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Active matter commensuration and frustration effects on periodic substrates
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We show that self-driven particles coupled to a periodic obstacle array exhibit active matter commensuration
effects that are absent in the Brownian limit. As the obstacle size is varied for sufficiently large activity, a
series of commensuration effects appear in which the motility induced phase separation produces commensurate
crystalline states, while for other obstacle sizes we find frustrated or amorphous states. The commensuration
effects are associated with peaks in the amount of sixfold ordering and the maximum cluster size. When a drift
force is added to the system, the mobility contains peaks and dips similar to those found in transport studies for
commensuration effects in superconducting vortices and colloidal particles.
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I. INTRODUCTION

Commensuration effects arise in a variety of hard and soft
matter systems when an assembly of particles is coupled to
a periodic substrate with a spacing that matches the average
interparticle spacing. Such effects occur for the ordering of
atoms or molecules on surfaces [1–3], vortices in supercon-
ductors or Bose-Einstein condensates with periodic pinning
arrays [4–7], colloidal particles on optical trap arrays [8–10]
or patterned surfaces [11], and cold atoms on optical lattices
[12]. Conversely, if the particle assembly cannot fit within
the constraints imposed by the substrate, then frustration
can cause the disordering of the system or the formation of
localized defects such as kinks or antikinks [13,14]. Commen-
suration effects also strongly modify the transport properties
under an applied drive in these systems, producing reduced
transport or enhanced pinning when a commensuration occurs
and generating a series of peaks or dips in the transport coef-
ficients as the parameters are varied [5,6,13–17].

Coupling of active matter or self-driven particles to a
substrate [18,19] has been realized in numerous experiments
[18–22]. Many active particles have only short range repulsive
interactions, so the system forms a uniform liquid at lower
densities in the nonactive or Brownian limit; however, when
activity is present, the particles undergo a self-clustering or
motility induced phase separation into a high density crys-
talline phase surrounded by a low density gas [20,21,23–25].
Although there have been various methods proposed for cou-
pling an active matter system to random [19,22,26–32] or
periodic obstacle arrays [33–38], the possible commensura-
tion effects that could occur on a periodic substrate in active
systems have not been considered before now, to our knowl-
edge. For a two-dimensional (2D) system of disks in the
Brownian or zero activity regime, commensuration effects do
not arise until the disk density φ is high enough for all of
the disks to touch each other, so, for a nonactive system at
φ < 0.8, commensuration effects should be absent. In such
high density nonactive systems, a series of commensuration

effects appear when the number of disks is an integer multiple
of the number of obstacles or pinning sites [15]. Since ther-
mal effects typically wash out commensuration effects [15],
it might be expected that active matter systems would not
exhibit any commensuration effects.

Here we examine a 2D active matter system of self-
propelled run-and-tumble disks interacting with a square array
of obstacles. For certain obstacle sizes, we find that the system
can undergo a strong motility-induced phase transition into
a crystalline state that is commensurate with the obstacle
lattice and that coexists with a low density gas. For other
obstacle sizes, the motility-induced phase separation produces
an amorphous crystal due to a frustration effect caused by a
mismatch between the active disk spacing and the obstacle
spacing. The spacing of the disks in the motility-induced
dense phase is key in determining whether commensurate
or incommensurate behavior occurs. The commensuration ef-
fects produce peaks in the size of the largest cluster and in the
amount of sixfold ordering. A variety of different commensu-
rate states appear, including states with local square ordering,
aligned states, and sliding crystalline states. Under an applied
drift force, the transport is a strongly nonmonotonic function
of the obstacle size and exhibits dips at commensurate states
as well as peaks at incommensurate or frustrated states. For
the range of densities we examine, the commensuration ef-
fects are absent in the Brownian limit and become stronger
for increasing activity or longer run times.

