasticity: the statistical, structural and en-
ergetic properties of soft, quasilocalized modes [19,21,66,68]
(QLMs). These nonphononic soft excitations are observed in
essentially all glasses quenched from a melt [21,66,68], and
are microscopic in nature: they feature a disordered core of
linear size ξg [21,69] (defined and studied in detail in what
follows), which is typically on the order of a few interparticle
distances and is decorated by algebraically decaying Eshelby-
like far fields [21].

The prevalence of QLMs or lack thereof have been shown
to be extremely sensitive to the degree of supercooling of
parent configurations from which glassy samples are instan-
taneously quenched [11,65,69–71]; in Ref. [69] it was shown
that in glassy samples that underlie deeply supercooled equi-
librium configurations, the number density N (Tp) of soft
QLMs can decrease by two orders of magnitude compared to
that found in glasses quenched from high parent temperatures
Tp. In the same work it was also shown that the core size of
QLMs decreases, and their typical frequency increases, with
deeper supercooling of glasses’ ancestral equilibrium states.

For these aforementioned reasons, the statistical and struc-
tural properties of QLMs can be associated with the notion
of mechanical disorder and are therefore studied carefully
throughout this work under variations of the relative strength
of attractive interactions between the constituent particles of
our computer glasses. Our study echoes some of the findings
of Ref. [52], in which the same glass-forming model as (one
of the two models) employed here was investigated, but a
different set of observables were considered; in what follows
we explain in detail the similarities and differences between
our work and Ref. [52].

Here we establish that the relative strength of attractive
pairwise interactions—defined and referred to below as “glass
stickiness”—can be a major contributor to glass stability. We

FIG. 1. In this work we study the effect of attractive interac-
tions between glasses’ constituent particles, on those glasses’ elastic
properties. (a) Two instances of pairwise potentials studied in what
follows, referred to here as “glass 1” and “glass 2.” Despite hav-
ing similar features, and, in particular, similar attractive parts, the
Poisson’s ratio ν (b) and low-frequency vibrational density of states
D(ω) (c) of the respective glasses made using these two potentials
differ dramatically; see text for details. For comparison, the first two
columns in panel (b) represent the Poisson’s ratio of computer “glass
1” and computer “glass 2,” respectively, while the rest of the columns
represent various metallic glasses (data from Ref. [73]).

show that increasing glass stickiness by employing steeper
attractive terms in the interaction potential, or, alternatively,
by decompressing a glass, can lead to a decrease in QLMs’
core size, accompanied by the stiffening of QLMs’ char-
acteristic frequency scale. In some particularly interesting
cases—discussed in detail in what follows—we find that the
number density of QLMs decreases by up to an order of mag-
nitude compared to that found in more generic glass models
[66]. These effects, as well as the effects of stickiness on
macroscopic moduli, are reminiscent in essence, as well as in
magnitude, to the trends seen in thermally annealed [11,65,69]
or otherwise-stabilized [72] glasses.

Another key conclusion of our study is that small changes
in the shape of the attractive part of the employed pair-
wise potentials can lead to dramatic changes in the emergent
micro- and macroscopic elastic properties of their resulting
glasses. Consider, for example, the two pairwise potentials
shown in Fig. 1(a), referred to as “glass 1” and “glass 2.”
These two potentials do not differ significantly from each
other in terms of the form of their respective attractive parts.
Interestingly, despite this similarity, their resulting glasses’
Poisson’s ratio decreases by ≈18% between “glass 1” to
“glass 2” [see Fig. 1(b)], and the density per frequency D(ω)
of low-frequency, quasilocalized modes of these models dif-
fers substantially, by a factor of ≈6.5 [see Fig. 1(c)]. In what
follows we provide evidence indicating that these differences
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stem from the self-organized abundance or dearth of interac-
tions featuring destabilizing negative stiffnesses.

This work is structured as follows; in Sec. II we reintroduce
the two model systems employed in our investigation and
explain how the three sets of ensembles of computer glasses
analyzed below were created. Section III defines the notion
of glass stickiness and shows how it behaves in our computer
glasses. In Secs. IV and V we report the results of our in-
vestigation of the glass-stickiness dependence of macro- and
microscopic elasticity, respectively. In Sec. VI we hold several
discussions in which the results of our computer experiments
are interpreted, explained, and discussed in the context of
other recent work, together with various additional analyses.
In Sec. VII we briefly summarize the main results of the
paper, and Sec. VIII provides an outlook of future research
directions. Precise definitions of the observables considered in
our work, some of their measurement methods, and additional
supporting data pertaining to some of the discussions, are all
deferred to the Appendixes.

II. COMPUTER GLASS MODELS, GLASS
ENSEMBLES, AND UNITS

In this study we employ two computer glass models of
50:50 binary mixtures of “small” and “large” particles of
equal mass m in three dimensions at fixed volume V , inter-
acting via radially symmetric, pairwise interaction potentials
ϕi j (ri j ), such that the total potential energy is written as U =∑

i< j ϕi j (ri j ). With these two models, we created three sets of
glass ensembles, as detailed in Sec. II B.

A. Computer glass models

1. q-sticky-spheres

The first model employed is a generalized Lennard-Jones
potential, also known as Mie potential [61], in which the
strength of the attractive and repulsive interactions can be
tuned via an exponent q. The supercooled-liquid dynamics of
this model was studied in Ref. [74]. The pairwise potential of
this model reads

ϕQSS(ri j ) =ε

[(
λi j

ri j

)2q

− 2

(
λi j

ri j

)q

+
3∑

	=0

c2	

(
ri j

λi j

)2	
]

(1)

for ri j/λi j < xc, and ϕQSS(ri j ) = 0 for ri j/λi j � xc. Here ε is
a microscopic energy scale, λi j is a length parameter (see
below), and c2	(q, xc) are the q- and xc-dependent coeffi-
cients (reported in Appendix B) that ensure the first and
second derivatives of ϕQSS with respect to the pairwise distance
ri j are continuous at the dimensionless cutoff xc. We chose

FIG. 2. (a) The pairwise potential ϕQSS of the QSS model [see
Eq. (1)], plotted for different powers q as indicated by the legend.
(b) The pairwise potential ϕPSS of the PSS model [see Eq. (2)],
for the selected dimensionless cutoffs rc indicated by the legend,
expressed in terms of the dimensionless location of the minimum
of the potential xmin = 21/6.

the parameters q = 6, 8, 12, 20 and xc = 3.0, 2.5, 2.0, 1.8,
respectively. The length parameters are expressed in terms
of the “small-small” interaction length λsmall

small, with λ
large
small =

1.18λsmall
small and λ

large
large = 1.4λsmall

small. The potential as given by
Eq. (1) is plotted in Fig. 2(a). We refer to this model as
q-sticky-spheres.

2. Piecewise-sticky-spheres

The second model employed in this work is a Lennard-
Jones-like potential, first introduced in Ref. [51], in which
the repulsive part of the pairwise potential is identical to the
canonical Lennard-Jones (LJ) potential, but the range—and
therefore also the strength—of the attractive part can be read-
ily modified, as shown in Fig. 2(b). The supercooled liquid
dynamics of this model was studied in Ref. [75]. The piece-
wise pairwise potential of this model reads

ϕPSS(ri j ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4ε
[( λi j

ri j

)12 − ( λi j

ri j

)6]
,

ri j

λi j
< xmin

ε
[
a
( λi j

ri j

)12 − b
( λi j

ri j

)6 +
3∑

	=0
c2	

( ri j

λi j

)2	]
, xmin � ri j

λi j
< xc

0,
ri j

λi j
� xc

, (2)

where ε is a microscopic energy scale, xmin, xc are the (dimen-
sionless) locations of the minimum of the LJ potential and

modified cutoff, respectively, and the λi j are the same length
parameters as detailed for the QSS model above. In what
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follows, we express the dimensionless cutoff xc in terms of
xmin = 21/6, for simplicity, by defining rc ≡ xc/xmin; rc serves
as one of the key control parameters in our investigation, as
explained below. The coefficients a, b, {c2	} are chosen such
that the attractive and repulsive parts of ϕPSS, and its first two
derivatives, are continuous at xmin and at xc; see Table II in
Appendix B for the coefficients’ numerical values. We refer
to this model as piecewise-sticky-spheres.

