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Effects of isolated nonspecific binders upon the search for specific targets:
Absolute rates versus competition between the targets
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Many biological processes involve macromolecules searching for their specific targets that are surrounded
by other objects, and binding to these objects affects the target search. Acceleration of the target search by
nonspecific binders was observed experimentally and analyzed theoretically, for example, for DNA-binding
proteins. According to existing theories this acceleration requires continuous transfer between the nonspecific
binders and the specific target. In contrast, our analysis predicts that (i) nonspecific binders could accelerate the
search without continuous transfer to the specific target provided that the searching particle is capable of sliding
along the binder; (ii) in some cases such binders could decelerate the target search, but provide an advantage in
competition with the “binder-free” target; (iii) nonbinding objects decelerate the target search. We also show that
although the target search in the presence of binders could be considered as diffusion in inhomogeneous media,
in the general case it cannot be described by the effective diffusion coefficient.
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I. INTRODUCTION

Biologically active molecules are often searching for their
specific targets that are surrounded by various types of objects
with which the searching molecule could somehow inter-
act. One of well-studied examples is sequence-specific DNA
binding proteins that are searching for their specific target
sequences usually embedded within much longer regions of
other (nonspecific) DNA sequences. A fundamental question
is whether transient binding to these nonspecific sequences
could facilitate the search for the specific target sequence.
(“Facilitation” in this case usually means acceleration of the
target search, although in the present work we will also dis-
cuss facilitation in terms of competition between the targets.)
It was realized long ago ([1–3]; for review and additional
analysis see [4–11]) that such facilitation could occur in the
presence of continuous transfer of the protein between the
nonspecific and the specific binding sites. Here by continuous
transfer we imply the transfer without disruption of binding
with nonspecific sites. This transfer could occur either via
sliding from the adjacent DNA regions, or via transient simul-
taneous binding to nonadjacent DNA segments. (The latter
mechanism requires a protein to have several DNA-binding
sites, and we do not consider it in this work.)

In terms of conception of sliding in general, it is impor-
tant to mention that the sliding process implies short-range
nonspecific interactions between the protein and the DNA. In
many cases, these interactions are electrostatic, so technically
they remain nonzero until the distance between the protein
and the DNA becomes infinitely long. However, the electro-
static field of DNA is shielded by counterions, so there is a
typical distance, an “effective radius” of DNA, beyond which
electrostatic interactions could be neglected. Most studies
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assume that this radius is comparable (though, of course,
larger) to the geometrical radius of DNA, and consequently
DNA-protein interactions are short-ranged. This is consistent
with the experimentally determined electrostatic effective ra-
dius of DNA [12]. That being said, it was also hypothesized
that the electrostatic interactions between the protein and
the DNA could persist over substantially longer distances,
and that these long-range interactions rather than continuous
transfer are responsible for the facilitated target search [13]. In
our consideration, like in most other studies, we assume that
the electrostatic and other interactions between the protein and
DNA (or other objects) are short-range.

There are multiple experimental observations supporting
the sliding mechanism for protein movement (reviewed in
[14]), including data in living cells [15]. The search for the
specific targets could include both sliding and free diffusion in
solution between the binding events [1–11]. Existing theories
(e.g., [4,7,16]) predict that the sliding to the specific target
from the adjacent DNA region makes the effective size of the
target equal to the typical sliding distance, which could be
much longer that the actual specific target sequence, and this
increase in the effective target size facilitates the target search.

A more difficult question is whether the facilitated target
search is possible without continuous transfer between the
specific and the nonspecific binding sites, i.e., when binding
to the specific target site is always preceded by complete
unbinding from the nonspecific site and free diffusion in solu-
tion. Intuitively, it seems that such binding-unbinding events
(often called “hopping” and “jumping”) within the same DNA
molecule could facilitate the search for the specific target
even in the absence of continuous transfer. However, as was
argued in [5,17], if nothing happened to the protein during
the nonspecific binding event (i.e., it neither moves relative
to DNA, nor binds additional DNA segments), the only effect
of the nonspecific binding could be a delay of the searching
process.
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FIG. 1. Specific target surrounded by obstacles. (a) Obstacles are
isolated from each other and from the specific target. (b) Both the
obstacles and the specific target are actually the parts of the same
molecule (e.g., DNA) (top), but can be represented as isolated from
each other (bottom).

In general, according to the existing theories (e.g.,
[4,7,16]), in the absence of continuous transfer to the spe-
cific target nonspecific binders cannot facilitate the target
search. For example, in the models involving sliding and
three-dimensional diffusion, those DNA regions for which the
distance (along the DNA contour) from the target is longer
than the sliding distance are predicted to work as transient
“traps” delaying the search.

However, the target search facilitated by a longer DNA
was observed experimentally in the system in which a small
DNA circle that contained the specific target was connected to
much longer circle of nonspecific DNA via catenation, which
excludes continuous transfer between the circles [18].

In the present work we analyze the situation in which
the searching particle, although it cannot continuously trans-
fer from the nonspecific binder to the specific target, can
slide along the binder. Below, we will switch from the term
“binders” to the more general term “obstacles” (in the sense
that they are obstacles for the free diffusion in solution), which
could be either capable or not capable of binding the searching
particle. In these terms, DNA fragments are similar to “slip-
pery obstacles” considered in [19], except that we consider
continuous sliding around an obstacle rather than discrete
jumps. In addition to DNA, “slippery obstacles” occur in other
biological systems including lipids and proteins (reviewed in
[19]). In general, some degree of mutual sliding is expected
to be ubiquitous during interaction between various particles,
because the only requirement for having some sliding before
unbinding is that the energy barrier for shifting along the sur-
face is somewhat lower than the energy barrier for complete
detachment from the surface, which is likely to be the case for
electrostatic and hydrophobic interactions.

In our analysis we consider obstacles as isolated objects
[Fig. 1(a)] even if in fact in some cases they could be parts of
the same long polymer (e.g., DNA) molecule [Fig. 1(b)]. Such
representation of a continuous molecular chain [Fig. 1(b),
top] as a “cloud” of isolated fragments [Fig. 1(b), bottom] is
often used in theoretical modeling of polymers (reviewed in

[20]), and is convenient for analyzing effects of DNA regions
localized farther than the sliding distance from the specific
target site.

According to our analysis presented in this work, sliding
along isolated obstacles could facilitate the specific target
search. In application to the target search on DNA, this means
that in contrast to expectation based upon existing theories,
facilitation of the specific target search could occur without
continuous transfer from the nonspecific DNA regions to the
specific target.

In addition to the target searching protein, DNA also could
be bound to other proteins. Such proteins usually behave as
“roadblocks” for sliding, though in some cases the searching
proteins are capable of bypassing the roadblock without de-
tachment from DNA [21]. Roadblocks could de-facilitate the
target search [22,23], and the degree of de-facilitation depends
upon whether the roadblocks are capable of sliding or disso-
ciate from DNA [24]. Interestingly, in some cases roadblocks
could also facilitate the target search [22]. In addition to being
roadblocks for sliding, DNA-bound proteins would also play
the role of obstacles for the three-dimensional component of
the target search when the searching particle diffuses through
the DNA coil.

In addition to the target search on DNA, our analysis is
applicable to phenomena related to diffusion in inhomoge-
neous media (e.g., [25,26]). Our model provides universal
description for obstacles either capable or incapable of bind-
ing the searching particle; the former could be either capable
or incapable of sliding. For random macroscopically unbiased
distribution of nonbinding obstacles (i.e., the average concen-
tration of obstacles is constant on scales substantially larger
than the distance between the obstacles), diffusion in inhomo-
geneous media could be described by the effective diffusion
coefficient that can be calculated based upon the Maxwell
Garnett approach ([26], reviewed in [27]). This description
was extended to reversible binding to immobile obstacles by
multiplying the effective diffusion coefficient obtained for the
case when the binding was absent, by the probability for the
diffusing particle to be in the mobile unbound state [25].
Monte Carlo simulations for randomly distributed immobile
obstacles in the presence of binding also produce normal
diffusion at sufficiently long timescales, although before a
certain critical time diffusion was anomalous [28]. An impor-
tant question is whether the notion of the effective diffusion
coefficient could be extended to the macroscopically biased
distribution of obstacles (i.e., when the concentration of ob-
stacles is a function of coordinate). We show that in the
presence of binding, such extension could not be done, which
is important to take into account upon analysis of diffusion in
inhomogeneous media.

II. MODEL ANALYSIS

A. Description of collisions between the searching particle
and an obstacle: “Reflection” versus sliding transfer

Figure 1(a) schematically depicts a specific target sur-
rounded by nonspecific targets (that also are referred to as
“obstacles”). In our analysis we assume that the mobility
of the obstacles is much smaller than the mobility of the
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FIG. 2. Alternative representations for the searching particle and
an obstacle at the moment of collision. Left: The searching particle
is represented as a point object and an obstacle is represented as a
sphere of the radius a. Right: An obstacle is represented as a point
object and the searching particle is represented as a sphere of the
radius a. Note that coordinates of the centers for both objects remain
the same for both representations.

searching particle, so the position of an obstacle does not
change during the time of collision. In this subsection we
consider the simplest case of spherical searching particles and
obstacles. The searching particle and an obstacle collide when
the distance between their centers becomes equal to the sum
of their radiuses designated as a (Fig. 2). For analysis, either a
searching particle or an obstacle could be represented as either
a point object or a sphere of the radius a (Fig. 2, left and right,
respectively), and these representations could be switched in
the course of the analysis.

First, we represent the searching particle as a point object,
and the obstacle as a sphere of the radius a (Fig. 3). Consider
a collision between the searching particle and an obstacle.
After the collision, the randomly diffusing searching particle
for some time would remain in close vicinity of the obstacle
where the probability of repeating collision is very high. We
refer to the searching particle localized in such close vicinity
as being in a “correlated state.” If the searching particle is ca-
pable of (reversibly) binding the obstacle, then the correlated
state includes a “bound state” in which the searching particle
is bound to the obstacle. In the bound state, the searching
particle might be capable of sliding along the surface of the
obstacle.

Eventually the searching particle would diffuse away far
enough from the obstacle, so that the probability of repetitive
collision with this obstacle would be low. We refer to such a
state of the searching particle as “decorrelated” or “free.”