II. SIMULATION AND SYSTEM

We model a 2D system of Na active run-and-tumble disks
of density φa interacting with a periodic array of Nobs obstacles
composed of posts of diameter d and lattice constant a. The
overdamped equation of motion for an active disk i is given
by

αd vi = Fdd
i + Fm

i + Fobs
i + FD

i , (1)
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FIG. 1. Behavior of an active disk system with da = 0.9 for a run
length of lr = 0.025 (squares) in the Brownian limit and lr = 175
(circles) in the active limit. (a) Mobility M vs obstacle diameter d .
(b) Fraction of sixfold coordinated particles P6 vs d . (c) Size of the
largest cluster C vs d . The letters a–d in panel (a) indicate the points
corresponding to the images in Fig. 2.

where the damping constant αd = 1.0, and ri and vi = dri/dt
are the position and velocity of disk i. For the disk-disk in-
teraction force Fdd

i , we use a harmonic repulsion with spring
constant ka and disk radius ra, so that the disk diameter is
da = 2ra. We set ka = 150, which is large enough to keep the
disk-disk overlap in our study below one percent. The disk-
obstacle force Fobs is also modeled as a harmonic potential.
The active disk coverage is φa = Naπr2

a/L2, where the system
size is L × L with L = 36, and the combined coverage of
the disks and obstacles is φtot. For the self-propulsion of the
active disks Fm, a force Fm is applied in a randomly chosen
direction for a run time of τr , after which the motor force
instantaneously reorients to a new randomly chosen direction
for the next run time. The motor force is held fixed to the value
Fm = 1.0, and all particles in the system have the same value
of τr . We characterize the system by the run length lr = Fmτr ,
the distance an isolated active particle would move during the
run time τr . Run times are reported in terms of simulation
time steps, each of which is equivalent to 0.002 units of
dimensionless time. We also consider the effects of an exter-
nal drive FD = FDx̂ and measure the mobility M using the
average velocity in the driving direction, 〈Vx〉 = ∑Nd

i=1 vi · x.
We define M = 〈Vx〉/Vfree, where Vfree is the average velocity
that would appear under the same driving force in the absence
of any obstacles. Unless otherwise noted, we fix a = 3.0 and
FD = 0.2, and vary da, d , and lr .

III. RESULTS

In Figs. 1(a)–1(c) we plot the mobility M, the fraction of
sixfold coordinated particles P6, and the fraction of particles
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FIG. 2. Snapshots of the active disk positions (blue circles) and
the obstacles (red circles) for the system in Fig. 1 with da = 0.9.
(a) A uniform liquid at d = 1.05 and lr = 0.025. (b) At d = 1.05 and
lr = 175, there is a phase separated state in which the dense regions
form a commensurate solid. (c) At d = 1.3 and lr = 175, there is
a phase separated amorphous or frustrated state. (d) A frustrated
state at d = 0.225 and lr = 175. Movies illustrating the commen-
surate and incommensurate states can be found in the Supplemental
Material [39].

in the largest cluster C versus the obstacle diameter d for a
system with φa = 0.32, Na = 656, Nobs = 144, and da = 0.9
averaged over 100 realizations. We show two run length val-
ues: lr = 0.025, where the system is in the Brownian limit,
and lr = 175, the active limit where an obstacle free system
would exhibit motility induced phase separation. For the short
run length of lr = 0.025, M has an initial value near 1.0 and
exhibits a monotonic decrease with increasing d , while P6

is mostly flat and C starts to increase due to the onset of
drive-induced clogging once d > 1.5. For the active limit of
lr = 175, M also has an initial value near 1.0 but changes
nonmonotonically with increasing d , showing a pronounced
dip near d = 1.05 which correlates with a peak in P6 and a
smaller peak in C. There is also a peak in M near d = 1.3
that is associated with a drop in P6 and a smaller dip in C.
Additional features include a peak in M near d = 0.2 and a
smaller peak near d = 1.75.