B. Computer glass ensembles and their preparation protocol

We created three sets of ensembles of glasses, as follows:
(1) Q-Sticky-Spheres [employing ϕQSS; see Eq. (1)],

with q = 6, 8, 12, 20 and xc = 3.0, 2.5, 2.0, 1.8, respectively;
varying q in this model at fixed density leads to the variation of
the dimensionless pressure p/p0 where p0 is a characteristic
pressure scale defined precisely in Appendix A 1 b. For this
reason, we tuned the density ρ ≡ mN/V such that p/p0 ≈
0.05 for all q, resulting in ρ = 0.80, 0.74, 0.698, 0.677 for
q = 6, 8, 12, 20, respectively. These ensembles are referred to
as QSS.

(2) Piecewise-Sticky-Spheres [i.e., employing ϕPSS; see
Eq. (2)], varying Density (referred to as DSS): piecewise-
sticky-spheres glasses with fixed cutoff rc = 1.2 and varying
density ρ = 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.95, 1.20.

(3) Piecewise-Sticky-Spheres [i.e., employing ϕPSS; see
Eq. (2)], varying Cutoff (referred to as CSS): piecewise-
sticky-spheres glasses with fixed density ρ = 0.60 and
varying cutoff rc = 1.1, 1.15, 1.2, 1.3, 1.5. To avoid data
cluttering, we present data only for rc = 1.15 in Figs. 6, 7,
8, 15, and 14.

Ensembles of independent glassy samples were created
as follows; we first equilibrated each system in the high-
temperature liquid state using standard molecular dynamics
(MD) simulations. The equilibration temperature for each sys-
tem was chosen to be at least four times higher than G∞a3

0/30,
where a0 ≡ (V/N )1/3 is the typical interparticle distance, and
G∞ is the high-temperature limit of the sample-to-sample
mean of the shear modulus of underlying inherent states
(glasses) found by a quick quench. We empirically observe
that G∞a3

0/30 is a rough estimation of the computer glass tran-
sition temperature in many numerical models of supercooled
liquids, which motivates our choice. The temperature was kept
constant by employing the Berendsen thermostat [76]. After
equilibration, the energy is minimized instantaneously using a
standard conjugate gradient algorithm. We followed this pro-
tocol to generated n independent glasses for each ensemble.
The total number of samples generated for each model, and
the system sizes employed, are all detailed in Table I. The
dimensionless pressures of the QSS and CSS glass ensembles
are shown in Fig. 17 in Appendix A 1 b. We finally note
that the minimal coordination number over all of our glass
ensembles, pertaining to the CSS ensemble with rc = 1.1,
is ≈10.5, i.e., very far from the Maxwell threshold of six
(in three dimensions). Consequently, none of the effects we
observe in this work are related to the unjamming transition
[24,38–40].

TABLE I. System and ensemble sizes of glassy samples gener-
ated for this work.

Ensemble N n

QSS (∀q) 10,648 1,300
DSS (ρ = 0.55) 3,000 9,200
DSS (ρ ∈ [0.60, 0.95]) 10,000 1,000
DSS (ρ = 1.2) 16,000 1,000
CSS (rc = 1.1) 3,000 50,200
CSS (rc = 1.15) 3,000 40,000
CSS (rc ∈ [1.2, 1.3]) 3,000 9,200
CSS (rc = 1.5) 10,000 3,000

C. Units

In what follows, we report all lengths in terms of the
characteristic interparticle distance a0 ≡ (V/N )1/3, and all
frequencies in terms of ω0 ≡ cs/a0, where the (ensemble-
dependent) speed of shear waves is given by cs = √

G/ρ

with G denoting the (ensemble-dependent) shear modulus and
ρ ≡ mN/V denoting the mass density.

III. GLASS STICKINESS

As stated in the introduction, we consider here computer
glasses in which the strength of attractive interactions can be
tuned. In order to assess the effective relative strength of at-
tractive versus repulsive forces in a meaningful way, we define
a glass’s “stickiness” as follows; for each particle i we iden-
tify the largest repulsive pairwise force f rep

i = max j (−ϕ′
i j )

and largest (most negative) attractive pairwise force f att
i =

max j (ϕ′
i j ). The stickiness s of a glass is then defined as

s ≡ meani f att
i

meani f rep
i

, (3)

where meani denotes a mean over particles i. Clearly s = 0
for purely repulsive systems, and s > 0 once attractive inter-
actions are present.

Importantly, we note that stickiness is an emergent property
of a glass, affected by its self-organized structure, which is
controlled, in turn, by features of the pairwise interactions,
and by mechanical-equilibrium and spatial-confinement con-
straints to which the glass is subjected. In Fig. 3 we show our
measurements of glass stickiness for our three sets of glass
ensembles. It is clear that glass stickiness can be manipulated
either by varying features of the employed pairwise potentials
(cf. QSS and CSS models) or by compressing or decompress-
ing a system with a fixed pairwise potential, as shown for the
DSS system in Fig. 3(b). This latter route to controlling glass
stickiness might be relevant experimentally [77].

IV. EFFECT OF GLASS STICKINESS ON
MACROSCOPIC ELASTICITY

A. Elastic moduli and Poisson’s ratio

We start our investigation of macroelasticity by studying
the sample-to-sample averages of athermal shear to bulk mod-
uli ratio G/K , and Poisson’s ratio ν (see Appendix A 1 for
precise definitions), of the QSS, DSS, and CSS ensembles
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FIG. 3. “Glass stickiness” s—defined in Eq. (3)—vs the respective control parameters of the (a) QSS, (b) DSS, and (c) CSS glass
ensembles. In what follows, we maintain the same order between figure panels and different glass ensembles as presented here.

described in the previous section, as a function of their respec-
tive control parameters. The results are shown in Fig. 4; we
observe that G/K increases significantly in the DSS and CSS
ensembles by decreasing ρ and rc, respectively, with a total
variation of ≈180% in the former case. In addition, the high-
density plateau G/K ≈ 0.15 observed for the DSS glasses is
in excellent agreement with the values measured for computer
glasses featuring purely repulsive, inverse-power-law pairwise
potentials [59]. This indicates that at high densities the rela-
tive strength of attractive interactions is too small to play an
important role in determining the elastic properties of the DSS
glasses, as expected.

In contrast, we observe in Figs. 4(a) and 4(d) that G/K , and
therefore also ν, are largely insensitive to varying glass stick-
iness in the QSS model, indicating that glass stickiness alone
is not predictive of elastic properties. In particular, we show in
Fig. 1 that the QSS pairwise interaction with q = 20 (referred
to as “glass 1” in that figure) has a very comparable attractive

term to that of the CSS interaction with rc = 1.2 (referred to as
“glass 2” in Fig. 1), but nevertheless features a much smaller
G/K ratio, and therefore also a larger Poisson’s ratio ν. The
observed difference between the large-glass-stickiness elastic
properties of the QSS ensemble, and those of the DSS and
CSS ensembles, will be discussed further in what follows.

B. Elastic moduli’s relative fluctuations

In addition to ensemble-averaged values of the shear and
bulk moduli, and of their ratio, we consider next two dimen-
sionless, N-independent measures of their sample-to-sample
fluctuations, defined respectively as

χG =
√

N〈(G − 〈G〉)2〉
〈G〉 and χK =

√
N〈(K − 〈K〉)2〉

〈K〉 ,

(4)
where 〈•〉 denotes an ensemble average. These observables
can be considered as quantifiers of mechanical disorder

FIG. 4. Panels (a)–(c) show the sample-to-sample mean athermal shear to bulk modulus ratio G/K , and panels (d)–(f) show the Poisson’s
ratio ν ≡ (3 − 2G/K )/(6 + 2G/K ), plotted as a function of the key control parameter pertaining to each glass ensemble.