Of course, in reality there is no defined transition between
the correlated and decorrelated states. However, in our de-
scription we consider the correlated and the free states as
discrete states, switching between which occurs at some dis-
tance ξ0 from the surface. We introduce a collision transfer
vector �ξ that connects an initial point of collision and the
“decorrelation” position (Fig. 3), and a decorrelation time τd

that is required for this transfer. The notion of decorrelation
time has similarity to the notion of the mean obstacle en-
counter time described in [25].

FIG. 3. Transferring of the searching particle as a result of col-
lision. Trajectory of the particle is shown as a dashed line. For
designations see the main text. Azimuthal angle is not shown.
(a) Collision in the absence of sliding. (b) Collision in the presence
of sliding. Sliding regions of the trajectory are shown as the dashed
lines stretched parallel to the surface.

Projections of the vector �ξ upon the axis connecting the
centers of the searching particle and the obstacle (further
referred as a “collision axis”) and upon the perpendicular
plane are designated as ξ‖ and ξ⊥, respectively. First, consider
the situation in which there is no sliding of the searching
particle along the surface of an obstacle [Fig. 3(a)]. In this
case, postcollision trajectories of the searching particle are
symmetrically distributed relative to the point of collision. In
addition, on average the shortest (i.e., the fastest) trajectories
that reach the decorrelation distance ξ0 from the surface would
be those that end at the normal to the surface emanated from
the point of collision. Thus, the collision transfer vector in this
case would be perpendicular to the surface of the obstacle at
the point of collision, so the particle behaves as if it “reflects”
from the obstacle to the distance ξ0 (e.g., in this case ξ‖ = ξ0,
ξ⊥ = 0), and the time required for this “reflection” is desig-
nated as τ0.

Parameter ξ0 is proportional to the size of the particle

ξ0 ∼ a (1)

and parameter

τ0 ∼ a2/D, (2)

where D is the diffusion coefficient in solution. The propor-
tionality coefficient in Eqs. (1) and (2) could be evaluated
from the effective diffusion coefficient of the searching par-
ticle in the presence of obstacles (see Sec. II E).

Now consider the case when the particle can slide along the
surface of an obstacle before it unbinds [Fig. 3(b)]. Behavior
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of the particle between the binding events would be the same
as in the absence of sliding; thus if we “splice” the fragments
of the particle trajectories when it is in the unbound state, we
would obtain the same ensemble of trajectories as in the ab-
sence of sliding. Thus, the effect of sliding could be described
as rotation of the vector

−→
ξ0 through some angle θs relative to

the collision axis [Fig. 3(b)]. Consequently

ξ‖ = −(a + ξ0) cos θs + a, (3)

ξ⊥ = (a + ξ0) sin θs. (4)

In the system of references connected with the collision
axis

�ξ = ξ‖ �k + ξ⊥ cos ϕs �i + ξ⊥ sin ϕs �j, (5)

where ϕs is the azimuthal angle, �k is the unit vector parallel
to the collision axis, and �i and �j are orthogonal unit vectors
perpendicular to the collision axis. (In our case, all azimuthal
angles are equal, and the vectors �i and �j could be chosen
arbitrarily except for the condition of being orthogonal to each
other and to the collision axis.)

Equation (5) represents the collision transfer vector in the
system of references related to the collision axis. Next, we
will represent this vector in the system of references related to
the center of the specific target. We will consider a spherically
symmetric spatial distribution of obstacles relative to the spe-
cific target. In this case the behavior of the searching particle
depends only upon one coordinate: the distance r between the
centers of the searching particle and the specific target.

Consequently, we are interested in the projection of the
collision transfer vector �ξ upon the line that connects the
centers of the searching particle and the specific target. If θr

and ϕr are the polar and the azimuthal angles for this line
relative to the collision line, then this projection

ξr = ξ‖ cos θr + ξ⊥ sin θr cos (ϕr − ϕs). (6)

We also would be using the square of this value

ξ 2
r = [ξ‖ cos θr + ξ⊥ sin θr cos (ϕr − ϕs)]2. (7)

First, we will average Eqs. (6) and (7) over the azimuthal
angles ϕ. Since in this system all azimuthal angles are equal,

〈cos (ϕr − ϕs)〉 = 0, (8)〈
cos2(ϕr − ϕs)

〉 = 1
2 . (9)

Thus, by averaging Eqs. (6) and (7) over the azimuthal
angles and substituting Eqs. (8) and (9), we obtain

〈ξr〉ϕ = ξ‖ cos θr, (10)〈
ξ 2

r

〉
ϕ

= ξ 2
‖ cos2θr + 1

2ξ 2
⊥sin2θr . (11)

(Here and below averaging is designated as 〈〉 and the
variable over which the averaging is performed in some cases
is shown as a subscript after the brackets.)

Now we will perform averaging over the angles θr between
the collision axis and the vector �r that connects the center of
the searching particle and the origin that is localized in the
center of the specific target. For that, it is convenient to use

FIG. 4. Positions of colliding obstacle and the searching particles
relative to the center of the specific target. For designations see the
main text. Azimuthal angle is not shown.

a representation in which the searching particle is represented
by a sphere with the radius a, and the obstacle is represented
as a point object (Fig. 4). The probability ρ(θr ) that collision
occurs at the point that corresponds to the angle θr is propor-
tional to the concentration of obstacles c(θr ) at that point.

Since we consider a spherically symmetric distribution of
obstacles, the concentration depends only upon the distance
robst between this point and the origin (Fig. 4). In further
derivations we assume that the distance r between the search-
ing particle and the origin is much larger than a.

From the cosine theorem this distance is

robst =
√

r2 + a2 + 2ra cos θr ≈ r + a cos θr . (12)

Thus

p(θr ) ∼ c(robst ) ≈ c(r + a cos θr ) ≈ c(r) + dc

dr
a cos θr .

(13)

[The expansion in the right parts of Eqs. (12) and (13)
is justified provided that characteristic scale for the distance
from the origin and for the change in concentration is sub-
stantially larger than the effective radius of interaction a.]

From normalization of Eq. (13) we obtain

p(θr ) =
[
c(r) + dc

dr a cos θr
]

sin θr

∫π
0

[
c(r) + dc

dr a cos θr
]

sin θrdθr

=
(
1 + d ln c(r)

dr a cos θr
)

sin θr

2
. (14)

From Eqs. (10), (11), and (14) we obtain the values aver-
aged over the angle θr :

〈ξr〉ϕ,θr
=

∫ π

0
〈ξr〉ϕ p(θr ) dθr = 1

3
a ξ‖

d ln c(r)

dr
, (15)

〈
ξ 2

r

〉
ϕ,θr

=
∫ π

0

〈
ξ 2

r

〉
ϕ

p(θr ) dθr = 1

3
(ξ‖2 + ξ⊥2). (16)

Finally, we will average the values given by Eqs. (15) and
(16) over the polar angle θs that describes the sliding of the
searching particle over the surface of the obstacle. Since this
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is the final step of the averaging, we will omit subscripts in the
notations, i.e.,

〈ξr〉ϕ,θr ,θs
≡ 〈ξr〉 = 1

3
a〈ξ‖〉d ln c(r)

dr
, (17)

〈
ξ 2

r

〉
ϕ,θr ,θs

≡ 〈
ξ 2

r

〉 = 1

3

(〈
ξ 2
‖
〉 + 〈

ξ 2
⊥
〉)
. (18)

From Eqs. (3) and (4)

〈ξ‖〉 = a − (a + ξ0)〈cos θs〉, (19)〈
ξ 2
‖
〉 = a2 − 2a(a + ξ0)〈cos θs〉 + (a + ξ0)2〈cos2θs〉,

(20)〈
ξ 2
⊥
〉 = (a + ξ0)2〈sin2θs〉 = (a + ξ0)2(1 − 〈cos2θs〉),

(21)〈
ξ 2
‖
〉 + 〈

ξ 2
⊥
〉 = a2 − 2a(a + ξ0)〈cos θs〉 + (a + ξ0)2. (22)

Substituting Eqs. (19) and (22) into Eqs. (17) and (18) we
obtain

〈ξr〉 = 1

3
a[a − (a + ξ0)〈cos θs〉]d ln c(r)

dr
, (23)

〈
ξ 2

r

〉 = 1

3
[(a + ξ0)2 + a2 − 2a(a + ξ0)〈cos θs〉]. (24)

Equation (23) corresponds to the average position shift
of the searching particle after collision with an obstacle.
Since the diffusion coefficient of the free searching particle
is constant, and there are no external forces, the sign of this
shift defines the direction of the particle movement. From
Eq. (23) it is seen that if the term [a − (a + ξ0)〈cos θs〉] is
positive, then the sign of this shift coincides with the sign of
the concentration gradient, i.e., the particle moves toward the
gradient of concentration of obstacles, while if it is negative, it
moves against this gradient. This term is the projection of the
collision transfer vector upon the collision axis [see Fig. 3(b)
and Eq. (3)]. If it is positive, then the sliding transfer effect
predominates over “reflection” and the particle moves from
the point of collision in the direction of the obstacle (e.g., if
at the moment of collision the obstacle was on the right of
the particle, then after the collision the particle, on average,
would shift to the right). Thus, on average the particle would
move in the direction of the position at which the obstacle
would occur with a higher probability, i.e., in the direction of
increasing concentration. If the term [a − (a + ξ0)〈cos θs〉] is
negative, then the “reflection” predominates, and the particle
moves against the gradient of the obstacles’ concentration.
The sign of this term is defined by the value of 〈cos θs〉. To
evaluate 〈cos θs〉, consider rotation of the vector connecting
the centers of the searching particle and of the obstacle during
some small time interval �t . During this interval, the change
in the angle θs is �θs. The number of such intervals before the
particle dissociation is

nb = τb

�t
, (25)

where τb is the time that the particle spends in the bound state
during the “lifetime” of the correlated state.

In the case of uniform distribution of azimuthal angles,
the average cosine of the polar angle has the property of

multiplicativity (reviewed in [20]):

〈cos θs〉 = (〈cos �θs〉)nb ≈ exp

(
− 〈(�θs)2〉nb

2

)
. (26)

The average quadratic change in the polar angle

〈(�θs)2〉 = 〈(�s)2〉
a2

= 2
Ds

a2
�t, (27)

where �s is the shift of the particle along the surface of the
obstacle during the time �t , and Ds is the apparent diffusion
coefficient for sliding.