In Fig. 2(a) we show a snapshot of the active particles
and the obstacles for the system in Fig. 1 at lr = 0.025 and
d = 1.05, where a uniform liquid state appears. By compar-
ison, in Fig. 2(b) a sample with lr = 175 at d = 1.05 forms
a phase separated state of high density coexisting with a low
density gas. This combination of parameters corresponds to
the peak in P6 and the dip in M in Fig. 1. In Fig. 3(a) we show
a blowup of the high density region from Fig. 2(b), indicating
more clearly that the system forms a triangular lattice which
is commensurate with the underlying square array. Figure 2(c)
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FIG. 3. Snapshots of the active disk positions (blue circles) and
the obstacles (red circles) for the system in Fig. 1 with da = 0.9.
(a) A blowup of the dense region in Fig. 2(b) at d = 1.05 and lr =
175, showing triangular commensurate ordering. (b) A blowup of
the dense region in Fig. 2(c) at d = 1.3 and lr = 175, which is in an
amorphous state. (c) A blowup illustrating the local square ordering
at d = 1.7 and lr = 175. (d) A larger subsection of the system for
d = 0.15 and lr = 175 showing a sliding crystal phase. For clarity,
the size of the mobile disks has been reduced in panel (d).

illustrates the system in Fig. 1 at lr = 175 and d = 1.3, corre-
sponding to a local maximum in M and a drop in P6. Although
the system still shows clustering, the structure of the active
disks in the dense region is now amorphous, as shown more
clearly in Fig. 3(b). The disorder is produced by a frustration
effect that arises when the natural spacing of the active crystal
does not match the spacing of the interstitial region between
the obstacles. The peak in M is similar to the increase in
motion or decrease in the critical depinning force found in
nonactive commensurate systems at incommensurate densi-
ties [5,6,13–15]. In the nonactive systems, the commensurate
crystalline states have a higher shear modulus and can be more
strongly pinned by the obstacles. In contrast, for the frustrated
system the shear modulus is reduced, permitting the particles
to move more easily and producing minima in the depinning
force of the incommensurate state. Near d = 0.2 for the active
system in Fig. 1, a peak in M and a dip in P6 appear at another
incommensurate region where the disks are disordered, as
shown in Fig. 2(d) for d = 0.225. For sufficiently large d
in Fig. 1(c), the cluster size C rises with increasing d even
in the Brownian limit. This is the result of the piling up of
disks behind the obstacles into clogged states. Such clogging
for a nonactive system of disks driven through an obstacle
array was studied elsewhere [40]. Figure 1(c) illustrates that
the clustering effects are significantly enhanced in the active
system for all values of d .

The strong peak in P6 for the active system in Fig. 1(b)
indicates that a large fraction of the disks have sixfold or-
dering; however, this does not necessarily mean that long
range order is present, since phase separated clusters can form
which contain uncorrelated patches of sixfold order. Addi-
tionally, even within a particular dense region there can be
multiple orientations of the sixfold ordering. This is similar
to what occurs in many commensurate systems, which of-
ten contain grain boundaries separating different degenerate
configurations [15]. The sixfold ordering is clearly enhanced
for obstacle sizes d at which the commensuration effects and
associated reduction in mobility appear. Other characteriza-
tion methods such as an orientational order parameter can be
used, but since the disk density is strongly nonuniform in
the clustered state, this type of measurement shows strong
fluctuations. Even for the measures we consider in Fig. 1,
the fluctuations become strong for small d < 0.25. This oc-
curs due to the formation of partially clustered phases that
break apart rapidly; however, the peak in M and minima in
P6 and C at d = 0.25 are robust features that persist as we
vary the initial conditions. The strong fluctuations at small d
can also result when the number of degenerate commensurate
structures becomes very large. The two prominent features at
points b and c in Fig. 1 are extremely robust and would be
ideal for experimental observation.

For d > 1.5, a distinctive type of active cluster appears
which has local square short-range ordering within a single
plaquette. These clusters are associated with a drop in M and
an increase in C. An example of the d = 1.7 clustered state
appears in Fig. 3(c), where a single plaquette with local square
ordering is highlighted. As d increases further, other types of
commensurate crystals can occur.