022605-5



KARINA GONZÁLEZ-LÓPEZ et al. PHYSICAL REVIEW E 103, 022605 (2021)

FIG. 5. Relative sample-to-sample fluctuations of shear and bulk moduli as captured by χG (a)–(c) and χK (d)–(f), respectively, defined in
Eq. (4); see text and Appendix A 1 c for more details.

[59,72]; similar quantifiers based on spatial (coarse-grained)
statistics rather than sample-to-sample statistics were put
forward by Schirmacher [22,78,79] in the context of the vibra-
tional density of states and transport properties of glasses, and
also discussed in Refs. [23,25,80,81]. Recently, χG was shown
in Ref. [82] to predict long-wavelength wave attenuation rates
in computer glasses. Appendix A 1 provides details about how
χG and χK were estimated for our glass ensembles.

Our results are shown in Fig. 5; we find stark differ-
ences between the way the two quantifiers χG and χK depend
on each model’s key control parameter. Remarkably, χG is
roughly independent of q in the QSS system, in line with
the underwhelming variation of G/K with q as seen in
Fig. 4. At the same time χG significantly decreases upon
increasing glass stickiness in the DSS and CSS ensembles,
suggesting the increased mechanical stability of those glasses
[59,72].

In contrast, χK appears to depend strongly on q in the QSS
glasses – it grows by roughly a factor of six with increas-
ing q. Similarly, increasing glass stickiness in the DSS and
CSS ensembles leads to an increase in the sample-to-sample
fluctuations of K as captured by χK , opposite to the decrease
we observe in χG upon increasing glass stickiness. We note,
importantly, that the value of χK remains substantially smaller
than χG under all considered scenarios. These trends and their
origins are further discussed in Sec. VI.

V. EFFECT OF GLASS STICKINESS ON
MICROSCOPIC ELASTICITY

As discussed in the Introduction, the macroscopic me-
chanical stability of disordered solids is often related to the
statistical and energetic properties of low-frequency, non-
phononic, quasilocalized vibrational modes that emerge from
the microscopic disorder and glassy structural frustration

[11,65,69,71,72,83]. In this section we thus focus on the
microscopic elasticity of the glasses generated by the three
protocols described in Sec. II B. Precise definitions of the
observables studied can be found in Appendix A 2.

A. Density per frequency of quasilocalized modes

Under a certain set of circumstances [21,66,68,69,85], the
vibrational density of states (vDOS) of structural glasses has
been shown to grow from zero frequency as

D(ω) = Agω
4, (5)

independent of spatial dimension [68,86], glass history [69],
or interaction details [66]. The vibrational modes that pop-
ulate this asymptotic scaling regime were shown to be
quasilocalized; they feature a disordered core of size ξg,
decorated by algebraically decaying fields ∼r1−d̄ [21,87].
The prefactor Ag, featuring units of frequency−5, has been
argued [11,69] to encompass information regarding both the
characteristic frequency ωg of quasilocalized modes (QLMs),
and their number density N (per particle), discussed further
below.

Here we measure the prefactor Ag by fitting the scaling law
(5) to the low-frequency tail of the vDOS; see Figs. 6(a)–6(c)
for some examples. Figures 6(d)–6(f) report the extracted
prefactors Ag for our different glass ensembles, as a function
of their respective control parameters. In the QSS system, we
observe that Ag remains almost constant, independent of the
exponent q, consistent with and similar to the near indepen-
dence of G/K on q. In contrast with this behavior, Ag varies
by an order of magnitude in the DSS glasses, and by almost
two orders of magnitude in the CSS glasses, upon increasing
glass stickiness. We find the lowest prefactor to be featured by
the CSS system with rc = 1.1, for which Ag ≈ 4 × 10−3.
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FIG. 6. Panels (a), (b), and (c) show the vDOS for the highest and lowest values of the respective key control parameter, in the QSS, DSS,
and CSS systems. The dashed lines represent our fits of the low-frequency power-law tails, according to Eq. (5). In panels (d)–(f) we report
the fitted prefactors Ag for all systems vs their respective control parameter.

Similar analyses were carried out in Refs. [52,57], where
the same CSS model was studied. In Ref. [52] it was argued
that the prefactor B (in the notations of that work) of a (power-
law) distribution of “plastic modes” (presumably the same
objects referred to here as QLMs) stiffnesses was inferred by
subtracting the Debye contribution [88] from the eigenvalue
distribution of the Hessian matrix. The result of this inference
was that B varies over a factor of ≈4.5, by varying rc from
1.3 to 2.4, in good agreement with our measurements (cf.
Fig. 6), and notice that we probed smaller rc. Different from
our analysis here, in the analysis of Ref. [52] the exponent
of the plastic modes’ stiffness distribution—known now to
be universal [21,66,68] (however, see Refs. [89,90])—was
treated as a fitting parameter (whose values are not reported),
and the explicit finite-size effects seen in the Debye contribu-
tion [85] were not accounted for. Nevertheless, we stress that
the trend we observe for Ag with varying glass stickiness has
been pointed out first in Ref. [52].

We next turn to examining the effect of glass stickiness on
the core size of QLMs.

B. Core size of quasilocalized modes

Following Ref. [69], the length ξg that represents the (lin-
ear) core size of QLMs can be obtained by considering the
characteristic spatial-decay profiles c(r) of the linear response
of a glass to local force dipoles, defined and explained in
detail in Appendix A 2 b. Figures 7(a)–7(c) show the decay
functions c(r), while Figs. 7(d)–7(f) show the products r6c(r),
with the aim of visualizing the length ξg beyond which the
continuum scaling c(r) ∼ r−6 starts to hold. As demonstrated
in Appendix A 2 b, we define the length ξg as the location of
the maximum of the products r6c(r), marked by the vertical

dashed line in Figs. 7(d)–7(f), for the largest and smallest
value of the relevant control parameter.

Our estimations of the length ξg are shown in Figs. 7(g)–
7(i); we observe that ξg depends only weakly on q in the QSS
system, while it appears to depend strongly on the respective
control parameters of the DSS and CSS systems, varying by
up to a factor of two. This variation is large compared to the
one that stems from very deep supercooling of equilibrium
parent configurations: in Ref. [69] a decrease of approxi-
mately 40% was observed between ξg measured for glasses
quenched from high parent temperatures, and that measured
in glasses quenched from very deeply supercooled states.

We next consider the effect of glass stickiness on the char-
acteristic frequency and number density of QLMs.

C. Quasilocalized modes’ characteristic
frequency and number density

In parallel to the decrease of QLMs’ core size upon thermal
annealing or deep supercooling, the characteristic frequency
of QLMs has been shown to increase, by up to a factor of ≈2
[11,21,69,89]. It is therefore of interest to examine how the
strength of attractive interactions of our model glasses affects
their embedded QLMs’ characteristic frequencies.

With the length ξg in hand (see Fig. 7), we are in position
to estimate the characteristic frequency ωg of QLMs in our
different glass ensembles via the relation

ωg = 2π
cs

ξg
, (6)

confirmed recently in Ref. [69], but proposed in a similar form
earlier [91]. Our results are reported in Figs. 8(a)–8(c); we find
that QLMs in the QSS model tend to not stiffen in any ap-
preciable manner upon changing the exponent q. In contrast,
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FIG. 7. Panels (a)–(c) show the response functions c(r) to local force perturbation (see precise definition in Appendix A 2 b), calculated in
glasses of ≈250 K particles. Panels (d)–(f) show the products r6c(r), that features a crossover to the expected continuum scaling c(r) ∼ r−6

[84] beyond a length ξg, defined here as the maximum of the products r6c(r). ξg is extracted as explained in Appendix A 2 b, and reported in
panels (g)–(i).

the DSS and CSS systems show a substantial increase in the
characteristic frequency ωg, by a factor of approximately two,
by increasing glass stickiness.