Substituting Eqs. (25) and (27) into Eq. (26), we obtain

〈cos θs〉 = exp
(
−Dsτb

a2

)
. (28)

To evaluate τb, we note that from Eq. (1), in the correlated
state the searching particle is “confined” in the spatial domain
of the size ∼a; thus, the apparent concentration of the search-
ing particle in the vicinity of the obstacle is ∼1/a3. During
the lifetime of the correlated state, τd , the searching particle
spends the time τ0 in the unbound state and the rest of the time
in the bound state. If we assume that within the correlated state
the bound and the unbound states are in “quasiequilibrium,”
then the ratio of times spent in bound and unbound states
should be equivalent to the ratio of the concentration and the
dissociation constant. Thus, taking into account Eq. (2),

τb ∼ τ0

Kd a3
∼ 1

Kd Da
, (29)

where Kd is the equilibrium dissociation constant between the
searching particle and the obstacle. This equation could be
presented as

τb = κ

Kd Da
, (30)

where numerical coefficient κ can be obtained from the effec-
tive diffusion coefficient (see Sec. II E).

From Eqs. (29), for the exponent in Eq. (28) we obtain

Dsτb

a2
∼ Ds/D

Kd a3
. (31)

This ratio defines whether “reflection” (at which the
searching particle moves against the gradient of the obstacles’
concentration) or the sliding transfer (at which the particle
moves toward the gradient of the obstacles’ concentration)
predominates.

If the above ratio is very small, then there is no substantial
sliding during the lifetime of the correlated state (i.e., practi-
cally pure “reflection” takes place). In this case 〈cos θs〉 ≈ 1,
and Eq. (19) and Eq. (23) are converted into

〈ξ‖〉 ≈ −ξ0 (32)

and

〈ξr〉 ≈ −1

3
aξ0

d ln c(r)

dr
. (33)

In the opposite situation, when this ratio is very large, the
particle would slide to the opposite end of the obstacle and
back many times before release into the free state, so that the
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point of release would not depend upon the point of initial
collision. We call this regime “saturating sliding.” In this case,
〈cos θs〉 ≈ 0, and Eq. (19) and Eq. (23) are converted into

〈ξ‖〉 ≈ a (34)

and

〈ξr〉 ≈ 1

3
a2 d ln c(r)

dr
. (35)

B. Probability of reaching the specific target:
Obstacles localized near the target could either decrease

or increase the effective target size

Let the functions Wf (�r) and Wc(�r) be the probabilities that
the searching particle that was initially either in the free or in
the correlated state, respectively, and localized at the distance
r from the specific target, would reach the specific target
before it migrates to some distance R > r.

Consider behavior of free searching particle during a small
time interval �t . During this time interval it can either convert
to the correlated state with the probability koncc(�r)�t , or re-
main in the free state with the probability 1 − koncc�t . In the
latter case, the searching particle would move from position �r
to some new position �r + −→

�r. Thus

Wf (�r) = koncc(�r)�t Wc(�r) + [1 − koncc(�r)�t]Wf (�r + −→
�r).

(36)
Here konc is the diffusion limit for the on-rate reaction

constant, which is the value that the on-rate reaction constant
would have if every collision with the target would lead to
reaction. In this case, we use konc, rather than kon (which could
be substantially smaller), because here we consider “transi-
tion” to the “correlated state” rather than to the “true” bound
state, so in this case every collision leads to transition.

[Note that, rigorously speaking, Eq. (36) implies that the
searching particle and an obstacle could “overlap” in space
(i.e., have the same �r), which in reality does not happen.
However, since we assume that the collision radius a is
much smaller than r, c(�r) could be interpreted as an average
concentration in the a vicinity of the point with the radius
vector �r.]

For spherical particles, according to the Smoluchowski
equation

konc = 4πDa. (37)

Expanding Wf (�r + −→
�r) in Eq. (36) up to the term of the

second order of �r, and taking into account that for the
constant diffusion coefficient D and in the absence of external
fields the average values of all projections of

−→
�r is zero, and

the averaged squared values of these projections is 2D�t , we
obtain

∇2Wf + koncc

D
(Wc − Wf ) = 0. (38)

We are considering a spherically symmetric system, where
all functions depend only upon r. In this case

∇2Wf = d2Wf

dr2
+ 2

r

dWf

dr
, (39)

and Eq. (38) produces

d2Wf

dr2
+ 2

r

dWf

dr
+ koncc

D
(Wc − Wf ) = 0. (40)

Next, we consider the searching particle in the correlated
state. In this case, the position of the searching particle upon
conversion from the correlated to free state is defined by the
transfer vector �ξ :

Wc(�r) = Wf (�r + �ξ ). (41)

Expanding the right part of Eq. (41) for a spherically sym-
metric system, we obtain

Wc − Wf ≈
(

d2Wf

dr2
+ 2

r

dWf

dr

) 〈ξ 2
r 〉
2

+ dWf

dr
〈ξr〉. (42)

(The expansion is justified provided that characteristic
scale for the distance from the origin and for the change in
concentration is substantially larger than |ξr| and

√〈ξ 2
r 〉 that

are proportional to the effective radius of interaction a.)
Substituting Eq. (42) into Eq. (40), we obtain(

d2Wf

dr2
+ 2

r

dWf

dr

)(
1 + koncc

D

〈
ξ 2

r

〉
2

)
+ dWf

dr

koncc

D
〈ξr〉 = 0.

(43)

Substituting Eqs. (17) and (18) into Eq. (43), we obtain(
d2Wf

dr2
+ 2

r

dWf

dr

)(
1 + konc

D

(〈ξ 2
‖ 〉 + 〈ξ 2

⊥〉)

6
c

)

+ dWf

dr

konc

D

1

3
a 〈ξ‖〉dc

dr
= 0. (44)

To simplify the above equation, we introduce the volume
concentration:

𝒞 ≡ 4

3
πa3c, (45)

and the notations

μ ≡ 〈ξ‖〉
a

= 1 −
(

1 + ξ0

a

)
〈cos θs〉, (46)

q ≡ 〈ξ 2
‖ 〉 + 〈ξ 2

⊥〉
2a2

= 1

2
−

(
1 + ξ0

a

)
〈cos θs〉 + 1

2

(
1 + ξ0

a

)2

= μ + 1

2

ξ0

a

(
2 + ξ0

a

)
. (47)

[The right-hand parts of Eqs. (46) and (47) are obtained
from Eqs. (19) and (22).]

Note that parameter μ could be either positive or nega-
tive depending upon 〈cos θs〉. Negative values correspond to
predominating “reflection” from the obstacle, while positive
values correspond to predominating transfer along the obsta-
cle by mean of sliding.

In the absence of sliding, 〈cos θs〉 = 1, and

μ(〈cos θs〉 = 1) ≡ μ0 = −ξ0

a
, (48)

q(〈cos θs〉 = 1) ≡ q0 = 1

2

(
ξ0

a

)2

= 1

2
(μ0)2. (49)
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In the opposite case of “saturating” sliding, the searching
particle “equilibrates” along the surface of the obstacle, so that
〈cos θs〉 = 0, and

μ(〈cos θs〉 = 0) = 1, (50)

q(〈cos θs〉 = 0) = 1

2

[
1 +

(
1 + ξ0

a

)2]
. (51)

Substituting Eqs. (45)–(47) into Eq. (44), we obtain(
d2Wf

dr2
+ 2

r

dWf

dr

)
(1 + q 𝒞) + μ

dWf

dr

d𝒞

dr
= 0 (52)

or

−d ln dWf

dr

dr
= 2

r
+ μ d𝒞

dr

1 + q 𝒞
. (53)

This equation has the general solution

Wf (r) = −A0

∫ r

A1

[1 + q 𝒞(𝓇)]−
μ

q
d𝓇

𝓇2
, (54)

where A0 and A1 are some constants.
Assuming that the searching particle binds the specific

target as soon as it collides with it, the boundary conditions
for Eq. (52) are

Wf (at ) = 1, (55)

Wf (R) = 0, (56)

where at is the effective radius of the target.
For these boundary conditions we obtain

Wf (r) = ∫R
r [1 + q 𝒞(𝓇)]−

μ

q d𝓇
r2

∫R
at

[1 + q 𝒞(𝓇)]−
μ

q d𝓇
r2

. (57)

We will analyze this equation for the simple case in which
all obstacles are homogeneously distributed within the dis-
tance b from the center of the specific target, i.e.,

𝒞(r) = 𝒞0, (58)

for at < 𝓇 < b, and

𝒞(𝓇) = 0, (59)

for r > b.
Then, for the starting position r > b,

Wf (r) =
1
r − 1

R(
1
at

− 1
b

)
(1 + q 𝒞0)−

μ

q + 1
b − 1

R

. (60)

In the absence of obstacles

Wf (r; 𝒞0 = 0) =
1
r − 1

R
1
at

− 1
R

. (61)

If at  b  R, then Eq. (60) and Eq. (61) could be approx-
imated as

Wf (r) ≈
(

1

r
− 1

R

)
(1 + q 𝒞0)

μ

q at (62a)

and

Wf (r) ≈
(

1

r
− 1

R

)
at . (62b)

From comparison of Eq. (62a) and Eq. (62b), the parameter

ate = (1 + q 𝒞0)
μ

q at (63)

could be interpreted as the “effective target size.”
It is seen that for positive values of parameter μ (i.e.,

when the sliding transfer along the obstacle predominates over
“reflection”) the presence of obstacles increases the effective
target size, while at negative μ (when the “reflection” predom-
inates) the presence of obstacles decreases the effective target
size.

From Eq. (31) (and the explanation below it) the critical
value of dissociation constant above which the parameter μ

switches from positive to negative is

Kd (cr) ∼ Ds/D

a3
. (64)

The maximal possible increase of the effective target size
for a given volume concentration of spherical particles is
achieved at “saturating” sliding (i.e., when a3Kd  Ds/D, and
consequently 〈cos θs〉 = 0).

In this case, from Eqs. (51) and (63)(ate

at

)
max

= (1 + qmax 𝒞0)
1

qmax , (65)

where

qmax = 1

2
+ 1

2

(
1 + ξ0

a

)2

. (66)

(In Sec. II E we evaluate that for spherical particles ξ0

a = 1
2 ,

so qmax = 13
8 .)

