
PHYSICAL REVIEW E 103, 022502 (2021)

Strength evolution laws in curing of solvent-welded polymers

Tousif Ahmed , Bing Han , Michael Sulecki, Marigrace Ferrill , and Zubaer M. Hossain *

Laboratory of Mechanics and Physics of Heterogeneous Materials, Department of Mechanical Engineering,
University of Delaware, Delaware 19716, USA

(Received 8 December 2020; accepted 28 January 2021; published 15 February 2021)

This paper reports the scaling laws to describe the time-evolution behavior of solvent-mediated strength at
the interface between two identical thermoplastic polymers below the glass-transition temperature. Our results
suggest that the evolution scales as

√
t , where t is the curing time. It depends on the time evolution of interfacial

stiffness and toughness, each of which scales as
√

t . Employing a combination of experiments and continuum
scale simulations, we show that the evolution of strength, stiffness, and toughness is controlled by pure diffusion.
It can therefore be treated as a Gaussian process. While the “saturation of strength,” which describes the
transition of strength evolution into a steady state, does not strictly follow any power-law type behavior, a
simple exponential law accurately characterizes both evolution and saturation of strength. This suggests that
the longer timescale nonlinear processes (that are overdetermined by the power-law type scaling laws) diminish
rapidly in approaching a steady state. Furthermore, the kinetics of the evolution processes is well captured by the
dissolution of polymer particles. While dissolution involves a different timescale, it strongly correlates with the
solvent-welding process upon normalization. The correlation highlights the equivalence of the dissolution and
solvent-joining processes and offers an easier route to determining strength at arbitrary curing times. Addition-
ally, the dissolution rate of polymer particles is shape dependent and governed by the surface-to-volume ratio.

DOI: 10.1103/PhysRevE.103.022502

I. INTRODUCTION

Mechanics of joining at the interface between two identical
or dissimilar polymer materials plays a critical role in defining
the effective mechanical behavior of composites [1–9]. The
majority of existing studies focus on the joining process at
temperatures higher than the glass-transition temperature, Tg,
whereat the molecular motion is governed by reptation, re-
organization, and rotation of polymer chains [10,11]. Above
Tg, polymer chains disconnect and reconnect across the in-
terface to bind the two sides. The underlying mechanisms
are driven by the thermal energy and do not require any
assistance from resins or additional ingredients [12]. Diffu-
sion governs the evolution of strength in the joining process
[11–18]. Consequently, the evolution of the “critical energy
release rate” or fracture toughness, which correlates linearly
with the number of polymer chains crossing the interface,
scales as t1/2. Likewise, the evolution of strength scales as
t1/4 under the assumption that the time-dependent relationship
between fracture toughness and strength is independent of the
elastic modulus [11]. Nevertheless, no scaling law seems to
exist for joining processes that take place below Tg requiring
no assistance from heat.

For example, scaling laws describing the time evolution
of strength in solvent welding [9,19] remain undeveloped.
This type of joining takes place below Tg and is facilitated
by structural or engineering adhesives for various applications
in adhesive technology, the plumbing industry, and compos-
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ites to join plastics and woods [9,19–23]. In this process,
interpenetration of the polymeric materials and formation of
physical links across the interface involve reactions between
the solvent and the materials to be bonded. The solvent dif-
fuses into the free volume of the material and causes the
polymeric chains across the interface to relax. Subsequently,
a gel forms at the solvent-polymer interface [24–32] and two
such interfaces merge together forming a weld.

Experimental studies and computational models have been
reported on the underlying processes that drive solvent weld-
ing across polymers [21,33–36]. Two different frameworks
have been used: case I or Fickian diffusion (obeying Fick’s
law of diffusion) and case II or non-Fickian diffusion [36–41].
Case I applies in situations wherein polymer relaxation is fast
and diffusion is the rate-limiting step. It is often observed
in rubbery polymers. Case II applies when polymer relax-
ation is the rate-limiting step and is often observed in glassy
polymers. As polymer chains start to rotate, interpenetration
and entanglement of their branches across the interface join
the two parts together. The joining process is thus regulated
by a gradient in concentration of the solvent material and
the softened polymeric material across the interface. This
raises the question as to whether the scaling laws developed
for the heat-mediated joining process above Tg are applica-
ble to the chemistry-driven solvent-welding process. Second,
does the assumption of modulus independence hold below
strength evolution below Tg? Third, do the time evolutions
of strength (σmax), toughness (Gc), and stiffness (E ) follow
similar behavior?

