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Physical principles of morphogenesis in mushrooms
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Mushroom species display distinctive morphogenetic features. For example, Amanita muscaria and Mycena
chlorophos grow in a similar manner, their caps expanding outward quickly and then turning upward. However,
only the latter finally develops a central depression in the cap. Here we use a mathematical approach unraveling
the interplay between physics and biology driving the emergence of these two different morphologies. The
proposed growth elastic model is solved analytically, mapping their shape evolution over time. Even if biological
processes in both species make their caps grow turning upward, different physical factors result in different
shapes. In fact, we show how for the relatively tall and big A. muscaria a central depression may be incompatible
with the physical need to maintain stability against the wind. In contrast, the relatively short and small M.
chlorophos is elastically stable with respect to environmental perturbations; thus, it may physically select a
central depression to maximize the cap volume and the spore exposure. This work gives fully explicit analytic
solutions highlighting the effect of the growth parameters on the morphological evolution, providing useful
insights for novel bio-inspired material design.
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I. INTRODUCTION

Mushrooms spring up quickly after a period of rainy
weather displaying astonishing morphological transitions [1].
They are sexual reproductive structures of fungi, and their pri-
mary role is production of abundant spores and their effective
dispersal [2,3]. Figure 1 shows the growing shapes of Amanita
muscaria, whose yellow variant is one of the most iconic
toadstool species among mushrooms, being hallucinogenic.
Its cap starts expanding outward, then it gradually becomes
flat and finally turns slightly upward. On the other hand, Fig. 2
shows the growth process of Mycena chlorophos, known as
the oldest known luminescent fungus. It emits pale green
light at night presumably to attract certain insects that will
spread its spores. M. chlorophos typically develops a central
depression in its cap [see Figs. 2(b)–2(d)] for the biological
purpose of exposing spores.

In this work we investigate the physical principles that
possibly make these mushroom species evolve into different
morphologies. Using physical models to understand pattern
formations in various organisms has been done in a number of
recent studies, surprisingly not including mushrooms [7–18].
In the following, since mushroom growth occurs in the charac-
teristic timescale of days, which is much larger than the ones
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characterizing any other dissipative effects, such as viscoelas-
ticity, a purely elastic model is proposed. The timescales’
separation allows us to assume the multiplicative decomposi-
tion of the deformation gradient [19], and we derive necessary
conditions for the growth functions for generating stress-free
3D axisymmetric configurations. Then we give a family of
special analytic solutions for given growth functions, which
maps a cross-sectional region in the reference configuration
to a circular strip in the current configuration, which is able
to capture morphological evolution of the two mushrooms as
shown in Figs. 1 and 2. We finally discuss the results with
respect to the environmental forces that act on the growing
mushrooms, suggesting an epigenetic morphological control
based on physical principles.

II. THE MODEL

We investigate stress-free axisymmetric deformations in-
duced by growth using the multiplicative model proposed in
Rodriguez et al. [20]. As sketched in Fig. 3, the geometrical
deformation gradient F is decomposed as F = AG, where G is
the growth tensor from the initial configuration R0 (occupying
a domain in the Euclidean space) to the virtual stress-free
state Rg, and A is the elastic tensor that maps Rg into the
current configuration Rt . Local incompatibilities may emerge
if ∇ × G �= 0 [21], causing the emergence of residual stress
in the current configuration. Here we focus on functional
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FIG. 1. The mushroom Amanita muscaria, also known as American fly agaric (yellow variant). Its cap morphological development is
shown through (a)–(d): the cap gradually expands outward and becomes flat and finally turns slightly upward. Panels (a)–(d) are reconstructed
from the video [4] (time around 2:26, 2:31, 2:34, and 2:37, respectively) .

expressions of A and G such that even under the condition
∇ × G �= 0, a stress-free current configuration is achieved.
This work aims to derive the constraints on the growth tensor
components to describe not trivial stress-free configurations
under sufficient smoothness assumptions. For this purpose, we
employ the polar decomposition for the growth tensor G, and
we make an informed ansatz on the basis vectors (curvilinear
coordinates). We mention that the 2D case has been studied
in Ref. [18]. Here we consider the 3D axisymmetric case, and
the derivation is given below.

Given the eigenvalues (μ2
1, μ

2
2, μ

2
3) and the corresponding

orthonormal eigenvectors (p1, p2, p3) for the growth metric
M = GT G, we write M as

M = μ2
1p1 ⊗ p1 + μ2

2p2 ⊗ p2 + μ2
3p3 ⊗ p3, (1)

where μi > 0 (i = 1, 2, 3). The polar decomposition of G is
set as

G = μ1q1 ⊗ p1 + μ2q2 ⊗ p2 + μ3q3 ⊗ p3, (2)

where qi = Q pi (i = 1, 2, 3) and Q is an orthogonal tensor
[22]. In order to simplify the derivation, we choose the or-
thogonal curvilinear coordinates (�1,�2,�3) in R0 such that
the contravariant basis vectors {gi (i = 1, 2, 3)} have the same

directions as {pi (i = 1, 2, 3)}, i.e.,

pi = gi

|gi| , gi · g j = δi
· j, g j = ∂X

∂� j
, i, j = 1, 2, 3,

(3)

where X is the position vector in R0 and {gi (i = 1, 2, 3)} are
covariant basis vectors. For the virtual state, Rg, let {qi (i =
1, 2, 3)} be the basis vectors. In the current configuration Rt ,
the basis vectors are chosen to be the cylindrical basis vectors
{eR, e�, eZ}. It will turn out that this choice of basis vectors
in R0, Rg, and Rt is very useful for putting the end results in
simple forms.