For small volume concentrations Eq. (65) is converted to
simply (ate

at

)
max

≈ 1 + 𝒞0. (67)

If the sliding is negligible (i.e., the diffusion on the sur-
face is very slow, and/or the binding time is too short), then
〈cos θs〉 = 1, and the effective target size reaches its minimal
value(ate

at

)
min

=
[

1 + 1

2

(
ξ0

a

)2

𝒞0

]
−2 a

ξ0 ≈ 1 − ξ0

a
𝒞0. (68)

In Fig. 5, the ratio of dependencies Eqs. (60) and (61) are
plotted as functions of 𝒞0 for two opposite cases: the absence
of binding, and for the binding with “saturating” sliding (i.e.,
when the lifetime of the bound state is more than sufficient for
the searching particles to diffuse along the whole size of the
obstacle several times before detaching from it). Note that this
ratio does not depend upon the starting position r. For these
graphs, the ratios at/b = b/R = 0.1. In the absence of binding
μ = −1/2, q = 1/8; in the case of binding with “saturating”
sliding μ = 1, q = 13/8.
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FIG. 5. Dependence of the probability of reaching the target
upon the volume concentration of spherical obstacles. The depen-
dencies are normalized upon the probability for zero concentration
of obstacles.

C. Competition between targets is defined by their effective sizes

Consider equal numbers of two different types of specific
targets, 1 and 2, randomly distributed in solution with the
average distance R between the targets. We wish to evaluate
probability W12 that the searching particle initially localized
symmetrically relative to both targets will reach the target
1 before it reaches the target 2. For that, we will use an
approximate representation of the system in which the target
is localized in the middle of the sphere of the radius R, and
each point on the surface of the sphere could be considered as
a border (a touching point) between two spheres that surround
the targets of the type 1 and the type 2 (Fig. 6).

In other words, if the searching particle starts to move from
some distance r < R from the target and reaches the point at
the distance R, we assume that this point would be always a
touching point of two spheres surrounding the targets of the
types 1 and 2. From the position R, the searching particle can
move with equal probability over some distance �R either

FIG. 6. Distribution of obstacles around two specific targets.
These targets could be viewed as representatives of multiple targets
distributed in solution with the average distance 2R between them.

toward the target 1 or toward the target 2. Then, according
to Eq. (60), the probability that the searching particle will hit
the respective target before returning to the position R is

Wn =
1

(R−�R) − 1
R(

1
atn

− 1
bn

)
(1 + q 𝒞0n)−

μ

q + 1
bn

− 1
R

, (69)

where n = 1, 2 is the number of the target.
If the particle did not hit the respective specific target, it

returns to the position R, and the whole process starts over
again. In general, the particle can make an indefinite number
of “loops” (which are travels to one of the areas and returns
without hitting the target) in both directions before it hits the
target. The probability that the particle makes a total of i loops
without hitting either of the targets is

[0.5(1 − W1) + 0.5(1 − W2)]i.

Thus

W12 = 0.5W1

i=∞∑
i=0

[0.5(1 − W1) + 0.5(1 − W2)]i = W1

W1 + W2
.

(70)
Substituting Eq. (69) into Eq. (70), we obtain

W12 = 1

1 + ( 1
at1

− 1
b1

)(1+q 𝒞01 )−
μ
q + 1

b1
− 1

R

( 1
at2

− 1
b2

)(1+q 𝒞02 )−
μ
q + 1

b2
− 1

R

(71)

or

W12

W21
= W1

W2
=

(
1

at2
− 1

b2

)
(1 + q 𝒞02)−

μ

q + 1
b2

− 1
R(

1
at1

− 1
b1

)
(1 + q 𝒞01)−

μ

q + 1
b1

− 1
R

. (72)

For at1 = at2  b  R,

W12

W21
≈

(
1 + q 𝒞01

1 + q 𝒞02

) μ

q

, (73)

which is the ratio of the effective target sizes [see Eq. (63)].
Thus, the target with larger effective size has an advantage

in competition.

D. Speed of the search for the specific target depends not only
upon the effective target size but also upon delay

due to binding to the obstacles

The speed of the search for the specific target could be
characterized by the average first-passage time T(r) for the
particle to reach the specific target localized at the distance r
from it.

The derivation for the first-passage time starting from
the unbound state is similar to that for the function Wf (�r)
[Eq. (36)]: Again, we consider the behavior of the free search-
ing particle during a small time interval �t . During this time
interval it can either convert to the correlated state with the
probability koncc(�r)�t , or remain in the free state with the
probability 1 − koncc �t ; and in the latter case, the searching
particle would move from position �r to some new position

�r + −→
�r. However, since now we are dealing with the time

rather than probability, the time interval �t spent during the

022413-8
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described above elementary processes has to be added to the
right part of the equation.

Thus, the analogs of Eqs. (36) and (38) for the first-passage
time are

T f (�r) = koncc �t Tc(�r) + (1 − koncc �t )T f (�r + −→
�r) + �t

(74)
and

d2T f

dr2
+ 2

r

dT f

dr
+ koncc

D
(Tc − T f ) + 1

D
= 0, (75)

respectively.
To obtain the analog of Eq. (41), we note that in the corre-

lated state the searching particle spent the time

τd = τ0 + τb. (76)

Thus, the analog of Eq. (41):

Tb(�r) = T f (�r + �ξ ) + τd . (77)

After expansion of T f (�r + �ξ ) into the Taylor series like in
Eq. (42), and substitutions like in Eqs. (44)–(47), we obtain
the analog of Eq. (52):(

d2T f

dr2
+ 2

r

dT f

dr

)
(1 + q 𝒞) + μ

dT f

dr

d𝒞

dr
+ (1 + ε𝒞)

D
= 0,

(78)

where we introduce the normalized decorrelation time

ε ≡ 3D

a2
τd . (79)

Since

τd = τ0 + τb, (80)

from Eqs. (79) and (80)

ε = ε0 + εb, (81)

where

ε0 ≡ 3D

a2
τ0, (82)

εb ≡ 3D

a2
τb. (83)

The general solution of Eq. (78) is

T f (r) = 1

D

∫ r

A0

d𝓇1

∫ A1

r1

d𝓇2
𝓇

2
2

𝓇
2
1

(
1 + q 𝒞(𝓇2)

1 + q 𝒞(𝓇1)

) μ

q 1 + ε 𝒞(𝓇2)

1 + q 𝒞(𝓇2)
,

(84)

where A0 and A1 are some constants.
The searching process is over when the searching particle

hits the target. Thus

T f (at ) = 0. (85)

In this subsection, we consider a situation in which all
targets are equivalent, and the average distance between them
is 2R; and we are interested in the average time that passes
before the searching particle hits any of the specific targets. In

this case crossing a boundary at the distance R from the target
is equivalent to reflection from this boundary. Thus, we use
the reflecting boundary condition

dT f

dr
(R) = 0. (86)

Finally, we consider the initial position equidistant from
neighboring specific targets, i.e.,

r = R.

For conditions (85) and (86), Eq. (84) produces

T f ≡ T f (R) = 1

D

∫ R

at

d𝓇1

∫ R

𝓇1

d𝓇2
𝓇

2
2

𝓇
2
1

(
1 + q 𝒞(𝓇2)

1 + q 𝒞(𝓇1)

) μ

q

× 1 + ε 𝒞(𝓇2)

1 + q 𝒞(𝓇2)
. (87)

In the absence of obstacles Eq. (87) produces

T f (𝒞 = 0) = R3

3Dat

(
1 − 1.5

at

R
+ 0.5

at
3

R3

)
≈ R3

3Dat

=
4
3πR3

4πDat
= 1

konc t ct
, (88)

were konc t = 4πDat is the Smoluchowski limit for the on-rate
constant, and ct = 1/ 4

3πR3 is concentration of the specific
target.

Next, we will analyze Eq. (87) for the simple situation
described by Eqs. (58) and (59), in which all obstacles are
homogeneously distributed with the volume concentration 𝒞0

within the distance b from the specific target. In this case, the
integral in Eq. (87) could be presented as a sum of three terms,

T f = I1 + I2 + I3, (89)

where

I1 = 1

D

1 + ε 𝒞0

1 + q 𝒞0

∫ b

at

d𝓇1

∫ b

𝓇1

d𝓇2
𝓇

2
2

𝓇
2
1

= 1

3D

1 + ε 𝒞0

1 + q𝒞0

b3

at

(
1 − 1.5

at

b
+ 0.5

a3
t

b3

)
, (90)

I2 = (1 + q 𝒞0)−
μ

q

D

∫ b

at

d𝓇1

∫ R

b
d𝓇2

𝓇
2
2

𝓇
2
1

= (1 + q𝒞0)−
μ

q

3D

(
1

at
− 1

b

)
(R3 − b3), (91)

I3 = 1

D

∫ R

b
d𝓇1

∫ R

𝓇1

d𝓇2
𝓇

2
2

𝓇
2
1

= 1

3D

R3

b

(
1 − 1.5

b

R
+ 0.5

b3

R3

)
,

(92)

or, leaving only predominating terms in Eqs. (90)–(92),

I1 ≈ 1

3D

1 + ε 𝒞0

1 + q𝒞0

b3

at
, (93)

I2 ≈ (1 + q 𝒞0)−
μ

q

3D

R3

at
, (94)

I3 ≈ 1

3D

R3

b
. (95)
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The term I1 [Eq. (93)] characterizes the search in the
volume of the radius b that is filled with obstacles. If the
parameter ε is greater than the parameter q, then this term
increases with the concentration of obstacles, which corre-
sponds to delay of the search process due to binding to the
obstacles.

The second term I2 [Eq. (94)] corresponds to the search
within the volume of the radius R for the target with the
effective size defined by Eq. (63).

The third term I3 [Eq. (95)] corresponds to the search
within the volume of the radius R for the target with the
effective size b. It is always smaller the second term, and does
not depend upon the concentration of obstacles.

Thus, we are primarily interested in interplay between the
terms I1 and I2, which depend upon concentration of obstacles.

If the term I2 predominates, the effect of the concentration
of obstacles upon the “speed” of the target search (reciprocal
to the time of the target search) is similar to the effect upon
the probability of reaching the target (Secs. II B and II C): in
this case, both the speed of the search and the probability of
reaching the target are proportional to the effective target size
(1 + q 𝒞0)

μ

q at which increases with 𝒞0 if μ is positive, and
decreases with 𝒞0 if μ is negative.