In the active system near d = 0.15, where there is a smaller
peak in C, the disks form a sliding crystalline state in which
the commensuration effect is determined by the number of
rows of active disks that can fit between adjacent rows of
obstacles, as shown in Fig. 3(d) where we highlight a subsec-
tion of the system containing four rows of disks. The sliding
crystal exhibits intermittent jumping between crystal and dis-
ordered states, causing the value of P6 to be reduced compared
to the commensurate state which appears at higher d . If we
consider a random array of obstacles, we do not observe any
commensurate effects but instead find a monotonic decrease
of the mobility with increasing d .

In Fig. 4(a) we plot M versus d for the system in Fig. 1
with fixed da = 0.9 at varied lr = 0.00025, 0.01, 0.025, 0.25,
40, 175, and 1750. The overall mobility decreases with in-
creasing lr , while commensuration effects only appear once
lr > 10, which coincides with the running length at which
self-clustering begins to occur. The commensuration effects
become sharper as lr increases. For large d and large lr ,
the mobility drops to zero when the system enters an active
jammed or clogged state, while for smaller lr at high d , the
flow is reduced but remains finite.

Figure 4(b) shows M versus d for the system in Fig. 1 with
fixed lr = 175 and varied active disk diameter of da = 0.7,
0.8, 0.9, and 1.0, giving φa = 0.195, 0.254, 0.32, and 0.4,
respectively. For da = 0.7, no clustering occurs until d > 1.5,
which correlates with a drop in M when a commensurate state
forms with a structure that is similar to that illustrated in
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FIG. 4. (a) M vs d for the system in Fig. 1 for lr = 0.00025, 0.01,
0.025, 0.25, 40, 175, and 1750, from top to bottom. (b) M vs d for
lr = 175 at da = 0.7, 0.8, 0.9, and 1.0, from top to bottom, corre-
sponding to φa = 0.195, 0.254, 0.32, and 0.4. For clarity, the first
three curves are shifted up by 0.915, 0.61, and 0.305, respectively,
on the M axis. (c) M vs d for samples with da = 0.8 and lr = 175
at varied disk density φa = 0.00212, 0.09, 0.17, 0.254, and 0.332,
from top to bottom. (d) The corresponding fraction of particles in the
largest cluster C vs d for the system in panel (c).

Fig. 3(c). The onset of this locally square commensurate state
shifts to lower values of d with increasing da. The drop in M
near d = 1.0 in the da = 0.8 system is due to the appearance
of a different type of commensurate clustering state where
the ordering is triangular rather than square, similar to what
is shown in Figs. 2(b) and 3(a). The triangular commensu-
rate state persists up to d = 1.1 for the da = 0.8 system and
appears over a slightly higher range of d in the da = 0.9
system. The peak near d = 1.1 for da = 0.8 is the result of
the formation of a frustrated state of the type illustrated in
Figs. 2(c) and 3(b). For da = 1.0, the triangular commensurate
state is present near the dip in M at d = 0.7. In general, as da

increases, the overall magnitude of M drops.
The behavior of M versus d for samples with lr = 175

where we hold the active disk diameter fixed at da = 0.8 but
consider different disk densities φa = 0.00212, 0.09, 0.17,
0.254, and 0.332 is shown in Fig. 4(c). Since the disk radius is
fixed, the locally square commensuration dip in M at d = 1.85
does not shift with changing φa. For φa = 0.00212, the system
is in the single-particle limit, there are no commensurate peaks
or dips, and M drops to zero for d > 2.25 when the obstacles
form a percolating barrier to motion. For φa = 0.09 and 0.17,
the triangular commensuration dip at d = 1.0 and the incom-
mensuration peak at d = 1.1 found for larger φa are absent;
however, there is a high density incommensuration peak at
d = 1.95. When φa = 0.332, the overall value of M decreases
and an additional incommensuration peak forms at d = 1.5.
Here, M drops to zero for d > 1.9 when the system enters an
active clogged state.