Finally, thermal annealing processes have also been shown
to deplete QLMs [11,69,71], thus it is interesting to ask how
the degree of glass stickiness affects the total number of
QLMs in our glasses. Following Refs. [11,69], we estimate
the number density of QLMs for our different glass ensembles
via

N = Agω
5
g. (7)

Our results are displayed in Figs. 8(d)–8(f). As expected
from the weak q-dependence of both Ag and ξg (and thus
of ωg) in the QSS system, QLMs show no depletion in that
system. The contrasting result for the DSS and CSS systems
is rather interesting; Figs. 8(e) and 8(f) shows that the number
of QLMs in these system are not depleted by increasing glass
stickiness, with the exception of rc = 1.1, which features an
anomalously dilute population of QLMs: N ∼ O(10−2). This
means that most of the change we find in Ag in these models

(see Fig. 6) stems from the stiffening of QLMs with increasing
glass stickiness—reflected by the variation of ωg as shown in
Figs. 8(a)–8(c)—rather than from their depletion, as discussed
at length in Refs. [11,69]. In the most extreme case, namely,
the CSS glasses with rc = 1.1, the change in the prefactor
Ag cannot be fully accounted for by the stiffening of ωg,
indicating that QLMs are then depleted.

One more interesting observation should be mentioned; up
to some noticeable noise in N (stemming from uncertainties,
primarily in the extraction of Ag, but also of ξg [cf. Eqs. (6)
and (7)], the value of N ≈ 0.3 appears to be quasiuniversal
[92], for all of the ensembles studied here, with the aforemen-
tioned exception of the CSS system with rc = 1.1, the most
stable among all systems studied. Understanding the precise
mechanism that leads not only to the observed substantial
stiffening, but also to the depletion of QLMs, is left for future
studies.

We note finally that N is not expected to remain bounded
from above near the unjamming transition; in Refs. [87,93]
it was shown that disordered packings of harmonic spheres
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FIG. 8. (a)–(c) The characteristic frequency ωg of QLMs, obtained via Eq. (6). Panels (d)–(f) show the resulting number density of QLMs
N = Agω

5
g , estimated for our glass ensembles as a function of their respective key control parameters.

confined at pressure p feature Ag ∼ p−4. Associating ωg with
the characteristic frequency scale ω of anomalous modes
[41,42], one expects ωg ∼ ω ∼ √

p, then Eq. (7) implies that
N ∼ p−3/2; i.e., it diverges near unjamming. Further work is
needed to establish the relevance of Eq. (7) to unjamming.

VI. INTERPRETATIONS, INSIGHTS, AND PROPOSITIONS

Using two simple computer glass models in which
the strength of attractive interactions can be tuned, we
demonstrated that glasses’ macro- and microscopic elastic
properties, mechanical disorder and stability, can depend dra-
matically on the strength and on the functional form of
pairwise attractive interactions. In what follows we hold ex-
tensive discussions about several points of interest.

A. How do features of attractive interaction
potentials affect glass stability?

Why does increasing glass stickiness lead to the mechani-
cal stabilization of glasses in some cases (cf. DSS and CSS
glasses) but not in others (cf. QSS glasses)? Intuitively, it
is not surprising that attractive forces themselves stabilize
mechanical structures, be them ordered [94,95] or disordered
[96]. In the absence of attractive forces or a sufficient confin-
ing pressure, solidity itself would be lost, as happens near the
unjamming point [38–40]. To better understand how the ob-
served attraction-induced stabilization comes about, we next
examine how the energies of quasilocalized, nonphononic
low-frequency modes are comprised out of different contribu-
tions of the linear stability (Hessian) operator of our computer
glasses.

In models employing radially symmetric pairwise poten-
tials, the Hessian of the potential energy can be split into four

terms [41,42,44,97–99]:

M =
∑
ϕ′′

i j>0

ϕ′′
i j

∂ri j

∂x
⊗ ∂ri j

∂x
+

∑
ϕ′′

i j<0

ϕ′′
i j

∂ri j

∂x
⊗ ∂ri j

∂x

+
∑
ϕ′

i j>0

ϕ′
i j

∂2ri j

∂x∂x
+

∑
ϕ′

i j<0

ϕ′
i j

∂2ri j

∂x∂x
(8)

≡ M′′
+ + M′′

− + M′
+ + M′

− , (9)

where M′′
+,M′

+ are positive definite, and M′′
−,M′

− are
negative definite. With the above decomposition of M,
the energy ω2 = u ·M· u >0 associated with any given,
translation-free mode u can be written as

ω2 = k+ + k− + f+ + f−, (10)

where

k+ ≡ u · M′′
+ · u, k− ≡ u · M′′

− · u,

f+ ≡ u · M′
+ · u, f− ≡ u · M′

− · u,

and we note that k+, k−, f+, f− all have units of
energy/length2, assuming u is normalized and thus
dimensionless.

In widely studied purely repulsive models such as inverse-
power-law or Hertzian spheres (see, e.g., Ref. [59]), f+ =
k− = 0 identically, by construction. It is known that deli-
cate cancellations between the remaining k+ > 0 and f− < 0
terms in Eq. (10) to give rise to the low frequencies featured
by quasilocalized modes (QLMs) [99] and by other classes of
nonphononic modes [44,86,98] in systems residing near the
unjamming transition [38–40]. In the latter case, this delicate
cancellation is referred to as “marginal stability” [100], and
allows one to deduce scaling relations between the mean co-
ordination and elastic moduli [41,42].
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FIG. 9. Distributions of relative contributions to QLMs’ energies
(see text for precise definitions), measured for (a) the QSS system
with q = 20 and (b) for the DSS system with ρ = 0.55. The vertical
dashed lines represent the means of each relative contribution.

Introducing attractive interaction terms on top of repulsive
ones gives rise to nonzero stabilizing f+ and destabilizing
k− contributions to the energy ω2 [101]; cf. Eq. (10). It is
the interplay between these different contributions that de-
termines glass stability, i.e., its featured abundance of soft
QLMs as reflected by the dimensionless prefactor Agω

5
0. To

assess the relative contributions of the different terms to
the energy of a mode, we consider the rescaled energies
k+/ω2

0, k−/ω2
0, f+/ω2

0, and f−/ω2
0, and recall that ω2

0 ≡
c2

s /a2
0, with cs denoting the speed of shear waves, and a0 de-

noting an interparticle distance. We focus in particular on the
QSS system with q = 20 (see “glass 1” in Fig. 1) and the DSS
system with ρ = 0.55 (see “glass 2” in Fig. 1), whose pairwise
potentials, Poisson’s ratios, and probability distributions of
low-frequency vibrational modes were reported in Fig. 1. The
attractive parts of the respective pairwise potentials of these
models have roughly similar forms, however the emergent
elastic properties of the resulting glasses of these models are
found to be quite different; see further details in Sec. I.

To the aim of revealing the origin of the aforementioned
differences between the QSS, q = 20 and DSS, ρ = 0.55
glasses, we examine the distributions of the rescaled energy
contributions as defined above, extracted for ensembles of
soft, quasilocalized modes, calculated as explained in Ap-
pendix A 2 c (one soft QLM per glass). The results are shown
in Fig. 9. We make three key observations regarding these
distributions.

The first observation is that, despite that the frequencies
of the QLMs we calculated (as described in Appendix A 2 c)
in both the QSS and DSS systems span over half a decade
over the frequency axis, the distributions of the dominant
contributions to the modes’ energies feature relative widths
of order unity. Crucially, we find that these relative widths are
N-independent, conditioned that the frequencies of the modes
calculated reside well within the ∼ω4 scaling regime of the
nonphononic vDOS. This indicates that while the softening
mechanism of QLMs can be particular to each glass model,

it remains predominantly independent of the modes’ frequen-
cies within a given glass model, at low frequencies.

The second observation is that, in our sticky-spheres mod-
els, the dominant softening mechanism of QLMs comes from
the exploitation of large negative pairwise stiffnesses, namely
from the k− contribution to the total energy ω2. This stands
in essential contrast with the softening mechanism of QLMs
in purely repulsive systems, for which | f−| ∼ k+ [99]. In
addition, and perhaps counter-intuitively, the stabilizing effect
of attractive forces is relatively very small, approximately an
order of magnitude smaller than the contribution of positive,
stabilizing stiffnesses.