However, if the first term is predominating, the search
could be delayed in the presence of obstacles even if μ is
positive. In this case, the presence of obstacles slow down the
searching process, but at the same time the target surrounded
by obstacles has better chances of binding the searching
particle than the obstacle-free target. In this situation, under
the condition of the excess of the targets over the searching
particles, the fraction of the searching particles that would
bind the target surrounded by obstacles would be greater than
the fraction that would bind the obstacle-free target; however,
the former fraction would bind slower than the latter due to
transient trapping on the obstacles.

In Appendix A we analyze behavior of the first-passage
time [Eq. (89)] depending upon various parameters. If the
parameter μ is negative, then the first-passage time increases
with 𝒞0, while if μ is positive, the outcome depends upon pa-
rameter γ = ε( b

R )3 [Eq. (A11)]. If this parameter is large, the
first-passage time increases with 𝒞0; if it is small, it decreases
with 𝒞0; and when it is within a certain interval around unity,
the first-passage times goes through the maximum at some
value of 𝒞0.

These dependencies defined by Eq. (89) normalized by
Eq. (88) are plotted in Fig. 7 for the ratios at/b = b/R = 0.1.
In the absence of binding μ = −1/2, q = 1/8; in the case of
binding with “saturating” sliding μ = 1, q = 13/8. For satu-
rating sliding, the dependencies are shown for three different
values of the parameter γ , as indicated in the figure. The
dashed line shows the constant level equivalent to unity.

E. Searching process in the presence of obstacles could be
described in terms of the effective diffusion coefficient provided

that the spatial distribution of the obstacles is uniform;
for nonuniform distribution of obstacles, such a description

in the general case is impossible

Migration of the particle in inhomogeneous media is often
described by the effective diffusion coefficient. In this sub-

FIG. 7. Dependence of the first-passage time to reach the target
upon the volume concentration of spherical obstacles. The dependen-
cies are normalized upon the first-passage time for zero concentration
of obstacles.

section, we will analyze whether the searching process in the
presence of nonspecific binding could be described in terms
of the effective diffusion coefficient.

The expression for the first-passage time in terms of the
effective diffusion coefficient Deff in the absence of external
forces is(

d2T f

dr2
+ 2

r

dT f

dr

)
+ dT f

dr

d ln Deff

dr
+ 1

Deff
= 0. (96)

This equation is a special case of Eq. (2.13) in [29]. In
Appendix B we present a more direct derivation of this equa-
tion.

Equation for the first-passage time in the presence of ob-
stacles [Eq. (78)] can be presented as(

d2T f

dr2
+ 2

r

dT f

dr

)
+ dT f

dr

d ln (1 + q 𝒞)
μ

q

dr
+ 1

D

1 + ε 𝒞

1 + q 𝒞
= 0.

(97)

If the searching process is to be approximated (at least
at small volume concentrations of obstacles) by diffusion in
homogeneous media with some effective diffusion coefficient,
then the respective terms in Eqs. (96) and (97) must coincide
(at least up to linear terms on concentration).

To make the second from the end terms in Eqs. (96) and
(97) coincide, it is required that

d ln Deff

dr
= d ln (1 + q 𝒞)

μ

q

dr
. (98a)

Taking into account that if 𝒞 = 0, then Deff = D, Eq. (98a)
produces

Deff

D
= (1 + q 𝒞)

μ

q ≈ 1 + μ𝒞. (98b)
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To make the last terms in Eqs. (96) and (97) coincide, it is
required that

Deff

D
= 1 + q 𝒞

1 + ε 𝒞
≈ 1 − (ε − q)𝒞. (99)

To make description in terms of effective diffusion co-
efficient possible, Eqs. (98b) and (99) must be satisfied
simultaneously (at least at small concentrations). Thus

μ = −(ε − q) (100)

or

ε = q − μ. (101)

First, we consider the situation in the absence of binding
between the searching particle and the obstacle, in which case
μ = μ0, q = q0, ε = ε0. In the absence of binding diffusivity
in the presence of obstacles could be approximated by the
effective diffusion coefficient. To substantiate this statement,
consider for a moment a situation in which, in contrast to our
usual formulation, numerous searching particles are involved
in the diffusion process in the presence of obstacles. Since all
searching particle are unbound and capable for translational
thermal motion, a flux of the particles through a given cross
section would be proportional to the gradient of the parti-
cles’ concentration perpendicular to this cross section, and
the coefficient of proportionality could be interpreted as the
effective diffusion coefficient. From this consideration, we can
calculate parameters of our model, which so far were known
up to a numerical coefficient: In [26], the effective diffusion
coefficient in the presence of spherical obstacles as a function
of their volume concentration was obtained using the modified
Maxwell Garnett approach:

Deff

D
≈ 1 − 𝒞

2
. (102)

Thus, from comparing Eqs. (98b) and (102) (for μ = μ0),

μ0 = − 1
2 . (103)

Substituting this result into Eq. (49), we obtain

q0 = 1
8 . (104)

From Eq. (101)

ε0 = q0 − μ0 = 5
8 . (105)

From that, using Eqs. (48), (82), and (104), we obtain the
values of collision transfer vector and decorrelation time for
spherical obstacles in the absence of binding,

ξ0 = a

2
, (106)

τ0 = 5

24

a2

D
. (107)

Thus, for nonbinding obstacles we could obtain consistent
description in term of the effective diffusion coefficient for
any distribution of obstacles.

Could this description be generalized for reversible bind-
ing of the searching particle to the obstacles? First, consider

the case when the concentration of the obstacles and, conse-
quently, the effective diffusion coefficient are constant. In this
case then Eqs. (96) and (97) are converted to(

d2T f

dr2
+ 2

r

dT f

dr

)
+ 1

Deff
= 0 (108)

and (
d2T f

dr2
+ 2

r

dT f

dr

)
+ 1

D

1 + ε 𝒞

1 + q𝒞
= 0, (109)

respectively.
In this case we can ignore Eqs. (98a) and (98b) [and, conse-

quently, Eq. (101)], and the effective diffusion coefficient can
be defined solely by Eq. (99). We can use this definition to
estimate the numerical proportionality coefficient in Eq. (30)
for the binding time:

Consider binding in the absence of sliding. In this case,
parameters μ and q are the same as in the absence of bind-
ing (i.e., μ = μ0 and q = q0) Thus, in this case, taking into
account Eqs. (81) and (102), Eq. (99) produces

Deff

D
≈ 1 − (ε − q)𝒞 = 1 − (ε0 − q0)𝒞− εb𝒞

= 1 − 1

2
𝒞− εb𝒞. (110)

From Eqs. (30) and (83)

εb𝒞 = 3D

a2
τb𝒞 = 3κ

𝒞

Kd a3
= 4πκ

c

Kd
. (111)

Substituting Eq. (111) into Eq. (110) we obtain

Deff

D
≈ 1 − 1

2
𝒞− 4πκ

c

Kd
, (112)

where κ is a numerical coefficient.
The result obtained in [25] for reversible binding to the

obstacle without sliding in our designations is

Deff

D
= 1 − 1

2𝒞

1 + c
Kd

≈ 1 − 1

2
𝒞− c

Kd
. (113)

From comparison of Eqs. (112) and (113), we obtain the
value of numerical coefficient in Eq. (30),

κ = 1

4π
, (114)

so that the binding time

τb = 1

4πKd Da
= 1

Kd konc
. (115)

Could the result for the effective diffusion coefficient in the
presence of binding at constant concentration of obstacles be
extended to coordinate-dependent concentration of obstacles?

If concentration of obstacles is not constant, the Eqs. (98a)
and (98b) cannot be ignored, and, consequently, Eq. (101)
must be satisfied. However, this equation cannot be satis-
fied in the case of binding. That is easier to demonstrate
if the sliding is absent. In this case, μ = μ0 and q = q0.
Equation (101) is satisfied for μ = μ0, q = q0, ε = ε0; thus,
it cannot be satisfied for μ = μ0, q = q0, ε = ε0 + εb, if εb is
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not zero. Consequently, for the cases in which concentration
of obstacles is not constant within the whole volume, it is
impossible to generalize the notion of the effective diffusion
coefficient for the presence of binding. A more formal illus-
tration for why diffusion in the presence of binding cannot be
described by the effective diffusion coefficient unless the con-
centration of binders is constant is presented in Appendix B
for the exactly solvable case of diffusion with switching be-
tween the mobile and the immobile states.

F. Rod-shaped obstacles could produce stronger effects upon
the effective target size comparing to spherical obstacles

with the same volume concentration

In the previous subsection we have shown that transferring
of the searching particle via sliding along the obstacle could
facilitate the target search. The magnitude of this transfer is
defined by the typical size of an obstacle, and the total effect
is limited by the volume concentration of the obstacles. The
largest typical size of a thin cylindrical (or “rod-shaped”)
obstacle is much larger than the typical size of a compact (e.g.,
spherical) particle of the same volume. Thus, one can expect
that for a given volume concentration of obstacles, the effects
of thin rod-shaped obstacles upon the target search would be
much greater than for spherical particles analyzed in previous
subsections. Also, thin rod-shaped particles are especially in-
teresting because they could model DNA segments.

Consider a cylindrical obstacle with the length along the
axis 2al , and the radius as  al . In addition, we assume that
the radius of the searching particle ap is also much smaller
than al . Thus, the effective length of the rod ale = al + ap ≈
al , and the effective radius of the rod ase = al + ap  al .

In this subsection we will consider only the “saturating”
sliding regime, in which the lifetime of the bound state is
long enough for the searching particle to “equilibrate” on
the surface of the obstacle, so its release from the obstacle
could occur at any point on the surface with equal probability
regardless of where on the surface the initial collision took
place. Also, since the axis length al is much larger than other
typical sizes, the sliding along this axis provides the pre-
dominant contribution to the particle transfer upon collision.
Because of that, we consider only transferring along this axis
and neglect the transfer in the perpendicular direction.

Also, as previously, we assume that mobility of an obstacle
is much lower than that of the searching particle, so during the
time of collision the obstacle is considered to be immobile.
Consider the searching particle that became bound to the
obstacle at the distance χ from its center, as shown in Fig. 8.
Here the obstacle is shown in gray, and the searching particle
is shown in white.

To evaluate the average transfer of the particle upon the
collision, we first consider the obstacle with the axis parallel
to the radius vector �r. If the searching particle became bound
to the obstacle at the moment when the particle coordinate
was r, and its distance from the center of the obstacle at that
moment was χ , then the position of the center of the obstacle
at the moment of collision was r + χ . The probability that the
binding occurs at this position would be proportional to the
concentration of obstacles at this position c(r + χ ).