From (2) and (3), we can represent the growth tensor as

G = λ1q1 ⊗ g1 + λ2q2 ⊗ g2 + λ3q3 ⊗ g3, (4)

where λi = μi/|gi| (i = 1, 2, 3). We call μi and λi the growth
functions and basis-weighted growth functions, respectively.

To achieve a stress-free state in the current configuration
Rt , the elastic deformation from Rg to Rt is set to be a
local rotation (cf. Ref. [18]), which for an axis-symmetric
deformation around the Z-axis, can be written as

A = cos α eR ⊗ q1 + sin α eR ⊗ q3 − sin α eZ ⊗ q1

+ cos α eZ ⊗ q3 + e� ⊗ q2, (5)

FIG. 2. The mushroom Mycena chlorophos, which is bioluminescent in the darkness, developing a central depression in the cap. For a
better illustration of its growth process, the following two sources are used. Panels (a)–(c) are reconstructed from the video [5] (time around
1:16, 1:23, and 1:29, respectively) and (d) is reconstructed from Ref. [6] with permission.
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FIG. 3. The illustration of the multiplicative decomposition
model F = A G. The orthogonal basis vectors are shown in each
configuration or state (initial configuration R0, virtual state Rg, and
current configuration Rt ), and X and x are position vectors in R0 and
Rt , respectively.

where α = α(�1,�3) is the local rotation angle. From (4) and
(5), we have

F = AG = λ1 cos α eR ⊗ g1 + λ3 sin α eR ⊗ g3

− λ1 sin α eZ ⊗ g1 + λ3 cos α eZ ⊗ g3 + λ2e� ⊗ g2.

(6)

For the axis-symmetric deformation, the initial and
current position vectors can be written, respectively, as
X = R(�1,�3)eR + Z (�1,�3)eZ and x = r(�1,�3)eR +
z(�1,�3)eZ , and we set �2 = � = θ . Then the deformation
gradient is also given by

F = ∂x
∂X

=
[

∂r

∂�1
eR + ∂z

∂�1
eZ

]
⊗ g1 + re� ⊗ g2

+
[

∂r

∂�3
eR + ∂z

∂�3
eZ

]
⊗ g3. (7)

Making a comparison of (6) and (7), we have

∂z

∂�1
= −λ1 sin α,

∂z

∂�3
= λ3 cos α,

∂r

∂�1
= λ1 cos α,

∂r

∂�3
= λ3 sin α, (8)

and

r = λ2. (9)

To derive a constraint on the basis-weighted growth func-
tions λi(i = 1, 2, 3), we assume that x is C2-smooth. Further,
we consider the current position vector in rectangular co-
ordinates: x = x1 e1 + x2 e2 + x3 e3 where x1 = r cos �, x2 =
r sin � and x3 = z. Then the smoothness assumption leads to

∂2xi

∂� j�k
= ∂2xi

∂�k� j
, for j �= k, i, j, k ∈ {1, 2, 3}, (10)

which turns out to be exactly the same as the necessary con-
dition of a locally compatible deformation gradient: ∇ × F =
0. Taking the polar expressions of xi (i = 1, 2, 3) into (10),
we have ∂2z/∂�3∂�1 = ∂2z/∂�1∂�3, ∂2r/∂�3∂�1 =
∂2r/∂�1∂�3, which, by applying (8), lead to

∂α

∂�1
= 1

λ3

∂λ1

∂�3
,

∂α

∂�3
= − 1

λ1

∂λ3

∂�1
. (11)

From the above two equations, in principle, α can be solved in
terms of λ1 and λ3. Then, substituting (9) into (8)c,d , we have
one constraint:

∂λ2

∂�1
= λ1 cos α,

∂λ2

∂�3
= λ3 sin α. (12)

A further constraint is imposed assuming that α is C2-
smooth. Then we have ∂2α/∂�1∂�3 = ∂2α/∂�3∂�1, which,
upon using (11), leads to

∂

∂�1

(
− 1

λ1

∂λ3

∂�1

)
= ∂

∂�3

(
1

λ3

∂λ1

∂�3

)
. (13)

So Eqs. (12) and (13) are the two constraints on the basis-
weighted growth functions λi, i.e., necessary conditions for
the growth tensor to achieve a stress-free current configura-
tion. It is also noted that these two constraints together with
(11) satisfy the tensor equation R = 0 (see Appendix A) with
R being the associated Riemann curvature tensor of M, which
is the necessary condition for local compatibility of M (see
Refs. [23,24]).