The underlying bases for t1/4 scaling of strength
are that: (a) strength is directly proportional to the
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stress-intensity factor; (b) following Irwin’s formula,
K ∝ √

GcE , where K is the stress intensity factor, Gc is
the critical energy release rate, and E is the elastic modulus;
and (c) thermally activated movement of the polymer chains
follows a subdiffusion process. These bases invoke three basic
assumptions. First, Einstein’s diffusion law, which states the
mean-squared displacement is directly proportional to time:

〈�x2(t )〉 ∝ t, (1)

is applicable for the polymer joining process, where �x de-
notes displacement of a monomer relative to the interface and
t is time. Second, the number of polymer chains that cross the
interface over time is proportional to the square root of the
mean-squared displacement of the molecules of the solvent:

n(t ) ∝ (〈�x2(t )〉)1/2. (2)

Third, the underlying process is independent of elastic mod-
ulus E , such that the time evolution of strength is fully
controlled by the time evolution of the critical energy-release
rate [11]:

σ

σ0
= KI

KI0
=

√(
Gc

Gc0

)
, (3)

where σ0, Gc0, and KI0 are material properties at t = ts, which
is the time beyond which no further change in properties occur
at the interface. This relationship fits a number of experimen-
tal results conducted above Tg. However, one key limitation
is that it overpredicts the long-time behavior of the evolution
process. Also, it does not yield a constant value of strength
over time. The onset of saturation is thus ill-defined in this
model, and the time required to reach the saturated state is
undefinable.

A fundamentally different but relevant physical process is
dissolution [42], wherein a finite particle under a fully im-
mersed condition gets completely swallowed by the solvent
medium. At a constant temperature, the disintegration can be
deemed to be a kinetic process [43,44]. For two solids bonded
by a solvent (which is initially in the liquid state but later
becomes a part of the solid bonded bilayer), it can be argued
that both the diffusion and dissolution processes are closely
related below Tg and driven by the gradient in the chemical
potential across the evolving solvent-polymer interface. As
the volume of the solvent solution is much higher compared to
what is required to dissolve the polymers, the only choice for
the solvent is to initiate the dissolution process locally, soften
the molecular bonds of the polymer material, and help the
monomer chains crosslink across the interface forming a solid
phase. Dissolution is thus closely related to solvent welding. A
scientific understanding of the role of dissolution is therefore
highly desirable to construct the basis for the time evolution
behavior of strength in solvent welding.

Focusing on the scaling laws of strength evolution and
its correlation with dissolution, we employ a combination of
diffusion and dissolution experiments and perform continuum
scale simulations to unravel the determinants of interfacial
strength. Our results show that the strength evolution follows
a regular diffusion process, as opposed to the widely con-
jectured subdiffusion process. Additionally, results show that

strength evolution follows an exponential law and it represents
both the evolution and saturation processes completely.

The paper is organized as follows. First, we describe the
experimental procedure and findings on time evolution of
interfacial strength. Second, we elaborate a computational
approach to model the time evolution of strength and explore
its determinants. Third, we explain experimental findings on
the dissolution of polymer particles and its relationship with
the polymer joining process.

II. SCALING LAWS OF STRENGTH EVOLUTION

A. Experimental approach

To investigate the time evolution of interfacial strength,
we prepare samples by joining two identical poly(methyl
methacrylate) (PMMA) polymer pieces together by a thin
solvent layer. The samples are subject to uniaxial load applied
normal to the interface at different curing times. The force-
displacement data at each of the curing times are recorded
and they are converted to the stress and strain data by using
the cross-sectional area of the sample and its initial length.
The strength of the interface at curing time t , denoted here
as σmax(t ), is then calculated as the maximum stress of the
stress-strain curve at t .

All samples are produced using a computer numerical con-
trolled machining process to ensure dimensional accuracy. In
the case of configurations with interfaces, bond surfaces of
the constituent layers are prepared with a few additional steps.
Bond surfaces are first sanded using 400-grit sandpapers and
then are polished in the direction perpendicular to the thick-
ness of the specimen using 1200-grit sandpapers. Finally, the
surfaces are cleaned using a lint-free cloth soaked in isopropyl
alcohol (rubbing alcohol) to remove any loose particles. All
specimens in this study have 5.08 mm thickness.

For measuring the strength of the interface, we conduct
tensile tests based on the ASTM standard D638-14 [45] estab-
lished for strength testing of plastics. To measure interfacial
strength, the dog-bone specimen of the tensile strength test
is cut entirely in the middle and then bonded together to
form an interface. Once bonded together, the sample has the
exact same dimensions as the tensile strength test specimens.
This is one of the several methods proposed by Krishnan and
Xu [46] for tensile strength testing of adhesives in a lay-
ered homogeneous and bimaterial system. This method was
adopted by Alam et al. [47] and Sundaram and Tippur [48],
to measure interfacial strength in bilayer PMMA and glass
systems, respectively. A rectangular frame with five properly
shaped cutouts is used to place the cut pieces, add solvent,
and press them together to form the desired interface. The
polished surfaces are placed lightly together and the solvent
(Weld-On 4) is applied to the edge of the joint with a syringe.
After waiting a few seconds, the interface is then cured up to
different duration to attain different interfacial conditions.