In Fig. 4(d) we plot the largest cluster size C versus d for
the system in Fig. 4(c) with varied φa. When φa = 0.00212,
C remains small, indicating the lack of any clustering in the
single particle limit, while for φa = 0.09 and φa = 0.18, C
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FIG. 5. The fraction of sixfold coordinated particles P6 vs ob-
stacle size d for the system in Fig. 1 with da = 0.9 and lr = 175 at
different applied drift forces of FD = 0.0 (top red curve), FD = 0.2
(middle blue curve), and FD = 1.0 (bottom green curve).

approaches C = 1.0 for d > 2.25 and has a peak at d = 1.8
corresponding to the formation of local square ordering in
individual substrate plaquettes. At φa = 0.254, there are three
peaks in C corresponding to the commensuration effects at
d = 1.0, 1.35, and 1.85, as well as a dip produced by a
frustrated state at d = 1.1. For φa = 0.332, a clustered state
appears for all values of d , which develops crystalline order-
ing at the three commensurate values of d .

Experimentally, the best system in which to observe the
commensuration effects would be one where activity induced
phase separation occurs even in the absence of obstacles. By
adding periodic obstacles to such a system, the effect of the
obstacle size, activity rate, and active particle density can be
explored. Initial experiments could focus on the states that
form in the absence of an applied drive. In Fig. 5 we plot
P6 versus d for the system in Fig. 1 with lr = 175 under drift
forces of FD = 0.0, 0.2, and 1.0. We note that the cluster size C
(not shown) is nearly featureless over this range of parameters,
showing only a small systematic decrease with increasing FD.
The commensuration peak in P6 near d = 1.0 is robust in the
zero drive limit and in fact is even enhanced in the absence
of a drive. As FD increases, the commensuration effects begin
to wash out as the clusters become broken apart by the drive.
This result indicates that the commensuration effects remain
robust even in the absence of a drive.

If we vary the system size for the sample in Fig. 1 but hold
d and φ fixed, we find no change in the trends of the behavior
[39]. We have focused on active particles with run-and-tumble
dynamics, but we expect that our results should also apply for
robots or for other types of active dynamics such as driven
diffusion as long as there is motility induced phase separation.
This is because the commensuration effects arise due to the
locking of the spacing of the particle lattice to that of the
obstacle lattice. The work by Cates and Tailleur [25] has
also shown that many of the behaviors of run-and-tumble and
driven diffusive systems are equivalent in general and that the
primary cause of the motility-induced phase separation is the
existence of a density-dependent effective particle velocity.
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IV. SUMMARY

We have examined run-and-tumble active matter disks in-
teracting with a periodic obstacle array and find active matter
commensuration and frustration effects. These arise when
the active matter undergoes motility-induced phase separation
into a dense crystalline phase which has a natural disk spacing.
When this spacing is commensurate with the lattice constant
of the obstacle array, a large crystalline phase separated state
can appear, whereas, for other obstacle spacings, the crys-
talline phase cannot fit on the substrate and we instead find
a frustrated state in which the clusters are amorphous and not
as large. The commensuration and incommensuration effects
produce peaks and dips in the mobility, sixfold order, and
cluster size as a function of changing obstacle diameter. The

commensurate crystal states can have long range triangular
ordering or local square ordering. At low activity or in the
Brownian limit, the commensuration effects are lost.
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Commensurability Effects in Superconducting Films with An-
tidot Arrays, Phys. Rev. Lett. 96, 207001 (2006).

[7] S. Tung, V. Schweikhard, and E. A. Cornell, Observation of
Vortex Pinning in Bose-Einstein Condensates, Phys. Rev. Lett.
97, 240402 (2006).

[8] M. Brunner and C. Bechinger, Phase Behavior of Colloidal
Molecular Crystals on Triangular Light Lattices, Phys. Rev.
Lett. 88, 248302 (2002).

[9] C. Reichhardt and C. J. O. Reichhardt, Ordering and melting in
colloidal molecular crystal mixtures, Phys. Rev. E 71, 062403
(2005).