Finally, the third observation is that the approximate sym-
metry around the origin between the dominant pair p(k+/ω2

0 )
and p(k−/ω2

0 ), as seen in the QSS system, is violated in
the DSS system: both the p(k+/ω2

0 ) and p(k−/ω2
0 ) feature

means (marked by dashed vertical lines in Fig. 9) larger in
amplitude and in bias towards positive energy contributions,
compared to the same distributions in the QSS system. We
note, importantly, that as N →∞, the sum of the means of
the 4 dimensionless contributions to modes’ energies—which
represents the mean minimal QLM frequency in a system
of N particles—is expected to vanish as ∼N−2/5 [11,21], so
long as the glasses analyzed feature gapless ∼ω4 nonphononic
spectra. However, the key observation here is that, in the more
stable glasses (DSS with ρ = 0.55), the destabilizing effect of
the k− term is relatively weaker, suggesting that the population
of interactions featuring large, negative stiffnesses in the DSS
glasses is depleted, compared to its size in the QSS glasses.
We speculate therefore that the relative mechanical instability
of the QSS glasses compared to the DSS glasses, as shown
in Fig. 1, stems from the presence of a larger population of
negative-stiffness interactions in the former.

The depletion process suggested above is validated in
Fig. 10, which shows that indeed as the pairwise potential
features larger, more negative stiffnesses, the population of
interactions in the resulting glasses that feature those negative
stiffnesses is depleted. Their depletion—as indicated by the
reduction of the radial distribution function g(r)—is stronger
in the DSS system [Fig. 10(b)], where “small”-“small” inter-
actions with the largest negative stiffnesses are, as a result,
entirely absent. In contrast, we see a significantly weaker
depletion of the “small”-“small” and “large-small” negative-
stiffness interactions in the QSS system [compare Fig. 10(a)
and Fig. 10(b)], and almost no negative-stiffness-induced de-
pletion in the population of “large-large” interactions of the
QSS system. To clarify this point further, in Fig. 11 we para-
metrically plot the pair correlation function g(r) against the
(negative) dimensionless stiffness ϕ′′(r)/ω2

0 for the QSS and
DSS glasses, in the range of distances r for which ϕ′′(r) < 0.
This representation further sharpens the depletion picture dis-
cussed above.

To summarize, according to the physical picture pro-
posed here, negative stiffnesses featured by attractive pairwise
potentials can serve as the main softening mechanism of low-
frequency nonphononic modes, as we showed for the QSS,
q = 20 glasses. However, when those negative stiffnesses are
made very large (compared to characteristic positive interac-
tion stiffness scales), as seen in the DSS, ρ = 0.55 glasses,
the population of interactions that possess those large negative
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FIG. 10. The pairwise potentials ϕQSS (a) and ϕPSS (b) are su-
perimposed with their resulting glasses’ radial distribution functions
g(r), calculated for different pair types as detailed in the legends and
plotted against the dimensionless distance ri j/λi j . The key observa-
tion here is that large, negative stiffnesses in the pairwise potential
lead to a depletion of the population of interactions featuring those
stiffnesses, which can affect, in turn, QLMs’ stiffnesses and thus
glass stability. The vertical dashed line in panel (b) marks the cutoff
rc = 1.2 used for the DSS system. Panels (c) and (d) are zoomed-out
representations of panels (a) and (b), respectively.

FIG. 11. Parametric plots of the radial distribution g(r) vs the
pairwise stiffness ϕ′′(r) for (a) the QSS system with q = 20 and
(b) the DSS system with ρ = 0.55. Here we consider only distances
r for which ϕ′′(r) < 0. We clearly see that the population of inter-
actions featuring large negative stiffnesses becomes smaller at more
negative stiffnesses.

stiffnesses becomes depleted, resulting in the stabilization of
the glass, and the reduction of its shear modulus fluctuations,
via the stiffening of its typical QLMs’ frequencies.

B. Fluctuations of elastic moduli

Another interesting trend we have identified is the oppo-
site variations with glass stickiness of relative fluctuations of
shear and bulk elastic moduli, the latter are captured by χG

and χK , respectively, and reported in Fig. 5. In particular, we
find that χG decreases, while χK increases, upon increasing
glass stickiness—with the interesting exception of χG in the
QSS glasses, that appears to be invariant to changing glass
stickiness.

What is the origin of these opposite trends? We proposed
above that the stiffening and depletion of QLMs should lead to
the reduction in moduli fluctuations, due to their diminished
effect on moduli’s respective nonaffine terms [98,102]. The
latter are shown below to manifest the influence of soft modes
on elastic moduli and their fluctuations. This relation between
soft modes and elastic moduli can explain, on a qualitative
level, the trends seen in χG [see Figs. 5(b) and 5(c)], which
decreases substantially upon increasing glass stickiness in the
DSS and CSS systems.

One more physical factor that may control the effect of
QLMs’ properties on elastic moduli fluctuations of glasses
can be identified by writing the nonaffine term of any elastic
moduli E as [103]

Ena ≡
∂2U
∂ε∂x · M−1 · ∂2U

∂x∂ε

V
= 1

V

∑
	

(
ψ(	) · ∂2U

∂x∂ε

)2

ω2
	

, (11)

where ε represents a strain parameter [cf. the shear and di-
lational strain parameters γ and η of Eqs. (A2) and (A5) in
Appendix A 1, respectively], and ψ(	) is the eigenmode of M
pertaining to the eigenvalue ω2

	 . This expression clarifies that
not only do the statistics of soft modes affect the typical values
and fluctuations of elastic moduli, but so does the strength of
their coupling to different deformation geometries.

Recently, a set of tools to extract the core properties of
QLMs, including their deformation-coupling, was developed
in Ref. [104]. Here we employ those tools to probe the way
QLMs in our different computer glasses couple to external
deformations; see a detailed explanation about the QLMs,
their deformation-coupling definitions, and calculations in
Appendix A 2 c. The analysis determines the ratio of a QLM’s
dilatational strain coupling to shear strain coupling, referred
to here as simply “dilation/shear.” This ratio is calculated for
a single QLM extracted for each member (i.e., one QLM per
glassy sample) of our different sets of glass ensembles.

The results of these calculations are shown in Fig. 12; we
find that glass stickiness has a pronounced effect on the mean
dilation versus shear coupling of QLMs (middle line on bars),
which increases dramatically with increasing glass stickiness
in the DSS and CSS ensembles. This is an interesting ob-
servation on its own right—that the form of the interaction
potential of a glass has a strong and systematic effect on the
structural and mechanical properties of that glass’s QLMs.
To the best of our knowledge, this observation has not been
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FIG. 12. The bars cover the second and third quartiles of the ratio of shear to dilational strain coupling of QLMs, and the middle horizontal
line represents these ratios’ averages; see Appendix A 2 c for precise definitions.

made in previous literature; an extensive investigation of these
effects and their importance is left for future studies.

In the QSS system the mean dilation versus shear cou-
pling remains vanishing small for all q’s (see leftmost bars
in Fig. 12); however, the fluctuations of these coupling ratios
increase dramatically with increasing q. As can be seen from
Eq. (11), the square of the couplings (ψ(	) · ∂2U

∂x∂ε
)
2

enter the
expression for the nonaffine modulus, implying that fluctua-
tions in the dilation to shear coupling ratio would be echoed
by fluctuations of the associated elastic moduli, regardless of
the former’s fluctuations sign. This mechanism is suggested to
qualitatively explain the behavior of χK as seen in Fig. 5(d).
Curiously, χK and the fluctuations in the shear to dilation
coupling ratios discussed here are the only observables con-
sidered in our work that show a substantial dependence on the
exponent q in the QSS glasses.