B. Results and discussion

The data points [σmax(t ), t] representing the time-evolution
of interfacial strength are presented in Fig. 1. The results
show that the interfacial strength increases exponentially
with the curing time and approaches a constant value of

022502-2



STRENGTH EVOLUTION LAWS IN CURING OF … PHYSICAL REVIEW E 103, 022502 (2021)

FIG. 1. Strength variation as a function of the curing time t .
The schematic shows the sample configuration and loading di-
rection applied for the uniaxial tensile tests. The data points
(shown by the filled circles) are fitted by the exponential equa-
tion σsaturated[1 − exp(−αt )], represented by the solid line. Here
σsaturated = 10.06 MPa is the maximum possible interfacial strength
and α = 0.084 74. The goodness of fit is measured as R2 = 0.9817.
The time required to achieve the saturated strength is around
tc = 70 h.

σsaturated = 10.06 MPa. The curing time required to reach this
saturated state is denoted here as tc. The t-dependent behavior
of interfacial strength is well reflected by the following equa-
tion:

σmax(t ) = σsaturated(1 − e−αt ), (4)

where α is a fitting parameter describing the rate of strength
evolution. The physical basis of this form is that σmax(t )
should approach the maximum possible value σsaturated as t →
∞. Regardless of the underlying processes responsible for
bonding the PMMA materials, there must be a time tc beyond
which no further strengthening is possible. As the quantities
tc and σsaturated characterize a set of properties achieved by
the binder material and the materials to be bonded, they are
deemed to be interconnected for a material-solvent combina-
tion. We therefore describe the strength evolution process with
a nondimensional quantity:

σmax(t )

σsaturated
= 1 − exp

(
−β

t

tc

)
= 1 − exp (−βt∗), (5)

where β = αtc = 6.35 and the ratio t∗ = t/tc is nondimen-
sional time. The quantity β denotes how fast the interfacial
strength reaches the maximum nondimensional strength.
This nondimensional form indicates that all material prop-
erties that can affect the time evolution of strength are
reflected by the single parameter β, which in turn depends
on tc. Thus, we postulate that Eq. (5) is applicable for any
solvent-polymer joining process at temperatures below the
glass-transition temperature such that the time-dependent be-
havior of the underlying molecular processes is independent
of the material-solvent combination.

Furthermore, the exponential form is indicative of an Ar-
rhenius type relationship, in which the exponent involves
the ratio between an activation energy and a temperature-
dependent factor. Here, we have that ratio between an instan-
taneous time and the time taken to reach the saturated strength.
The underlying process is thus assumed to be a kinetic process
as opposed to a thermodynamic process. The rate constant
describing the kinetics of strength evolution is obtained as

κ = σsaturated − σmax(t )

σsaturated
= exp

(
−βt

tc

)
. (6)

It is important to note that this form captures the evolution
of interfacial strength over the entire regime (covering the
rapid change in strength in the evolution regime followed
by a slower transition into the saturation regime). While
temperature does not appear explicitly in this form, it is
possible to apply this form at different temperatures by taking
both β and σsaturated as a set of temperature-dependent material
parameters.

In the literature, for a melting-driven joining process above
the glass-transition temperature, the strength evolution has
long been described to scale as t1/4. The foundation of this
scaling is the assumption that strength is proportional to the
stress-intensity factor (KI ), the stress-intensity factor is pro-
portional to the square-root of fracture toughness (Gc), the
fracture toughness is proportional to the mean-squared dis-
placement (〈�x2〉1/2) of the monomers crossing the physical
interface, and the mean-squared displacement varies as t . The
scaling between interfacial strength and curing time is tradi-
tionally shown in a plot where the ordinate is the interfacial
strength and the abscissa is t1/4. This results in a linear line in
the plot where the line passes through the origin, confirming
that interfacial strength is zero at t = 0. This scaling is found
to be followed by PMMA-PMMA, PMMA-SAN, and SAN-
SAN polymer combinations, where SAN refers to styrene
acrylonitrile [11]. Also, these plots show that the slope of the
linear line increases with increasing the sample temperature
above the glass-transition temperature. This prompts a ques-
tion as to what extent the t1/4 scaling in a solvent-welding
process is applicable. We investigate this by plotting the data
points [σmax(t ), t] of Fig. 1 as σmax(t ) vs t1/n plots for different
choices of n in Fig. 2.

It is evident that, for each of the choices of n, the data points
are well fitted by a linear line, and there is more than one value
of n that can provide a linear relationship between σmax and
t1/n. Secondly, the linear line provides the best fit curve when
the data points up to the time t = 30 h are considered. We
define this time as the “transition time” and denote it by tt . It is
important to note that the behavior of the regime tt � t � t∞,
which we call the “saturation regime,” is not captured by any
of the power-law function. While the strength at t = tt is close
to the highest interfacial strength, the power law does not de-
scribe the strength saturation regime. At t = tt , the interfacial
strength equals the maximum strength achievable from the
polymer-solvent combination. In general, tc > tt for the rea-
son that the exponential approximation gives a smoother tran-
sition into the saturation regime and that at t > tt the exponen-
tial curve gives a smaller strength compared to the power laws.