[10] T. Brazda, A. Silva, N. Manini, A. Vanossi, R. Guerra, E.
Tosatti, and C. Bechinger, Experimental Observation of the
Aubry Transition in Two-Dimensional Colloidal Monolayers,
Phys. Rev. X 8, 011050 (2018).

[11] A. Ortiz-Ambriz and P. Tierno, Engineering of frustration in
colloidal artificial ices realized on microfeatured grooved lat-
tices, Nat. Commun. 7, 10575 (2016).

[12] I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys.
1, 23 (2005).

[13] T. Bohlein, J. Mikhael, and C. Bechinger, Observation of kinks
and antikinks in colloidal monolayers driven across ordered
surfaces, Nat. Mater. 11, 126 (2012).

[14] A. Vanossi, N. Manini, and E. Tosatti, Static and dynamic
friction in sliding colloidal monolayers, Proc. Natl. Acad. Sci.
USA 109, 16429 (2012).

[15] C. Reichhardt and C. J. Olson Reichhardt, Depinning and
nonequilibrium dynamic phases of particle assemblies driven
over random and ordered substrates: a review, Rep. Prog. Phys.
80, 026501 (2017).

[16] D. McDermott, J. Amelang, C. J. O. Reichhardt, and C.
Reichhardt, Dynamic regimes for driven colloidal particles on
a periodic substrate at commensurate and incommensurate fill-
ings, Phys. Rev. E 88, 062301 (2013).

[17] M. Baert, V. V. Metlushko, R. Jonckheere, V. V. Moshchalkov,
and Y. Bruynseraede, Composite Flux-Line Lattices Stabilized
in Superconducting Films by A Regular Array of Artificial
Defects, Phys. Rev. Lett. 74, 3269 (1995).

[18] M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool,
J. Prost, M. Rao, and R. A. Simha, Hydrodynamics of soft active
matter, Rev. Mod. Phys. 85, 1143 (2013).

[19] C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt,
G. Volpe, and G. Volpe, Active particles in complex
and crowded environments, Rev. Mod. Phys. 88, 045006
(2016).

[20] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and P. M.
Chaikin, Living crystals of light-activated colloidal surfers,
Science 339, 936 (2013).

[21] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger,
and T. Speck, Dynamical Clustering and Phase Separation in
Suspensions of Self-Propelled Colloidal Particles, Phys. Rev.
Lett. 110, 238301 (2013).

[22] A. Morin, N. Desreumaux, J.-B. Caussin, and D. Bartolo,
Distortion and destruction of colloidal flocks in disordered en-
vironments, Nat. Phys. 13, 63 (2017).

[23] Y. Fily and M. C. Marchetti, Athermal Phase Separation of Self-
Propelled Particles with No Alignment, Phys. Rev. Lett. 108,
235702 (2012).

[24] G. S. Redner, M. F. Hagan, and A. Baskaran, Structure
and Dynamics of a Phase-Separating Active Colloidal Fluid,
Phys. Rev. Lett. 110, 055701 (2013).

022602-5

https://doi.org/10.1088/0034-4885/45/6/001
https://doi.org/10.1103/PhysRevB.25.349
https://doi.org/10.1038/nphys2954
https://doi.org/10.1126/science.274.5290.1167
https://doi.org/10.1103/PhysRevB.57.7937
https://doi.org/10.1103/PhysRevLett.96.207001
https://doi.org/10.1103/PhysRevLett.97.240402
https://doi.org/10.1103/PhysRevLett.88.248302
https://doi.org/10.1103/PhysRevE.71.062403
https://doi.org/10.1103/PhysRevX.8.011050
https://doi.org/10.1038/ncomms10575
https://doi.org/10.1038/nphys138
https://doi.org/10.1038/nmat3204
https://doi.org/10.1073/pnas.1213930109
https://doi.org/10.1088/1361-6633/80/2/026501
https://doi.org/10.1103/PhysRevE.88.062301
https://doi.org/10.1103/PhysRevLett.74.3269
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1126/science.1230020
https://doi.org/10.1103/PhysRevLett.110.238301
https://doi.org/10.1038/nphys3903
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.110.055701


C. REICHHARDT AND C. J. O. REICHHARDT PHYSICAL REVIEW E 103, 022602 (2021)

[25] M. E. Cates and J. Tailleur, Motility-induced phase separation,
Annu. Rev. Condens. Matter Phys. 6, 219 (2015).