FIG. 8. Rod-shaped obstacles. (a) Cylindrical representation.
(b) Representation as a string of beads.

Since we consider equilibration of the searching particle on
the surface of the obstacle, the average point of release of the
searching particle would be at the middle of the obstacle, i.e.,
at position r + χ . Thus, the transfer of the searching particle
upon release from the obstacle would be equivalent to χ .

Thus the probability for the transfer χ

p(χ ) = c(r + χ )

∫al−al
c(r + χ )dχ

≈ c(r) + dc
dr χ

∫al−al

[
c(r) + dc

dr χ
]
dχ

= 1 + χ d ln c(r)
dr

2al
. (116)

From that, using the approximation for p(χ ) at the very
right part of the above equation,

〈χ〉 =
∫ al

−al

χ p(χ )dχ = 1

3
(al )

2 d ln c(r)

dr
, (117)

〈χ2〉 =
∫ al

−al

χ2 p(χ )dχ = 1

3
(al )

2. (118)

Equation (118) is obtained for the obstacles with the longer
axis oriented along the radial direction. To obtain the average
transfer in the radial direction for randomly oriented obstacles,
the squared length in Eqs. (117) and (118) should be replaced
by its squared projection upon the radial direction, which for
random orientation in three-dimensional space is equivalent to
one-third of the squared length.

Thus, for the transfer in the radial direction ξr we obtain

〈ξr〉 = 1

9
(al )

2 d ln c(r)

dr
, (119)

〈ξ 2
r 〉 = 1

9
(al )

2. (120)

In Appendix C we show that the diffusion limit for the on-
rate constant for the rodlike obstacles is

konc ∼ D
al

ln al
ase

. (121)

The volume of one rodlike obstacle is 2π (ase)2al , so for
the rod-shaped obstacles the volume concentration

𝒞 = 2π (ase)2alc. (122)

Substituting Eqs. (119)–(122) into Eq. (43), we obtain for
the rod-shaped obstacles(

d2Wf

dr2
+ 2

r

dWf

dr

)
(1 + λ𝒞) + 2λ

dWf

dr

d𝒞

dr
= 0, (123)
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FIG. 9. Dependence of the probability of reaching the target
upon the volume concentration of spherical and rod-shaped obsta-
cles. The dependencies are normalized upon the probability for zero
concentration of obstacles.

where the parameter

λ ∼
( al

ase

)2

ln al
ase

. (124)

(If we assume that Eq. (C12) (Appendix C) is exact [i.e.,
coefficient proportionality in Eq. (121) is 4π ], then the coef-
ficient of proportionality in Eq. (124) is 1/9.)

In terms of designations used in previous subsections, from
comparison of Eqs. (123) and (52), for the rod-shaped obsta-
cles μ = 2λ, q = λ. For the distribution of obstacles described
by Eqs. (58) and (59) the solution is given by Eq. (60). Con-
sequently, from the analogy with Eq. (63), the effective target
size in the case of the rod-shaped obstacles

ate = (1 + λ𝒞0)2at . (125)

Since for very thin rodlike obstacles parameter λ could
be large, these obstacles could produce substantially larger
increase in the effective target size than spherical obstacles
at the same volume concentration. To illustrate that, in Fig. 9
we plot dependence Wf (𝒞0)/Wf (0) for the spherical particles
and for the rod-shaped particles for λ = 5. This value of λ

corresponds to the ratio al/ase ≈ 10, provided that the coef-
ficient of proportionality in Eq. (124) is 1/9 [see comment
below Eq. (124)]. The dependence is described by Eq. (60)
and normalized upon the probability for zero concentration of
obstacles [Eq. (61)]. Note that for the distribution of obstacles
given by Eqs. (58) and (59) the ratio Wf (𝒞0)/Wf (0) does not
depend upon the starting position r, provided that r > b. The
ratios at/b = b/R = 0.1. Dependencies are obtained for the
case of the “saturating” sliding. For spherical particles μ = 1,
q = 13/8; and for rod-shaped particles μ = 10, q = 5. The
dashed line shows the constant level equivalent to unity.

III. DISCUSSION

We analyze the effects of various types of isolated obsta-
cles upon the probability and the speed of the search for the
specific target. We conclude that the obstacles surrounding the
target could either increase or decrease the effective target size
depending upon the ability of the searching particle to bind
and to diffuse (slide) along the surface of the obstacle while
in the bound state.

If sliding is too slow, and/or the binding time is too short,
the searching particle in effect “reflects” from the obstacle.
In this case, the obstacles shield the target from the searching
particle, which leads to decrease of the apparent target size.

In the opposite case, sliding along the obstacle facilitates
transferring to the target thus increasing the effective tar-
get size. Which of these two effects predominates depend
upon the dissociation constant of the complex between the
searching particle and the obstacle, their sizes, and the dif-
fusion coefficients on the surface of the obstacle and in
solution.

The effect of nonspecific binding is especially interesting
it terms of facilitating the specific target search. This facil-
itation could be manifested either in absolute acceleration
of the search (i.e., decreasing the typical time required to
reach the specific target), or in increasing the probability of
binding the target surrounded by obstacles in comparison
with the obstacle-free target competing for the same searching
particle.

We show that the competition between the targets is de-
fined by the effective target size: the larger the effective size
of the target, the more advantage it has. However, in the case
of the typical search time the situation is more complex: if
the time during which the searching particles is bound to an
obstacle is too long, obstacles could slow down the search for
the specific target even if they increase the effective target size.
In this situation, if the targets are in excess and compete with
each other for the searching particles, then the specific target
surrounded by obstacles would eventually bind the searching
particle with higher probability than the competing obstacle-
free target. However, there would be a substantial “lag phase”
due to nonspecific binding, and consequently, the smaller
fraction of the searching particles that binds the obstacle-free
target would find their targets faster than the larger fraction of
the searching particles that would eventually bind the target
surrounded by obstacles.

Although our model is dealing with isolated obstacles, it
also could be applicable to long coiled polymer molecules
(e.g., DNA), that could be approximated as a “cloud” of
independent segments distributed within the volume of the
coil. Thus, we consider implications of our results for the
specific target search by DNA-binding proteins. For many
proteins, this search consists of nonspecific binding events
followed by sliding along DNA, and eventual unbinding
followed by free diffusion in solution, after which the pro-
tein could rebind the DNA, and so these cycles of sliding
and free diffusion in solution continue until the protein binds
the specific target (reviewed in [4,7]). (Also, some proteins
are capable of continuously transferring between two DNA
segments due to presence of several DNA binding sites, but
we are not considering them here.) The most difficult part
for theoretical analysis of the searching process is spatial and
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temporal correlation between the binding events; thus, various
approximations are used to simplify this analysis:

In some approaches (e.g., [4,7]), these correlations are
simply omitted; i.e., after dissociation into solution protein
is assumed to rebind DNA at random position. Within this
approximation, DNA regions localized on DNA much farther
from the specific target site than the typical sliding distance
would behave as temporal “traps” randomly distributed over
the whole volume (e.g., see analysis in [24]). Thus, according
to these approaches, facilitation of the target search could be
only due to DNA regions within the sliding distance from the
target; the rest of the DNA could only delay the search. Thus,
the approaches that do not take into account spatial correlation
between the binding events cannot reveal facilitation of the
search by the fragments localized substantially beyond the
sliding distance.

In approaches used in [16] and further advanced in [30,31],
correlations between binding events were addressed by solv-
ing the diffusion equation for cylindrical volumes surrounding
straight DNA fragments, with additional modifications to ex-
tend these approaches to the coiled DNA. Although these
approaches do take into account correlations between the
binding events within their approximation for the DNA spa-
tial arrangement, they still predict that remote DNA regions
(i.e., localized much farther than the sliding distance from
the target) could only delay the search, although in [30,31]
it was shown that this delay could be substantially allevi-
ated in the coiled DNA in comparison with the stretched
DNA due to reduced oversampling of nonspecific binding
sites.

In contrast, our approach, in which correlations between
the binding events are described as diffusion between DNA
fragments distributed in space with a certain concentration,
predicts that isolated DNA fragments at certain conditions
are capable of accelerating the search for the target by in-
creasing the effective target size. In contrast to continuous
transfer (which in principle could provide unlimited increase
of the effective target size), the effects of isolated obstacles
are limited by the volume concentration of the obstacles,
which is typically small. However, for thin rodlike obstacles
(e.g., DNA segments) the effects might be nonsmall even at
small volume concentrations. Thus, it is feasible that effects of
isolated obstacles upon the target search could be substantial,
especially in crowded environments.

The contribution of these effect to the target search might
be important in the cases when continuous transfer between
nonspecific sequences and the specific target is either re-
stricted or impossible, for example if the target and most of
the nonspecific DNA are localized in different DNA circles
connected via catenation (e.g., [18]), or if short DNA frag-
ments are connected by flexible nonbinding linkers, like in
dendrimers (e.g., [32]).

In additional to biological systems, the model for the
specific target search in the presence of obstacles could be
applicable to interactions in composite artificial media, for ex-
ample in gels (e.g., [33–35]). In this case, the obstacles could
be either the components of the gel (e.g., agarose or poly-
acrylamide polymer chains) or the nonspecific targets (e.g.,
DNA sequences without recognition sites) that co-localize in
gel with the specific target.

An important question is whether the processes analyzed
here could be described in term of the efficient diffusion coef-
ficient. For diffusion with the coordinate-dependent diffusion
coefficient the average shift of the particle position during
infinitesimal time interval is proportional to the derivative of
the diffusion coefficient upon coordinate, while the average
squared shift is proportional to the diffusion coefficient itself.
Thus, for the motion of the particle to be represented as
diffusion with some effective coordinate-dependent diffusion
coefficient, its average shift during infinitesimal time interval
should be equivalent to the derivative of its average squared
shift during this interval. We show that in the presence of
binding this relationship between shifts holds only if the
concentration of obstacles is constant; consequently, for non-
constant concentration of obstacles in the presence of binding
the process cannot be represented as diffusion with some
effective coefficient. This result is important for description
of diffusion in inhomogeneous media.