Furthermore, unlike the melting-driven joining process, the
line does not go through the origin for n = 4 or any of the
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FIG. 2. Plots of the interfacial strength vs (a) t1/1.5, (b) t1/2, (c) t1/3, and (d) t1/4, where the unit of t is hour. The left side of the vertical blue
line represents the time period over which the evolution of strength takes place and the right-hand side represents a steady state of interfacial
strength. Fitting σ = α1 + α2t1/n to the data points, the constants are obtained as α1 = 0.52, α2 = 0.9875 for n = 1.5; α1 = −0.55, α2 =
1.886 for n = 2.0; α1 = −2.731, α2 = 3.981 for n = 3.0; and α1 = −4.921, α2 = 6.061 for n = 4.0. Both α1 and α2 depend linearly on n:
α1 = 3.841 − 2.2n and α2 = −2.136 + 2.04n. The vertical dashed blue line represents the transition line at t = tt = 30 h.

other three choices. Also, there are clearly two characteristic
regimes in the linear relationship between σmax and t1/n, re-
gardless of the value of n. One regime describes the evolution
of strength up to the maximum value of strength, and another
is the continuation of the process into the saturation regime
wherein strength reaches a steady state. The power-law scal-
ings show the strength to continue to increase as t increases,
thereby suggesting the transition into the saturation region
to be poorly conceived by the power law. Furthermore, any
relation of the form σmax ∝ t1/n is valid only in the evolution
regime. The choice of n is therefore not unique (as far as
the linearity between σmax and t1/n is concerned), unless the
condition σmax(0) = 0 is enforced in the fit. The closest we
get to satisfy the condition with the best fit curve occurs for
n = 2. This indicates that the evolution of strength scales as√

t . Thus, the strength evolution at a constant temperature
is a faster process than what is obtained for the melting-
driven joining process. In Sec. III, from a continuum scale
analysis, we show that the basis for this faster behavior is
that the strength evolution depends on both toughness and
stiffness.

Since the power laws describe the strength evolution re-
liably up to t = tt and the exponential fit describes both the
evolution and saturation regimes reasonably well, we inves-
tigate the difference between these two approximations to
understand the strength saturation process purely from a math-

ematical standpoint. In Fig. 3, we plot the experimental data
along with the power law and the exponential fit. It is clear that
any equation of the form t1/n can be assumed to accurately
represent the experimental data points, at least visually; but
none of them represents the behavior of the data points at
t > tt . To determine the degree of nonlinearity that governs
the difference between the exponential and power-law approx-
imations, we expand the exponential function as follows:

σmax(t ) = σsaturated

(
βt/tc − (βt/tc)2

2!
+ (βt/tc)3

3!
− · · ·

)

and plot it with different terms from its expansion. We find
that the series expansion should have at least up to the sev-
enth order term, (βt/tc )7

7! , to correctly represent the behavior
of the time-evolution process. The even-order terms represent
a reduction in strength while the odd-order terms represent
an increase in strength. Their linear combination is needed
to correctly capture the time-evolution behavior over the
entire strength evolution and saturation regimes. However,
to capture the behavior of the saturation regime, we need
the complete expansion of the exponential function. On the
contrary, a power-law approximation always overestimates
strength in the saturation regime, because t1/n → ∞ as t →
∞ for any value of n.
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FIG. 3. Left: Strength variation as a function of the curing time t . The data points (shown by filled circles) are fitted by the nonlinear
equation: σmax[1 − exp(−αt )] where the fitting parameters are σmax = 10.06 MPa and α = 0.084 74 with a goodness of fit measured as R2 =
0.9817. Best-fit curves of the form σmax = α1 + α2t1/n for different choices of n are shown by the solid lines. The values of α1 and α2 are
available in Fig. 2. Right: Comparison of the series expansion of the exponential function with a truncation of order O(t n). The vertical dashed
blue line represents the transition line at t = tt = 30 h.

The difference between the power-law and exponential
scalings, denoted here by R, can be written as

R =
∫ tt

0
(σ exponential − σ power)dt . (7)

Minimizing the residual with respect to the exponent
n, we explore a value of n that offers the best
power-law fit in the regime: 0 � t � tt . Using the
series expansion, we get a closed-form expression
for R:

R =
∫ tt

0

{
σsaturated

[
1 − exp

(
−βt

tc

)]
− [c1 + c2n + (c3 + c4n)t1/n]

}
dt (8)

= σsaturated

(
tt + tc exp(−ttβ/tc) − tc

β

)
− (c1 + c2n)tt − (c3 + c4n)

nt (1+n)/n
t

n + 1
. (9)

Substituting the values of c1 = 3.841, c2 = −2.2, c3 =
−2.136, c4 = 2.04, tt = 30 h, tc = 70 h, β = 6.35, and
σsaturated = 10.06 MPa, the residual is found to have a mini-
mum at n = 2.35. However, the linear line σsaturated vs t1/2.35

does not go through the origin. The linear fit of the data
points in the range 0 � t � tt goes through the origin when
n = 1.74. As a result, if we are to find an optimum value of n
ensuring σmax(0) = 0 and making the residual as close to the
minimum as possible, we get n = (2.35 + 1.74)/2 = 2.045 ≈
2.0. From this, we conclude that the interfacial strength in
the solvent-welding process scales as

√
t . This behavior dif-

fers from what was reported back in 1981 [11] on tests in
a melting-driven joining process above the glass-transition
temperature.