We note finally that similar ideas regarding QLMs’ de-
formation couplings were put forward in the context of the
elastic properties of metallic glasses in Ref. [56]. In that
work a distinction is made between “shear softening” and
“pressure softening” of “local soft regions,” which echoes
some of the differences we showed here between QLMs’
properties in nonsticky and sticky glasses, respectively. We
speculate that our framework of QLMs, their abundance, and
their deformation-coupling properties, are concrete microme-
chanical realizations of the “shear softening” and “pressure
softening” concepts put forward in Ref. [56].

C. Glasses’ STZ size versus Poisson’s ratio

Plastic flow in structural glasses is known to proceed
via dissipative, localized rearrangements of a few tens or
hundreds of particles [105,106]. The precursors of those
rearrangements—called shear transformation zones (STZs)—
have been recently shown using computer simulations to
correspond to a subset of soft QLMs [107]. This allows us
to meaningfully compare between QLMs’ core size measured
in our computer glasses, to the sizes of STZs measured in the
experiments on bulk metallic glasses reported in Ref. [73]. To
this aim we estimated the STZ size as cSTZ ξ 3

g , with cSTZ a
constant of order unity.

The results are shown in Fig. 13, where we plot the es-
timated STZ size against the Poisson’s ratio of the glasses
that host those STZs. The agreement is satisfying, both in
magnitude as well as in trend; in the laboratory metallic
glasses, and in our computer glasses, the size of STZs grows
upon increasing the hosting glass’s Poisson’s ratio. At high
Poisson’s ratios the scatter in STZ sizes increases, indicating
that the correspondence between STZ size and Poisson’s ratio
is not one-to-one.

D. Is the Poisson’s ratio an indicator of a glass’s
susceptibility to plastic flow?

We next comment on the possible relation between a
glass’s Poisson’s ratio ν and its degree of ductility or brittle-
ness, as suggested in previous work, e.g., Refs. [55,73,108].
We first note that in Refs. [52,57] it was shown that CSS
glasses with small rc feature brittle failure, while larger rc

glasses feature ductile failure. Since we find that the prefactor

FIG. 13. Comparison between simulational and experimental
[73] size of STZs, and their dependence on the Poisson’s ratio. We
estimate the STZ size for our computer glasses to be proportional to
QLMs’ core size cSTZ ξ 3

g , and plot it against those glasses’ Poisson’s
ratio (we used cSTZ = 2). STZ sizes were estimated experimentally
in various laboratory metallic glasses in Pan et al. [73].
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FIG. 14. Dimensionless prefactors Agω
5
0 of the nonphononic

vDOS [see Eq. (5) and Fig. 6], plotted against the Poisson’s
ratio ν.

Ag depends strongly on rc—while N is mostly constant (cf.
Fig. 8)—we conclude that it is Ag that facilitates or inhibits
plasticity via the abundance or sparsity of STZs, respectively.

For these reasons, we plot in Fig. 14 the dimensionless
prefactors Agω

5
0 of our glass ensembles, against those glasses’

mean Poisson’s ratios ν. In addition, we measure and plot
in Fig. 14 the same observables for polydisperse, inverse-
power-law soft-sphere computer glasses quenched from a
broad range of parent temperatures (“POLY” in the figure
legend; see model details and parameters in Ref. [69]), for
Hertzian binary-mixture soft-sphere computer glasses (HRZ
in the figure legend; see model details in Ref. [66]), for the
Stillinger-Weber tetrahedral-network glass-former [109] (SW
in the figure legend), for the orthophenyl molecular-glass
former (OTP in the figure legend; for details on the model
see Ref. [66]), and for a polymeric glass (PG in the figure
legend; see details also in Ref. [66]). We find that while a
single model’s Poisson’s ratio ν seems to form a monotoni-
cally increasing function with that model’s prefactor Ag, there
is no deep, overarching relation between these observables,
as indicated by the huge spread of Ag seen at almost all ν

values, once different model systems are considered. Similar
statements were previously made in Refs. [110–113].

E. Micro- versus macroscopic quantifiers of disorder

The satisfying agreement we find between the experimen-
tal and simulational STZ sizes, and their correlated variation
with the Poisson’s ratio ν, is an interesting connection be-
tween micro- and macroelastic observables. It suggests a
possible connection between macroscopic and microscopic
quantifiers of disorder, which we test next.

In Fig. 15 we plot the dimensionless prefactor Agω
5
0 of

the vDOS (reported in Fig. 6) against the dimensionless [and
N-independent; see Eq. (4)] measure χG of sample-to-sample
fluctuations of the shear modulus (reported in Fig. 5). We also
include data measured for the POLY, HRZ, and SW glasses;
see details about these models in the previous subsection.
Despite some measurable scatter, the good correlation is ap-
parent and impressive, constituting a key result of our work,

FIG. 15. Dimensionless prefactors Agω
5
0 of the nonphononic

vDOS [see Eq. (5) and Fig. 6], plotted against the dimensionless,
N-independent quantifier χG of sample-to-sample shear modulus
fluctuations, for the sticky-sphere glass ensembles, and for five
additional glass models: polydisperse power-law (POLY), Stillinger-
Weber (SW), Hertzian soft spheres (HRZ), orthophenyl (OTP), and
polymeric (PG). See text for details.

and another interesting link between microscopic mechanical
fluctuations and macroscopic ones.

We end this discussion section with one final observation,
shown in Fig. 16, where we plot the dimensionless length
ξg/a0 versus χG , for the QSS, DSS, and CSS systems, on loga-
rithmic scales. The dashed line corresponds to a ξg/a0 ∼ χ2/3

G

scaling, explained next.
Recall that QLMs characteristic frequency ωg is re-

lated to the crossover length ξg between micromechanical-
fluctuations-dominated to continuum-elastic-like responses
via ωg/ω0 ∼ a0/ξg, as established in Ref. [69] and discussed

FIG. 16. The crossover length ξg (extracted as shown in Fig. 19),
plotted against the sample-to-sample shear modulus fluctuations as
quantified by χG . We find ξg ∼ χ 2/3

G
, for which scaling arguments are

provided in the text.

022605-13



KARINA GONZÁLEZ-LÓPEZ et al. PHYSICAL REVIEW E 103, 022605 (2021)

in Sec. V C. A similar crossover between heat transport
via propagating phonons, to heat transport via “diffusons”
[114,115] occurs at the Ioffe-Regel frequency ωIR, de-
fined implicitly via the frequency-dependent transverse wave
attenuation rate �(ω) as �(ωIR ) ∼ ωIR. According to hetero-
geneous elasticity theory (HET) [22,78,79]

�(ω) ∼ χ2
G
ωd̄+1, (12)

at low wave frequencies ω, as verified recently in two-
dimension computer glasses in Ref. [82], and recall that d̄
denotes the dimension of space. Assuming that Eq. (12) per-
sists up to ωIR, we expect that ωIR ∼ χ−2/d̄

G
.

Given the above discussion, a reasonable proposi-
tion would be to to associate ωg with ωIR (see also
Refs. [116,117]), in which case we expect

ξg/a0 ∼ χ2/d̄
G

, (13)

as we indeed show in Fig. 16 for our computer glasses, form-
ing yet another interesting and potentially useful connection
between micro- and macroscopic quantifiers of mechanical
disorder.

VII. SUMMARY OF MAIN RESULTS

In this work we have studied how increasing the strength of
attractive interactions (referred to here as “glass stickiness”)
between the particles of simple computer glasses affect those
glasses’ micro- and macroscopic elastic properties, and their
featured degree of mechanical disorder. Our main findings are
the following:

(1) The degree of mechanical disorder featured by glasses
that were quickly quenched from high-Tp liquid config-
urations can vary substantially due to changes in their
interparticle potential. In particular, we find that the relative
fluctuations χG of the shear modulus can change by nearly
a factor of four (see Fig. 5), and that the linear size ξg of
quasilocalized excitations can change by up to a factor of two
(see Fig. 7) by varying glass stickiness alone. The relative
magnitude of these effects is similar to that seen to be induced
by thermal annealing [69].