APPENDIX A: ANALYSIS OF DEPENDENCE OF THE
FIRST-PASSAGE TIME TO REACH THE TARGET UPON

CONCENTRATION OF THE OBSTACLES

Since only terms I1 [Eq. (90)] and I2 [Eq. (91)] contain con-
centration of obstacles, for analysis concentration dependence
we will consider only the sum of these terms:

I1 + I2 ∼ 1 + ε 𝒞0

1 + q 𝒞0
β + (1 + q 𝒞0)−

μ

q . (A1)

Here proportionality “∼” means that a positive multiplier
that does not depend upon concentration 𝒞0 is omitted, and
the parameter

β =
b3

at

(
1 − 1.5 at

b + 0.5 at
3

b3

)
(

1
at

− 1
b

)
(R3 − b3)

≈ b3

R3
(A2)

is practically equivalent to the ratio of the volume of the
domain that contains the obstacles to the whole volume.

From Eq. (A1)

d (I1 + I2)

d𝒞0
∼ μ

(1 + q 𝒞0)2

[
ε − q

μ
β − (1 + q𝒞0)1− μ

q

]
. (A3)

[Here “∼” has the same meaning as in Eq. (A1).]
Let us analyze Eq. (A3) for various values of parameters μ,

q, and ε. First, we note that in Eq. (A1), the first term contains
the parameter β [Eq. (A2)], which is less than unity, while the
second term is always greater than unity. Thus, the first term
could have substantial contribution only if ε > q. Because of
that, we will consider only the situation in which ε > q; i.e.,
ε−q is positive.

In this case, for negative μ (i.e., when “reflection”
upon collision predominates over sliding-mediated transfer)
the Eq. (A3) is positive for all possible concentrations of
obstacles; thus, the first-passage time to reach the target in-
creases with the concentration.

For positive μ (i.e., when sliding-mediated transfer pre-
dominates over “reflection”), Eq. (A3) is positive, if

ε − q

μ
β − (1 + q 𝒞0)1− μ

q > 0 (A4)
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and negative if

ε − q

μ
β − (1 + q𝒞0)1− μ

q < 0. (A5)

Since by definition 0 < 𝒞0 < 1, and from Eq. (47) it fol-
lows that μ/q < 1, then

1 < (1 + q 𝒞0)1− μ

q < (1 + q )1− μ

q . (A6)

Consequently, from Eqs. (A4)–(A6) it follows that if

ε − q

μ
β < 1, (A7)

then the first-passage time to reach the target decreases with
concentration of the obstacles for all possible concentrations;
if

ε − q

μ
β > (1 + q )1− μ

q , (A8)

then the first-passage time to reach the target increases with
concentration of the obstacles for all possible concentrations;
and if

1 <
ε − q

μ
β < (1 + q )1− μ

q , (A9)

then the first-passage time has a maximum at the concentra-
tion

𝒞0(max) = 1

q

[(
ε − q

μ
β

) 1
1− μ

q − 1

]
. (A10)

Let us consider in more detail the case of “saturating”
sliding, when the time τb during which the searching particle
remained bound to the surface on an obstacle is long enough
to “explore” the whole surface of the obstacle by means of
sliding, so in the moment of dissociation the particle could
be localized anywhere on the surface of the obstacle with
equal probabilities. In this case, τb should be larger than the
typical time a2/Ds that is required to slide over the distance
equivalent to the size of the obstacle. The diffusion coefficient
on the surface of the obstacle (Ds) could be much smaller than
the diffusion coefficient is solution (D) because of uneven
energy landscape on the surface of the obstacle, and the su-
perior hydrodynamic resistance for moving along the curved
surfaces (e.g., see [36] and references therein). Thus, in this
regime τb > a2/Ds would be much greater than τ0 ∼ a2/D,
and would have predominant contribution to the total time of
delay τd .

This means that in this regime parameter ε ∼ τd D/a2 is
about or larger than the ratio Ds/D, which could be several
orders of magnitude. Thus, parameter ε in the regime of
saturating sliding is likely to be large. Since the parameter
β ≈ (b/R)3 is small, and parameters μ and q in this regime
are of the order of unity [see Eqs. (50) and (51)], in the regime
of saturating sliding the conditions Eqs. (A7) and (A8) that
define behavior of the system are primarily defined by the
parameter

γ = ε

(
b

R

)3

. (A11)

If this parameter is small, then the first-passage time is
decreased upon the increase of the concentration of obstacles,

while when it is large, the first-passage time increases with the
increase of the concentration of obstacles.

APPENDIX B: THE FIRST-PASSAGE TIME IN
HOMOGENEOUS MEDIA WITH

COORDINATE-DEPENDENT DIFFUSION COEFFICIENT
VERSUS COORDINATE-INDEPENDENT DIFFUSION

COEFFICIENT WITH SWITCHING BETWEEN MOBILE
AND IMMOBILE STATES

First we the consider one-dimensional case. Consider a
diffusing particle that starts movement from position x. After
some time interval �t the particle would move to a new
position x + �x. Then, the average time T f that is required
for the particle to reach a certain destination (usually referred
to as the first-passage time) satisfies the equation

T f (x) = 〈T f (x + �x)〉 + �t . (B1)

Here 〈〉 designates the averaging over all possible values
of �x.

Upon expanding T f (x + �x) into Taylor series up to the
terms of the second order of �x (the terms of higher order of
�x could be ignored because they would produce infinites-
imals of the higher order than �t), Eq. (B1) produces a
differential equation

σ 2

2

d2T f

dx2
+ υ

dT f

dx
+ 1 = 0, (B2)

where

σ 2 = lim
�t→0

〈(�x)2〉
�t

, (B3)

υ = lim
�t→0

〈�x〉
�t

. (B4)

To calculate σ 2 and υ, we consider the probability
ρ(�x, �t ) that the particle at the time �t is localized at
the point x + �x, provided that at the time �t = 0, it was
localized at the point x. This probability is described by the
Smoluchowski equation, which for the one-dimensional case
in the absence of external forces is

∂ρ

∂ (�t )
= ∂

∂ (�x)

(
D

∂ρ

∂ (�x)

)
, (B5)

with initial conditions

ρ(�x, 0) = δ(�x), (B6)

where D is the coordinate-dependent diffusion coefficient.
The average value of �x

〈�x〉 =
∫ ∞

−∞
ρ �x d (�x). (B7)

From Eqs. (B5) and (B7),

∂〈�x〉
∂ (�t )

=
∫ ∞

−∞

∂ρ

∂ (�t )
�x d (�x)

=
∫ ∞

−∞

∂

∂ (�x)

(
D

∂ρ

∂ (�x)

)
�x d (�x). (B8)
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Applying integration by parts, and taking into account that
at infinitely large �x the function ρ and all its derivatives
approach zero, we obtain∫ ∞

−∞

∂

∂ (�x)

(
D

∂ρ

∂ (�x)

)
�x d (�x)

= −
∫ ∞

−∞
D

∂ρ

∂ (�x)
d (�x) =

∫ ∞

−∞

∂D

∂ (�x)
ρ d (�x).

(B9)

Taking into account Eq. (B6),

lim
�t→0

∫ ∞

−∞

∂D

∂ (�x)
ρ d (�x) =

∫ ∞

−∞

∂D

∂ (�x)
δ(�x)d (�x)

= ∂D

∂ (�x)
(�x = 0) = ∂D

∂x
.

(B10)

Thus

υ = lim
�t→0

〈�x〉
�t

= lim
�t→0

∂〈�x〉
∂ (�t )

= ∂D

∂x
= dD

dx
. (B11)

(In the right part of the equation, we took into account that
the diffusion coefficient depends only upon coordinate, so we
replace the partial derivative with the usual one.) Similarly,

∂〈(�x)2〉
∂ (�t )

=
∫ ∞

−∞

∂ρ

∂ (�t )
(�x)2d (�x)

= 2
∫ ∞

−∞

(
D + ∂D

∂ (�x)
�x

)
ρ d (�x) (B12)

and

σ 2 = lim
�t→0

∂〈(�x)2〉
∂ (�t )

= 2
∫ ∞

−∞

(
D + ∂D

∂ (�x)
�x

)
δ(�x)d (�x) = 2D. (B13)

Substituting Eqs. (B11) and (B13) in Eq. (B2), we obtain

D
d2T f

dx2
+ dD

dx

dT f

dx
+ 1 = 0 (B14)

or, dividing by D,

d2T f

dx2
+ d lnD

dx

dT f

dx
+ 1

D
= 0. (B15)

(Here we substituted 1
D

dD
dx = d lnD

dx , which implies that the
diffusion coefficient under the logarithm is defined up to some
coordinate-independent multiplier to render the value under
logarithm dimensionless.) In the special case of constant dif-
fusion coefficient this equation produces

d2T f

dx2
+ 1

D
= 0. (B16)

Let us compare these results [Eqs. (B15) and (B16)] with
behavior of the searching particle that could switch from a
mobile state (designated by subscript f ), to an immobile state
(designated by subscript b) and back with rate constants k+
and k−, respectively. In the mobile state the diffusion coeffi-
cient is D, and in the immobile state the diffusion coefficient

is zero. Importantly, in this case diffusion coefficient D is
assumed to be independent of coordinate x, while k+ and
k−, in the general case, could depend upon x. This system is
formally equivalent to the case of very small searching par-
ticles and binders, in which coordinate shift of the searching
particle during interaction with the binder is neglected, and,
consequently, the only effect of the binding is the “lost time.”
Note that for this interpretation the switching rate constant k+
is the product of the on-rate binding constant and the local
concentration of the binders.

Again, we consider the searching particle starting in the
unbound state at position x. During a small time interval �t ,
the particle with probability 1 − k+�t remains in the unbound
state and moves to the position x + �x, or with probability
k+�t converts to the bound state at some position x + �x′.
Then

T f (x) = (1 − k+�t )〈T f (x + �x)〉
+ k+�t〈Tb(x + �x′)〉 + �t . (B17)

Here the averaging is performed for all values �x and �x′,
although the value �x′ does not contribute to the final result
(since it gets multiplied by �t , thus producing a term of higher
order relative to �t), and could be ignored.

Expanding terms Eq. (B17) similarly to what was done for
Eq. (B1), and taking into account that the diffusion coefficient
does not depend upon coordinates in this case, we obtain

D
d2T f

dx2
+ k+(Tb − T f ) + 1 = 0. (B18)

Once the particle is bound, it eventually converts back to
the unbound state after the average “lost” time 1/k−. Thus

Tb = T f + 1

k−
. (B19)

Substituting Eq. (B19) into Eq. (B18), we obtain

d2T f

dx2
+ K + 1

D
= 0, (B20)

where K ≡ k+/k−. Note that in the general case K depends
upon coordinate x.