One could argue that the discrepancy may arise from dif-
ferent experimental and sample conditions: in the previous
study an initial crack was present and the joining process was
thermally driven, whereas this study is conducted at room
temperature and without the presence of an initial crack. It
should be noted that, in all of our stress-strain tests, the stress-
strain behavior is linear. Even if we consider an initial crack
present at the interface, we will still get the same σsaturated

vs
√

t relation. The t1/4 type scaling was built on the ap-
proximation that strength is proportional to the square-root
of the interfacial toughness Gc only and independent of E .
We therefore question the validity of the assumption that

KI/KIo = Gc/Gco, where KIo and Gco are the stress-intensity
factor and the critical energy release rate at the reference
state (at t = t∞). If Gc follows a regular diffusion process and
modulus is assumed to be a constant, strength is obtained as a
subdiffusion process. This contradicts our experimental find-
ings and the R-based discussions outlined above. Our finding
of strength evolution as a t1/2 process highlights an important
point that strength evolution is a regular diffusion process,
similar to the evolution of interfacial toughness.

If we are to assume Gc to depend on the width of the
diffusive regime, Gc scales as t1/2, as originally proposed in
Ref. [11]. The modulus dependence of Irwin’s formula would
suggest that it should evolve as t1/2 for the strength to scale as
t1/2. The scaling of modulus was not taken into consideration
in determining the original scaling law for strength evolution
in melting-driven joining processes. Thus, to be consistent
with the linear elasticity relation that σ ∝ √

GcE , stiffness
should also follow a regular diffusion process, as opposed
to being a constant. As strength is an effective property for
the bonded polymer at a given time, its determinants Gc and
E can vary spatially across the interface. It is important to
explore what type of scaling toughness and stiffness follow to
form the physical foundation for strength of the entire domain.
This is a nontrivial experimental task due to the difficulty
in determining the local variations of Gc and E at different
points along the interface at different curing times. As an
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FIG. 4. Schematic of the joined polymers with the yellow color
representing a state during diffusion of the solvent material. Two
spatially varying profiles of E (x) and Gc(x) with their minimum
showing at the interface. Over time the minimum increases and
ultimately reaches the bulk value giving the maximum strength and
toughness for the joint.

alternative, we employ a continuum scale analysis as de-
scribed next.

III. DETERMINANTS OF STRENGTH EVOLUTION

A. Computational approach

To model the time-evolution of strength, we construct a
continuum domain with two parts acting as the bulk polymer
joined by an interface region with its properties varying spa-
tially normal to the interface. Assuming the time-dependent
properties to be directly dependent on the density of the
solvent monomer, we consider a normal distribution for the
concentration of the polymer chains. Following the solution
to the thin-film diffusion equation in one dimension [49–51],
we get

N (x) = 1√
4Dtπ

exp

[
− (x − xinterface)2

4Dt

]
(10)

=
√

1

βπ
exp

[
− (x − xinterface)2

β

]
, (11)

where N (x) is the concentration at x and β = 4Dt is the
half width at half maximum (HWHM). Assuming the mean-
squared displacement to be directly proportional to the curing
time, 〈(x(t ) − x(0))2〉 ∝ t , it can be seen that β ∝ t . The
quantity 1/β characterizes the speed of the diffusion process
and scales its intensity. The time evolution of N (x) can thus
be described by the time evolution of the intensity and speed
through the parameter β. The intensity varies as t and the
speed varies as t1/2. Therefore, the evolution of strength can
be modeled in quasistatic finite element simulations using a
domain with an interface and varying its properties under the
approximation that localized properties at the interface are
directly proportional to N (x). The spatial variation of Gc(x)
and E (x) at an arbitrary time t > 0, is shown schematically in
Fig. 4. The mechanical properties that describe the local crite-
rion for strength depends on the pointwise Young’s modulus
(E ) and toughness (Gc). Both E and Gc are directly related

to the average cross-linking density of the solvent monomers
across the interface, thereby, the normal distribution of the
monomers and the HWHM.

For modeling deformation, we employ continuum scale
simulations using the variational phase-field modeling of
fracture [52,53] with elemental properties varying along the
loading direction. In this framework, the total energy of a
linearly elastic domain is written as a sum over the elastic
energy and the surface energy [54,55]:

W =
∫

�

1 − v2

2
e(u) : C : e(u) + 3Gc

8

(v

l
+ l|∇v|2

)
dA,

where W is the total energy, : denotes a tensor product, v is
the damage variable, e(u) is the strain due to displacement
field u, Gc is the pointwise critical energy release rate, C is
the pointwise elastic modulus, and l is an internal length. The
first term describes the elastic energy and the second term the
surface energy. The intact phase is represented by the first
term for v = 0, while the fractured phase by the second term
for v = 1. The interphase is represented by a combination of
the terms with 0 < v < 1 representing a transition from the
intact phase to the surface.