[26] C. Reichhardt and C. J. O. Reichhardt, Active microrheology in
active matter systems: Mobility, intermittency, and avalanches,
Phys. Rev. E 91, 032313 (2015).

[27] C. Reichhardt and C. J. Olson Reichhardt, Active matter trans-
port and jamming on disordered landscapes, Phys. Rev. E 90,
012701 (2014).

[28] A. Morin, D. Lopes Cardozo, V. Chikkadi, and D. Bartolo,
Diffusion, subdiffusion, and localization of active colloids in
random post lattices, Phys. Rev. E 96, 042611 (2017).

[29] M. Zeitz, K. Wolff, and H. Stark, Active Brownian particles
moving in a random Lorentz gas, Eur. Phys. J. E 40, 23 (2017).

[30] T. Bhattacharjee and S. S. Datta, Confinement and activity
regulate bacterial motion in porous media, Soft Matter 15, 9920
(2019).

[31] O. Chepizhko and T. Franosch, Ideal circle microswimmers in
crowded media, Soft Matter 15, 452 (2019).

[32] A. Chardac, S. Shankar, M. C. Marchetti, and D. Bartolo,
Emergence of dynamic vortex glasses in disordered polar active
fluids, arXiv:2002.12893.

[33] G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, and
C. Bechinger, Microswimmers in patterned environments,
Soft Matter 7, 8810 (2011).

[34] R. Alonso-Matilla, B. Chakrabarti, and D. Saintillan,
Transport and dispersion of active particles in pe-
riodic porous media, Phys. Rev. Fluids 4, 043101
(2019).

[35] H. E. Ribeiro, W. P. Ferreira, and F. Q. Potiguar,
Trapping and sorting of active matter in a periodic
background potential, Phys. Rev. E 101, 032126
(2020).

[36] M. Brun-Cosme-Bruny, A. Förtsch, W. Zimmermann, E. Bertin,
P. Peyla, and S. Rafaï, Deflection of phototactic microswim-
mers through obstacle arrays, Phys. Rev. Fluids 5, 093302
(2020).

[37] S. Yazdi, J. L. Aragones, J. Coulter, and A. Alexander-Katz,
Metamaterials for active colloid transport, arXiv:2002.06477.

[38] C. Reichhardt and C. J. O. Reichhardt, Directional locking
effects for active matter particles coupled to a periodic substrate,
Phys. Rev. E 102, 042616 (2020).

[39] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.103.022602 for movies illustrating the com-
mensurate and incommensurate states and for a figure showing
P6 for different values of L.

[40] H. T. Nguyen, C. Reichhardt, and C. J. O. Reichhardt, Clogging
and jamming transitions in periodic obstacle arrays, Phys. Rev.
E 95, 030902(R) (2017).

022602-6

https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1103/PhysRevE.91.032313
https://doi.org/10.1103/PhysRevE.90.012701
https://doi.org/10.1103/PhysRevE.96.042611
https://doi.org/10.1140/epje/i2017-11510-0
https://doi.org/10.1039/C9SM01735F
https://doi.org/10.1039/C8SM02030B
http://arxiv.org/abs/arXiv:2002.12893
https://doi.org/10.1039/c1sm05960b
https://doi.org/10.1103/PhysRevFluids.4.043101
https://doi.org/10.1103/PhysRevE.101.032126
https://doi.org/10.1103/PhysRevFluids.5.093302
http://arxiv.org/abs/arXiv:2002.06477
https://doi.org/10.1103/PhysRevE.102.042616
http://link.aps.org/supplemental/10.1103/PhysRevE.103.022602
https://doi.org/10.1103/PhysRevE.95.030902