(2) The geometry of soft quasilocalized modes (QLMs)—
which have been recently shown [66] to exist in any structural
glass quenched from a melt—can be sensitive to details of
the interaction potential. In particular, we show in Sec. VI B
that the dilatational component of the QLMs’ eigenstrains can
grow from essentially zero (in nonsticky glasses) to a few
tens of percents of their dominant shear eigenstrain (in sticky
glasses).

(3) The physical mechanism responsible for the emer-
gence of soft QLMs is nonuniversal (see Fig. 9 and associated
discussion). In particular, the dominant contribution to de-
creasing QLMs’ energies in sticky glasses is shown to be
associated with negative curvatures—that are generically fea-
tured by attractive pairwise interactions. At the same time, we
highlight in Sec. VI A the role of large negative curvatures of
the pairwise potential in suppressing the number fraction and
increasing the characteristic frequencies of QLMs.

(4) We find a quasi-universal relation (see Fig. 15) be-
tween two dimensionless quantifiers of mechanical disorder,
namely the (dimensionless) prefactor Ag of the nonphononic

vDOS, and the quantifier χG of elastic moduli fluctuations.
This relation is shown to hold across eight different glass
models that span very large ranges of these two quantifiers.

VIII. OUTLOOK

Our results in this work constitute a starting point for
several further investigations. We first reiterate that in an ac-
companying paper [67] we show that glass stickiness affects
the way thermal annealing—in the form of deep supercool-
ing of parent equilibrium states—induces changes in elastic
properties of simple computer glasses.

Next, we propose that the real-space counterpart of the
analysis presented in Fig. 9, that shows how low-frequency
QLMs’ energies are composed of stabilizing and destabiliz-
ing terms, and the latters’ relative contributions, should be
systematically carried out. The aim would be to reach an
understanding regarding the key destabilizing mechanisms
and their variation as a function of the interparticle potential
properties, and as a function of the emergent populations of
interactions featuring positive and negative stiffnesses and
forces.

The mechanical properties of the CSS model have been
investigated in Refs. [52,57], where it was shown that in-
creasing glass stickiness leads to brittle-like failure under
uniaxial tension. It would be interesting to investigate how
the deformation-coupling properties of the STZs (which are
a subset of the QLMs) in the CSS model, as shown in
Fig. 12 and discussed in Sec. VI B, affect different failure
modes such as uniaxial compression or hydrostatic tension.
Furthermore, it is important to establish to what extent
the analogy between thermal-annealing-induced stability and
glass-stickiness-induced stability generally persists in dy-
namic mechanical tests of sticky-sphere glasses.

Finally, one of our key results, shown in Fig. 16, strongly
suggests a close connection between the (sample-to-sample)
fluctuations of macroscopic shear moduli, as captured by χG ,
and the crossover length ξg, which also represents the core
size of STZs [69]. This connection should be more firmly
established, with the aim of building a unifying framework
that will allow to effectively quantify the degree of mechanical
disorder that a given glass possesses, and compare it—on the
same footing—with other classes of disordered materials.
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APPENDIX A: DEFINITIONS OF OBSERVABLES

In this section we list and provide precise definitions of the
physical observables we focused on in this study, and some of
the methods of their measurement. We divide the observables
to macroscopic and microscopic ones in the next subsections.

1. Macroscopic elasticity

a. Elastic moduli

We start with athermal (T = 0) elastic moduli [103]; the
shear modulus G is defined as

G ≡ 1

V

d2U

dγ 2
=

∂2U
∂γ 2 − ∂2U

∂γ ∂x · M−1 · ∂2U
∂x∂γ

V
, (A1)

where d/dγ denotes the total derivative under the constraints
of mechanical equilibrium [103], x denotes particles’ coor-
dinates, M ≡ ∂2U

∂x∂x is the Hessian matrix of the potential
U , and γ is a shear-strain parameter that parameterizes the
imposed affine simple shear (in the x-y plane) transformation
of coordinates x→ H (γ ) · x with

H (γ ) =
⎛
⎝1 γ 0

0 1 0
0 0 1

⎞
⎠. (A2)

The bulk modulus K is defined as

K ≡ −1

d̄

d p

dη
=

∂2U
∂η2 − d̄ ∂U

∂η
− ∂2U

∂η∂x · M−1 · ∂2U
∂x∂η

Vd̄2 , (A3)

where

p ≡ − 1

Vd̄

∂U

∂η
(A4)

is the pressure, d̄ is the dimension of space, and η is an
expansive-strain parameter that parameterizes the imposed
affine expansive transformation of coordinates x→ H (η) · x
as

H (η) =
⎛
⎝eη 0 0

0 eη 0
0 0 eη

⎞
⎠. (A5)

With the definitions of the shear and bulk moduli in hand, the
Poisson’s ratio ν of a 3D solid is given by

ν ≡ 3K − 2G

6K + 2G
= 3 − 2G/K

6 + 2G/K
. (A6)

b. Characteristic pressure scale

For models featuring radially symmetric pairwise
potentials—as employed throughout this work—the pressure
can be decomposed into positive and negative contributions,
as

p = 1

Vd̄

∑
fi j>0

fi jri j − 1

Vd̄

∑
fi j<0

(− fi j )ri j ≡ p+ − p−. (A7)

It is natural to use this decomposition to define a characteristic
scale p0 ≡ p+ + p− with respect to which the pressure can
be assessed. In Fig. 17 we report p/p0 for two of the three
glass ensembles investigated, in addition of the ratios p/K
for comparison. We assert that since characteristic forces and

FIG. 17. (a) and (b) The dimensionless pressure p/p0 for the
QSS and CSS ensembles, respectively. We have tuned the density
carefully in the QSS system such that p/p0 ≈ 0.05, in order to
achieve maximum glass stability while maintaining a positive pres-
sure. In the CSS system we kept the density fixed. (c) and (d) The
pressure made dimensionless via rescaling by the bulk modulus K ,
for comparison.

characteristic stiffnesses do not vary together in the different q
glasses, the correct way to compare these systems on the same
footing is by (approximately) fixing the scale p0, as we did for
the QSS glasses.

c. Sample-to-sample elastic moduli fluctuations

We also consider two dimensionless, N-independent mea-
sures of the sample-to-sample fluctuations of shear and bulk
elastic moduli, defined, respectively, as

χG =
√

N〈(G − 〈G〉)2〉
〈G〉 and χK =

√
N〈(K − 〈K〉)2〉

〈K〉 ,

(A8)
where 〈•〉 denotes an ensemble average [these definitions are
also spelled out in Eq. (4)]. Estimating the sample-to-sample
variance of G (appearing in the definition of χG above) is
difficult, since its probability distribution is known to feature
strong finite-size effects [118], similar to those discussed at
length in Refs. [71,90,118]. In particular, it is common to
observe outliers with large and negative G in small glasses,
that can corrupt the estimated variance in our finite data set.

For these reasons we opt for estimating χG using the fol-
lowing approach; we start by calculating χG directly using the
entire raw data set, following the definition as spelled out in
Eq. (A8). Then:

(1) For each data point Gi we calculate χ i
G
, which is the

same as χG but computed while excluding the ith data point Gi

from the calculation. Once χ i
G

is obtained, the i’th data point
Gi is returned to the data set.

(2) We define a percent difference δi ≡ 100 × (χG −
χ i

G
)/χG for each data point i.
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FIG. 18. Robustness of the scheme employed for estimating the disorder quantifier χG . The scheme is tested first on data obtained for
a computer glass former of soft repulsive spheres and various glass sizes N ; model details, glass preparation protocol and glass-ensemble
sizes can be found in Ref. [90]. Panel (a) compares between the value of χG obtained by a direct calculation, and that obtained by
fitting the probability distribution function p(G) to a Gaussian, a “3/4 Gaussian,” and a skewed Gaussian. The inset of panel (a) demonstrates
that the generic form of p(G) features a non-Gaussian tail towards negative G’s [118]. Panels (b), (c), and (d) test the δ-dependence of our
scheme applied to (b) the same system shown in (a), to the CSS model with rc = 1.1 (c), to the CSS model with rc = 1.2 (d). The insets
of panels (b), (c), and (d) report the percentage of outliers removed from the original data set by our scheme, for each δ (color coded as the
legend). We conclude that the most effect percentage δ = 1%.