The internal length l determines the width of the fracture
regime. The localized stress required to create nucleation of
cracks in this model is defined as [56]

σc =
√

3GcE

8l
. (12)

It should be noted that σc is a local property satisfied by
the finite element solution in minimizing the energy at the
neighborhood of the element undergoing a phase-change from
an intact state to a fractured state. It does not reflect the longer
scale elemental features that may involve multiple elements,
describing the macroscopic or effective state of the domain.
As such, σc refers to a local elemental property, as opposed
to a macroscopic property of the domain. The implicit inte-
gration enables assigning pointwise material properties to the
elements.

To model the spatially varying continuous properties of the
elements via E (x) and Gc(x), we use a python script to create
and group the elements normal to the loading or x direction
in 42 strips, where there are 41 strips (each of width 0.2)
representing the interface regime and the remaining strip is
of width 21.8 representing the bulk domain. Here, the length
scales and the material properties are nondimensionalized fol-
lowing [54]. The first group is the elements normal to the
interface following the profiles denoted by Eq. (13). They
form vertical strips with a collection of elements. The width
of each of the vertical strips forming the interface regime is
taken as h = 0.2. Thus, the width of the fracture surface is
on the order of h. This ensures that the fracture width is larger
than the strip width. Also, the element size is taken as h = 0.1,
which is sufficiently small for the results to converge with
respect to the mesh size. Strength of the domain is calculated
by determining the fracture strain from the elastic energy vs
strain plots and multiplying it by the effective elastic modulus
obtained from the stress-strain curve.
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B. Results and discussions

To determine the individual role of Gc(x) and E (x), we
consider three cases: (i) E is homogeneous but Gc varies
spatially:

Gc(x) = 1√
βπ

exp

[
− (x − xinterface)2

β

]
,

E (x) = E ;

(ii) Gc is homogeneous but E varies spatially:

E (x) = 1√
βπ

exp

[
− (x − xinterface)2

β

]
,

Gc(x) = Gc;

and (iii) both E and Gc vary spatially:

E (x) = Gc(x) = 1√
βπ

exp

[
− (x − xinterface)2

β

]
. (13)

Here, the parameter β ∝ t n, and the exponent n prescribes
whether the underlying molecular mechanism is a subdif-
fusion (n < 1), diffusion (n = 1), or superdiffusion (n > 1)
process. In modeling the behavior of the domain with spatially
varying Gc(x) and E (x) properties at a given t , the profiles
are normalized with the respective values of the bulk, repre-
senting the properties of the material far from the interface.
Taking n = 1, we construct different profiles of Gc(x) and
E (x) for different choices of t . We then conduct tensile tests
to determine σmax(t ) using the finite element method (FEM)
simulations, under the assumption of linear elasticity. We
find that only the condition wherein both E and Gc follow
a Gaussian distribution results in a commensurate variation in
the effective strength of the domain. Plotting the σmax(t ) vs t
data points for case (iii), we find the strength to scale as t0.42,
which is close to the experimentally obtained scaling of t0.5,
as illustrated in Fig. 5.

While the local variation in stiffness at the interface does
not affect the effective stiffness of the bilayer, it affects the
criteria for initiating failure at the interface for the reason
that failure requires reaching a critical value. Regardless of
the site, a critical stress state can trigger failure in the bilayer.
Thus, the strength of the interface must depend on the location
variation in stiffness as well as toughness, as prescribed by the
linear elasticity relation that σ ∝ √

GcE . It can be asserted
that both Gc(x, t ) and E (x, t ) scale as

√
t such that the time

evolution of strength follows a
√

t type behavior:

σmax(t ) ∝
√

Gc(t )E (t )

∝
√

(t1/2)(t1/2)

∝ √
t .

As the pointwise toughness and modulus are both the mini-
mum at x = 0, the strength of the bilayer is determined by the
local strength of the interface at x = 0. Thus, our continuum
scale model also supports our assertion that both the modu-
lus and fracture toughness scale as

√
t . And the combined

effect of
√

t behavior of stiffness and fracture toughness is
that strength also varies as

√
t . We therefore conclude that

the effective interfacial strength, toughness, and stiffness vary
as

√
t , highlighting the evolution of each of these material

FIG. 5. Interfacial strength for different profiles of E (x, t ) and
Gc(x, t ) for a given choice of t , parametrized by β. Each data point
represents the critical stress (or strength) at which the interface failed
for a selected profile of E (x, t ) and Gc(x, t ). The variation in strength
for each choice of the exponent n is fitted by a nonlinear equation
of the form c1t n. The inset shows the finite element domain with
41 strips at the interface regime. The domain is loaded along the x
direction and its stress-strain responses for different profiles are ex-
amined, as described in the text. The properties Gc(x, t ) and E (x, t )
of the strips follow the mathematical profiles described in the text.

properties as a regular diffusion process. This supports the
experimental results and sheds light on how strength evolves
over time in a solvent-welding process. Our finding contra-
dicts the previous assertion that strength scales as t1/4. It
underscores the importance of taking into account stiffness
variation in the dimensional analysis of strength.