From comparing Eqs. (B16) and (B20), it is seen that for
the special case when K does not depend upon x, the diffusion
accompanied by switching between the mobile and immobile
stated could be described as diffusion without state switching
with the effective diffusion coefficient

Deff = D

K + 1
. (B21)

However, if the above definition of the effective diffusion
coefficient were applicable to the state-switching system in
the case when K depends upon x, then, according to Eq. (B15),
the state-switching system should be described by the equa-
tion

d2T f

dx2
+ d ln D

K+1

dx

dT f

dx
+ K + 1

D
= 0, (B22)

while in fact it is described by Eq. (B20).
Thus, we conclude that in the general case behavior of the

state-switching system is impossible to describe as diffusion
with some effective diffusion coefficient. In general, if the
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first-passage time for a given process is described by the
equation of the form

A
d2T f

dx2
+ B

dT f

dx
+ 1 = 0 (B23)

(where A and B are some functions of x) this process could
be described as diffusion with a certain effective diffusion
coefficient only if A and B satisfy the equation

dA

dx
= B. (B24)

The first-passage time for diffusion in the presence of
binders is described by an equation of the type Eq. (B23),
for which condition Eq. (B24) is not satisfied except for
the special when A does not depend upon x, and B is
zero.

For diffusion in the presence of external forces the function
B in Eq. (B23) depends upon both the spatial derivative of
diffusion coefficient and the external force field. Thus, if we
would try to describe diffusion in the presence of binding
by the effective diffusion coefficient, we also would need
to add some “fictional” external field to compensate for the
differences between dA

dx and B.
Equations (B14) and (B15) can be generalized for three-

dimensional movement. In this case

σx
2

2

∂2T f

∂x2
+ σy

2

2

∂2T f

∂y2
+ σz

2

2

∂2T f

∂z2

+ υx
∂T f

∂x
+ υy

∂T f

∂y
+ υz

∂T f

∂z
+ 1 = 0. (B25)

For three-dimensional diffusion in the absence of external
forces the Smoluchowski equation

∂ρ

∂ (�t )
= ∂

∂ (�x)

(
D

∂ρ

∂ (�x)

)
+ ∂

∂ (�y)

(
D

∂ρ

∂ (�y)

)

+ ∂

∂ (�z)

(
D

∂ρ

∂z

)
. (B26)

Parameters σ and υ in Eq. (B25) are defined similarly to
Eqs. (B3) and (B4), for example

υy = lim
�t→0

〈�y〉
�t

= lim
�t→0

∂〈�y〉
∂ (�t )

= lim
�t→0

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∂ρ

∂ (�t )
�y d (�x)d (�y)d (�z).

(B27)

Performing calculations similar to Eqs. (B8)–(B13), we
obtain

D

(
∂2T f

∂x2
+ ∂2T f

∂y2
+ ∂2T f

∂z2

)
+ ∂D

∂x

∂T f

∂x

+ ∂D

∂y

∂T f

∂y
+ ∂D

∂z

∂T f

∂z
+ 1 = 0. (B28)

In the spherically symmetric case this is equivalent to

D

(
d2T f

dr2
+ 2

r

dT f

dr

)
+ dT f

dr

d D

dr
+ 1 = 0 (B29)

or (
d2T f

dr2
+ 2

r

dT f

dr

)
+ dT f

dr

d lnD

dr
+ 1

D
= 0, (B30)

which corresponds to Eq. (96) of the main text.

APPENDIX C: DIFFUSION LIMIT FOR THE ON-RATE
CONSTANT IN THE CASE OF ROD-SHAPED OBSTACLES

We present two approaches to obtain an approximation
of the on-rate constant for thin rod-shaped particles: The
first approach utilizes steady-state state distribution of the
searching particles around an obstacle. The second approach
estimates the rate constant from the probability for the single
searching particle to “hit” the obstacle. Both approaches lead
to Eq. (121) of the main text.

1. The first approach

In this case we represent the obstacle as a cylinder
[Fig. 8(a)]. Let cs(r) be the concentration of the searching
particle at the distance r from the obstacle. A steady-state
distribution of concentration satisfies the equation

∇2cs = 0. (C1)

If the searching particle is close to the surface of the ob-
stacle, the distribution of the searching particles would be
approximately cylindrically symmetric, so Eq. (C1) is con-
verted to

d2cs

dr2
+ 1

r

dcs

dr
= 0. (C2)

In the opposite case, when the distance r is much larger
than the length of the obstacle 2al , then the obstacle “looks
like” a point object, so the distribution of concentration of the
searching particles around it would be approximately spheri-
cally symmetric, so Eq. (C1) is converted to

d2cs

dr2
+ 2

r

dcs

dr
= 0. (C3)

Let us designate the solutions of Eq. (C2) and Eq. (C3) as
cs1 and cs2, respectively. Then

cs1 = A11 ln r + A12, (C4)

cs2 = A21

r
+ A22, (C5)

where Ai j are some constants. At some critical distance rc

(which is about the length of the obstacle) there would be a
transition between the solutions Eq. (C4) and Eq. (C5). Thus,
for continuity at the critical distance

cs1(rc) = cs2(rc), (C6)

dcs1

dr
(rc) = dcs2

dr
(rc). (C7)

“Unperturbed” concentration of the searching particle far
away from the obstacle is

cs2(∞) = c∞ (C8)
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and on the surface of the obstacle

cs1(ase) = 0. (C9)

From Eqs. (C4)–(C9) we obtain

cs1 = c∞
1 + ln rc

ase

ln
r

ase
≈ c∞

ln al
ase

ln
r

ase
. (C10)

(In the right-hand part of the equation we took into account
that rc ∼ al , and al/ase � 1.) The diffusion limit for the
reaction rate is equivalent to the flux of the searching particles
through the surface of the obstacle. Thus

konc c∞ = 2π ase2al D
dcs1

dr
(ase). (C11)

Substituting Eq. (C10) into Eq. (C11), we finally obtain

konc = 4π D
al

ln al
ase

∼ D
al

ln al
ase

, (C12)

which is equivalent to Eq. (121) from the main text.

2. The second approach

For this approach, we represent the rod-shaped obstacle as
a string of spherical beads [Fig. 8(b)] with the radius ase, and
the total number

n = 2al

2ase
= al

ase
. (C13)

We numerate the beads starting from the end of the obstacle
and introduce the following notations:

ωi(ri ) is the probability that the searching particle initially
localized at the distance ri from the bead number i will reach
this bead before leaving the volume of the radius R (R > ri)
around the obstacle.

ψi(ri ) is defined in the same way as ωi(ri) plus an addi-
tional requirement that the particle will reach the bead number
i before it reached any of other beads within the obstacle.

ui j is the probability that the searching particle initially
localized on the bead number i will reach the bead number j
before leaving the volume of the radius R around the obstacle.
Since the distance between the beads within the same obstacle
is much smaller than R, the distance R in this case could be
assumed to be infinitely long, in which case ui j is inversely
proportional to the distance between the respective beads ri j

[37]:

ui j ≈ ase

ri j
. (C14)

In the case of the straight string of beads shown in Fig. 8,
Eq. (C14) is equivalent to

ui j ≈ 1

|i − j| . (C15)

For j = i we postulate that

uii = 1. (C16)

The total probability � that the searching particle hits the
obstacle is the sum of probabilities of independent events that

it hit any of the beads first:

� =
i=n∑
i=1

ψi. (C17)

The probability that the searching particle hits the obstacle
is proportional to konc multiplied by the time that the searching
particle would spend in the volume R. Thus, konc ∼ � with
some coefficient of proportionality that does not depend upon
the shape or the size of the obstacle. Consequently, to evaluate
konc, we have to evaluate �. For that, we note that the sum
of pathways that lead to hitting a given bead consists of all
possible pathways, in which either this bead was hit first, or
any other bead was hit first, and the given bead was hit after
that. Thus

ω j =
i=n∑
i=1

ψiui j . (C18)

By summation of Eq. (C18) over the j index we obtain

j=n∑
j=1

ω j =
i=n∑
i=1

ψi

j=n∑
j=1

ui j . (C19)

From Eqs. (C15) and (C16), the sum

j=n∑
j=1

ui j = 1 +
j=i−1∑

j=1

1

i − j
+

j=n∑
j=i+1

1

j − i

= 1 +
j=i−1∑

j=1

1

j
+

j=n−i∑
j=1

1

j
≈ ln i(n − i). (C20)

For large n, ln i(n−i) is roughly between ln n and 2 ln n.
Thus, for large n

i=n∑
i=1

ψi ln n <

i=n∑
i=1

ψi

j=n∑
j=1

ui j < 2
i=n∑
i=1

ψi ln n. (C21)

From that, we can approximate

i=n∑
i=1

ψi ∼
∑i=n

i=1 ψi
∑ j=n

j=1 ui j

ln n
, (C22)

where the proportionality coefficient is between 0.5 and 1.
Thus, from Eqs. (C17), (C19), and (C22),

� =
i=n∑
i=1

ψi ∼
∑ j=n

j=1 ω j

ln n
. (C23)

If the initial distances between the searching particle and
the beads within the obstacle are much larger than the dis-
tances between beads within the obstacle, then we can neglect
the differences in the initial distances between the searching
particle and different beads within the obstacle, and assume
that all these initial distances are equal to some distance r, that
could be defined as a distance between the searching particle
and the center of the obstacle.

In this approximation, all probabilities ω j are the same and
could be approximated by probability for an isolated bead [see
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the main text, Eq. (61)]:

ω j = ase

(
1

r
− 1

R

)
, (C24)

and from Eqs. (B13), (B23), and (B24),

� ∼ nase

ln n

(
1

r
− 1

R

)
= al

ln al
ase

(
1

r
− 1

R

)
. (C25)

If the obstacle comprised one isolated bead, then � would
be defined by Eq. (C24), and, according to the Smoluchowski
formula, konc would be proportional to D ase. Thus, since the
proportionality coefficient between konc and � should not
depend upon the shape and the size of the obstacle, for the
rod-shaped obstacle we again arrive at

konc ∼ D
al

ln al
ase

. (C26)
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