(3) The data point with the largest percent difference δi

is permanently removed from the total data set, and χG is
recalculated.

(4) Go to 1.
The scheme described above is repeated, until the maximal

percent difference falls below a fixed percentage δ, which
we set at 1%, as explained and motivated in Fig. 18 and its
caption.

To test the scheme proposed above for estimating χG , we
compare the result of our estimations with other approaches: a
full Gaussian fit, a “3/4 Gaussian” fit, and a skewed Gaussian
[119], all using the built-in model from the LMFIT python
library [120]. In addition, we test the effect of the threshold
percentage δ employed. The results of these tests are displayed
in Fig. 18 and explained it its caption. Our proposed scheme
for handling the finite-size-induced noise in χG , which is sim-

ilar in spirit to the Jack-Knife method, was also employed for
estimating χK .

2. Microscopic elasticity

a. Vibrational density of states

The vibrational density of states (vDOS) is defined as

D(ω) = 1

N

〈∑
	

δ(ω − ω	)

〉
, (A9)

where ω	 is the vibrational frequency associated with the
vibrational mode ψ(	) that solves the eigenvalue equation

M · ψ(	) = ω2
	ψ

(	), (A10)
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FIG. 19. Decay functions c(r) [defined in Eq. (A13)] measured
in the CSS system with different cutoffs rc, factored by r6 and plotted
vs r/a0, where r is the distance from the applied local force dipole,
and a0 is a characteristic interparticle distance. The big arrow indi-
cates the direction of increasing interaction cutoff rc. With this figure
we illustrate how the length at which the crossover to the continuum
scaling, ξg, is extracted. We fit a third-order degree polynomial to the
(logarithm base 10 of the) signal in the bump range (highlighted with
yellow markers). The fit is represented by the black curves on top of
the yellow markers, and the full black squares mark the extracted
values for ξg.

assuming all masses are identical and equal to unity. It
is known that D(ω) = Agω

4 as ω→0 in structural glasses
quenched from a melt [21,66,68], and see also Fig. 6. In
the same figure, the prefactor Ag, which has units of a
frequency−5, is measured and reported for our glass ensem-
bles.

b. Mesoelastic length and frequency scales

In order to extract the length scale that characterizes soft,
quasilocalized modes, we follow the procedure introduced in
Ref. [69]; first, we impose a force dipole to a pair of interact-
ing particles, of the form

d i j = ∂ri j

∂x
. (A11)

The normalized response to this force is

zi j = M−1 · d i j√
d i j · M−2 · d i j

. (A12)

We define a correlation function c(r) as

c(r) ≡ 〈medianri j,k	≈r (zi j · dk	)2〉, (A13)

where the median is taken over all pairs k, 	 whose distance
to the i, j pair is r, and the average is taken over indepen-
dent samples. Examples of the functions c(r) are shown in
Figs. 7(a)–7(c).

Continuum elasticity tells us that, at large r, c(r) ∼ r−2d̄

[84]; we extract a mesoscopic length ξg by finding the max-
imum of the product r6c(r), as shown in Fig. 19. With a

TABLE II. Sticky Spheres potential coefficients.

rc = 1.1

a −2065.398715559462
b −6775.790387829389
c0 −25758.833604839492
c2 35758.32100717132
c4 −17961.4634217834
c6 3172.8363373043844

rc = 1.15

a −360.56276228220503
b −1087.3468598689665
c0 −3686.241663716159
c2 4884.979422475693
c4 −2333.6422601463023
c6 390.72335017374587

rc = 1.2

a −106.991613526652
b −304.918469059567
c0 −939.388037994211
c2 1190.70962256002
c4 −541.3001315875512
c6 85.86849369147127

rc = 1.3

a −17.7556513878655
b −50.37332289908061
c0 −138.58271673010657
c2 161.71576064627635
c4 −66.7252832098764
c6 9.50283097488097

rc = 1.5

a 1.1582440286928275
b −2.2619482444770567
c0 −12.414700446492716
c2 12.584354590303674
c4 −4.320508006050397
c6 0.49862551162881885

mesoscopic length in hand, we follow Ref. [69] and define
a characteristic frequency scale of quasilocalized modes as
ωg ≡ 2πcs/ξg. Finally, using the prefactor Ag of the vDOS,
and the frequency scale ωg, the number density of quasilo-
calized modes is obtained via N ≡ Agω

5
g, as discussed in

Ref. [69]. ωg and N measured in our model glasses are shown
in Fig. 8.

c. Deformation coupling of quasilocalized modes

Studying QLMs’ properties in computer glasses via a har-
monic analysis can be challenging, due to the narrow set of
conditions in which such an analysis is able to reveal those
properties [69,85]. In particular, in situations in which Ag is
small (e.g., in the CSS systems with small rc; see Fig. 6),
revealing QLMs by harmonic analyses is difficult, and re-
quires unreasonably large ensemble sizes. For this reason, the
deformation patterns associated with QLMs are most conve-
niently studied using the nonlinear quasilocalized excitations
framework put forward in Refs. [121,122]. In this framework,
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nonlinear QLMs π solve the algebraic equation

M · π = M : ππ

U ′′′′ :: ππππ
U ′′′′ : ·πππ, (A14)

where U ′′′′ ≡ ∂4U
∂x∂x∂x∂x is the rank-4 tensor of derivatives of the

potential energy with respect to coordinates, and ::, : · denote
quadruple and triple contractions (over N × d̄ components),
respectively. This framework currently allows to compute
the one of the softest quasilocalized modes given a com-
puter glass, regardless of how its frequency relates to phonon
frequencies, and of the degree of hybridization of harmonic,
quasilocalized modes with phonons. We followed the protocol
described in Ref. [122] to calculate a single soft nonlinear
QLM in each glassy sample.

Recently, a set of tools to extract the core properties of
QLMs was developed [104]. For a given QLM π, its coupling
to dilatational and shear deformations can be extracted as
follows Ref. [104]; we define the tensor Fπ as

Fπ = ∂2U

∂ε∂x
· π, (A15)

where ε is the strain tensor that quantifies the geometry and
amplitude of imposed deformations. Fπ is decomposed into
a deviatoric (traceless) and isotropic terms as Fπ = Fdev

π +
F iso

π , where F iso
π = ITr(Fπ )/d̄ (I is the identity tensor) and

Fdev
π = Fπ − F iso

π . Without loss of generality, if the eigen-
value of Fdev

π with the largest absolute magnitude is negative,
we switch π→−π (note that π is defined up to a sign
[121,122]). Denoting then the largest eigenvalue of Fdev

π by
λmax, the ratio of dilation to shear coupling is given by [104]

dilation

shear
≡ Tr

(
Fπ

)
/d̄

λmax
. (A16)

This ratio is reported in Sec. VI B for ensembles of nonlinear
modes calculated in our glasses (one mode per glass).

APPENDIX B: INTERACTION POTENTIALS’
COEFFICIENTS

We provide a mathematical expression to obtain the coeffi-
cients c2	 as a function of the exponent q in the ϕQSS potential
[see Eq. (1)]. The expression reads as⎛

⎜⎝
c0(q)

c2(q)

c4(q)

⎞
⎟⎠ =

⎛
⎜⎝

1
4 x−2q

c (2 + q)[4qxq
c − 2(q + 1)]

− 1
2 qx−2(q+1)

c [(4 + q)xq
c − 2(q + 2)]

1
4 qx−2(2+q)

c [(2 + q)xq
c − 2(q + 1)]

⎞
⎟⎠. (B1)

Additionally, Table II provides the coefficients that en-
sure the first and second derivatives of the sticky spheres’
interaction potential, ϕSS to be smooth at the dimensionless
interaction cutoff xc = rc × xmin.
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