In the next section, we investigate the dissolution process
of polymer macroparticles in order to establish a connection
between dissolution and joining in the context of solvent-
mediated welding of polymers. We show that there is a direct
point-to-point connection between these two processes, and
dissolution experiments can offer an easy route for determin-
ing the time-dependent interfacial strength in solvent welding
of polymers.

IV. SCALING LAWS OF DISSOLUTION
AND SOLVENT WELDING

In dissolution, the volume of the solid material is much
less than that of the solvent, and over time the entire solid
material is dissolved in the solvent. The underlying mecha-
nisms involve propagation of a solid-liquid interface driven
by a concentration gradient across the interface. On the other
hand, in the joining process, the solvent dissolves the solid
material at the interface, but, due to the finite volume of the
solvent, the solid undergoes a softening process as opposed to
complete disintegration into the solvent. Dissolution can thus
be assumed to be an inverse of the joining process with respect
to the relative change in the volume of the material phase of
the interacting materials. With an objective of understanding
the parameter β, which characterizes the evolution of strength,
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FIG. 6. Experimental data on the fraction dissolved of the
PMMA sample as a function of the normalized curing time, for
particles of two different shapes. Fitting 1 − exp(−βt∗), we get
β = 5.281 890 for triangle and β = 6.2572 for rectangle, where
tc = 2 h for the triangle and tc = 8 h for the rectangle. The
surface-to-volume ratio is (2

√
3a2/4 + 3ah)/(h

√
3a2/4) = 1.51 for

the triangle; and 2(ab + bh + ah)/(abh) = 0.63 for the rectangle,
indicating the surface-to-volume ratio for the triangular sample to be
2.39 times higher than the rectangular sample. The pin support shown
in the schematic drawn in the inset is to make sure the PMMA sample
continues to be immersed throughout the entire dissolution process.

here we conduct separate sets of experiments with a piece of
PMMA material immersed in a bath of the Weld-On 4 solvent.
We determine (i) how long it takes for the samples of different
geometric parameters to completely dissolve in the Weld-On
4 solution and (ii) what geometry-related features (such as
surface and volume) dominate the rate of dissolution in the
solution.

We consider two PMMA samples with very different
shapes: one has an equilateral triangular cross section with
side length a and height h, and the other has a rectan-
gular cross section of side lengths a and b and height h.
Both samples have h = 5.08 mm, while the triangular sample
has a = 6.21 mm and the rectangular has a = 65 mm and
b = 10 mm. We have immersed them in separate test tubes
filled with Weld-On 4. Recovering the samples from the test
tubes at different curing times for each shape, we measure the
weight loss of the samples and plot the “fraction dissolved” or
weight loss, denoted as χ , as a function of the normalized time
t/tc, where tc is the time taken by the sample to fully dissolve
in the solvent. The time-dependent behavior of χ is shown in
Fig. 6.

Results show that the normalized time-dependent behavior
of χ is shape independent. Also, the dissolution behavior
of χ follows (the same mathematical form that we used in
describing the evolution of strength):

χ = 1 − exp(−βt∗), (14)

where t∗ is the normalized curing time describing the ratio
between the total instantaneous time and the total time re-
quired for completing dissolution. The values of the parameter

FIG. 7. Experimental data on the fraction dissolved of the
PMMA sample as a function of the curing time t , for particles of
three different shapes and four different sizes. Fitting 1 − exp(−αt ),
we get α = 2.641, 1.479, 0.747, and 0.747 for the triangle, square,
and the rectangular shapes, respectively.

are β = 5.281 for the triangular shaped sample and 6.257
for the rectangular shaped sample. They are within a small
percentage of the parameter β used in Eq. (5). Dissolution and
interfacial strength are thus linearly correlated:

χ = σ

σmax
∀t∗. (15)

At a given normalized curing time t∗, it is therefore possible
to know the strength of a curing process without doing de-
structive tensile tests. For example, if the maximum interfacial
strength σsaturated and the required curing time tc are known for
a solvent-matrix combination, we can determine the interfa-
cial strength at any arbitrary curing time upon determining
the parameter β from a simple dissolution test.

The observations lead to an important finding: the time
evolution of strength or fraction dissolved is strongly depen-
dent on the parameter tc, which is different across the different
samples used in the dissolution tests and the tensile tests.
To examine the behavior of tc, we determine the “fraction
dissolved” vs “curing time” behavior for a second rectangular
sample of different dimension than the first sample and for
a sample with square cross section. As shown in Fig. 7, the
dissolution curves exhibit a clear dependence on the sam-
ple shape. The dissimilarity between the square, triangular,
and rectangular samples and a close similarity between the
rectangular samples of very different dimensions highlight an
important shape effect in the dissolution process. The large
difference between the values of tc for the strength evolu-
tion and dissolution of the particles can be attributed to the
role of dimensionality. For the dissolution of the particles,
the reaction process is three-dimensional as the particles are
completely immersed in the solvent and the concentration
gradient at the interface between the solvent and particle can
be assumed to remain at the same level throughout the disso-
lution process. On the other hand, for the strength evolution
process, the solvent amount is finite and its reaction with
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the PMMA is one-dimensional in nature where the solvent
interaction with PMMA is normal to the interface. It can
thus be concluded that dissolution and joining processes are
closely related. Nonetheless, when plotted against t∗, all of
these curves overlap.

As the rectangular samples show similar behavior in spite
of a difference in their volume, we propose that it is the
surface-to-volume ratio that describes the shape-dependent
dissolution process. For the samples considered above, the
surface-to-volume ratios are 1.51 (triangle), 0.87 (square), and
0.63 (rectangle). The values of α are 2.641, 1.479, and 0.747,
respectively, and the values of tc are 2, 4, and 8 h, respectively.
The variation of α is linearly related to the surface-to-volume
ratio. The larger the ratio the smaller the curing completion
time. This is an important finding in the sense that from a
few simple dissolution tests on simpler shapes (square), it
is possible to extract the behavior for complex geometric
shapes (such as dodecahedrons). Similarly, regardless of the
complexity in the geometric shapes, it is possible to predict the
strength evolution behavior for a binder-matrix combination.

To extract a theoretical basis behind the tc-dependent be-
havior of dissolution and the interfacial strength, we make a
hypothesis that this quantity is proportional to the surface-to-
volume ratio:

tc ∝ S/V = γ S/V, (16)

where S and V are the total surface area exposed to the
solvent and the volume dissolved, respectively, and γ is the
proportionality parameter (which needs to be evaluated once
for a given binder-matrix combination). Its unit is h-mm. In
terms of these parameters we can write the ratio χ as

χ = σ

σmax
= 1 − exp

(
−β

tV

γ S

)
. (17)

It should be noted that for a dissolution experiment with
finite particles, both S and V are known quantities. For two
semi-infinite plates, S can be assumed to be equal to the
surface area exposed at the bonded interface, but the volume
that participates during the dissolution process is unknown.
Using the relation and known properties, it is, however, possi-
ble to determine how much volume of the bonded materials
is used up during the binding process, without conducting
any nanoscale expensive and time-consuming experiments.
From our dissolution tests on the samples of height h and
length L, the parameter γ ≈ 3/2 h-mm. Thus, tc = γ S/V =
γ (Lh)/(Lhδ) = γ /δ yields the depth of dissolution during the
binding (or strength evolution) process as δ = γ /tc = 21.4
μm, where tc = 70 h.

The similarity between the joining process below Tg and
dissolution hints at a possible one-to-one correspondence
between interfacial strength and the fraction of the bonded
materials dissolved during the joining process. The higher

the dissolution, the higher the strength. Consequently, the
exponent β appearing in the expressions of strength and frac-
tion dissolved can be determined from either the tensile tests
or the dissolution tests. It highlights an important point that it
is sufficient to conduct dissolution experiments to predict the
strength evolution of a combination of materials and solvents.
The analysis above is constructed with the assumption that
there is a sufficient volume of the solvent available to com-
pletely dissolve the PMMA sample.

V. CONCLUDING REMARKS

The main conclusion of this work is that the evolutions of
localized strength, toughness, and stiffness follow the same
scaling law when the process occurs below the glass-transition
temperature. This finding advances our understanding of the
time-evolution of strength between two identical polymers
subjected to a physical contact via a solvent below the
glass-transition temperature. Both experimental and simula-
tion results show that the underlying kinetics governing the
strength evolution of interface is a purely diffusive and Gaus-
sian process, and it scales as

√
t . Also, strength evolution

is found to be directly related to the evolution of toughness
and modulus, each of which also scales as

√
t . They are

describable by the mean-square displacement of the polymer
materials crossing the interface that has a linear dependence
on time. Thus simple diffusion-based models are applicable
to describe the evolution of interfacial strength. Although the
widely known t1/4 behavior can capture strength evolution in
the initial stage of the joining process, they overpredict the
role of diffusion at longer timescales.

Furthermore, it is found that time evolution of strength
is better represented by exponential functions. They not
only capture the evolution behavior but also the saturation
of strength at longer times. Simple power-law type scaling
overestimates the strength at longer curing times. The entire
history of strength, toughness, or stiffness evolution can thus
be described as a kinetic process, and the details of the kinetics
are closely captured by Einstein’s diffusion model.

In addition to providing an understanding of the evolu-
tion of strength, toughness, and stiffness, we demonstrate
that the joining process has a close equivalency to the dis-
solution process. A simple series of experiments on the
dissolution of polymer particles reveals that dissolution tests
can provide useful information on strength during the evolu-
tion process. The dissolution tests on different shapes show
that the time-dependent behavior is closely described by the
surface-to-volume ratio. The higher the ratio, the faster is the
dissolution of the polymeric material into the solvent. These
results are expected to offer new insights on the physics of the
solvent-welded polymer joining process and find applications
in polymer-based composites.
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