We point out that in the process of deriving the constraints,
the equations for determining r, z, α are also obtained [see
(8) and (11)]. If the given basis-weighted growth functions λi

satisfy the above-mentioned two constraints (or alternatively
one solves them to find some proper forms for λi), r, z, α can
be solved from (8) and (11). If further the obtained solutions
for r(�1,�3) and z(�1,�3) are invertible (implying a one-
to-one correspondence between X and x), then the current
configuration corresponds to a stress-free state. In practice, for
three basis-weighted growth functions λi with two constraints,
one may impose one function (say, λ3) and then solve λ1 from
(13) (nonlinear partial differential equation, only solvable for
some special forms of λ3). Afterward, one can solve (8) and
(11) to obtain r, z, and α respectively, and then λ2 can be
obtained by setting λ2 = r [see (9); while the constraint (12) is
automatically satisfied]. However, it should be noted that the
basis-weighted function λ2 is physically imposed first, which
leads to the deformation with the solution for r.

III. RESULTS

Here we apply the proposed model to describe the growth
of the two mushrooms A. muscaria and M. chlorophos. The
observed morphologies of A. muscaria and M. chlorophos at
different stages are axis-symmetric, and the cross sections of
their initial configurations are elliptic strips (it seems a circular
cross section will yield similar results) [see Figs. 1(a) and
2(a)], and after growth the elliptic strips deform into differ-
ent types of circular strips in the current configurations [see
Figs. 1(b)–1(d) and Figs. 2(b)–2(d)]. Accordingly, we search
for a particular form for λ3 as

λ3(�1,�3) = s, (14)

where s > 0 is a constant, then, from (13, 11, 8), we find

λ1 = ks �3 + d1, α = k�1 + α0 (15)

and

z = cos α(s �3 + d1/k) + C1,

λ2 = r = sin α(s �3 + d1/k) + c2, (16)
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FIG. 4. (a) Cross section of initial configuration and (b, c) two
types of current configurations. (a) An elliptic strip with given geo-
metric parameters (a, b, hb, β0 ) where a and b are, respectively, the
lengths of major semiaxis and minor semiaxis of the inner ellipse,

and the vector
−→
BA is transported to

−→
P2P1 in (b) and (c). (b) and

(c) Circular strips with inner radius ri, thickness h, and central angle
β, and α∗ is the positive azimuthal angle from the z-axis to the r-axis

and γ is the angle between
−→

P2P1 and positive z-axis.

with the trajectory

(z − C1)2 + (r − c2)2 = (s �3 + d1/k)2, (17)

where k, d1, α0, c2,C1 are integration constants. From (15)
and (16), one can see k, d1, α0, c2 are related to the basis-
weighted growth functions λ1 and λ2, which are theoretically
prescribed; thus these growth parameters are also theoreti-
cally prescribed quantities. The trajectory (17) implies that
the curve of �3 = const in the initial configuration in the
ZR-plane deforms to a circular segment in the current con-
figuration in the zr-plane.

These basis-weighted growth functions satisfy the neces-
sary conditions of local compatibility. However, to achieve a
real stress-free state (occupying a region in Euclidean space in
the current configuration), it is further needed that the analytic
solution (16) is invertible. This imposes a further restriction
on α(�1), such that α1 � α(�1) � α2, 0 < |α2 − α1| < 2π

or α1 � α(�1) < α2, |α2 − α1| = 2π .
First, we give a description of the initial elliptic strip.

Suppose that the four geometric quantities (a, b, hb, β0) are
given, which are, respectively, lengths of the semimajor and
semiminor axes of the inner ellipse, thickness at the minor
axes, and the central angle [see Fig. 4(a)]. Then the strip can
be described in parametric form by

Z = c cosh(�3) cos(�1) + D1,

R = c sinh(�3) sin(�1) + D2,

0 < �1 � η0 < π, ξ0 � �3 � ξ1, (18)

where �1 and �3 are orthogonal curvilinear coordinates,
�3 = const represents an ellipse, �1 = const represents an
orthogonal hyperbola, and c = √

a2 − b2 is the focus of the
elliptic family. The given point (D1, D2) is the center of
the elliptic strip, and D1 > 0, D2 � 0 for Fig. 4(a). The up-
per and lower limits for �1 and �3 are given by η0 =
π + arctan [ b

a tan β0], ξ0 = ln a+b
c , ξ1 = ln [ ã+b̃

c ] where b̃ =

b + hb, ã =
√

b̃2 + c2 = a + ha are, respectively, the lengths
of the semiminor and semimajor axes of the outer ellipse and
ha is the thickness at the major axes.

From (3) and (18), associated with the coordinates
(�1,�,�3), the contravariant basis vectors gi (i = 1, 2, 3)
can be calculated. Then we obtain the growth functions from
(14), (15)a, and (16)b:

μ1 = λ1|g1| = ks �3 + d1

c

√
2

cosh(2�3) − cos(2�1)
,

μ2 = λ2|g2| = r

R
= (s �3 + d1/k) sin(k�1 + α0) + c2

c sinh(�3) sin(�1) + D2
,

μ3 = λ3|g3| = s

c

√
2

cosh(2�3) − cos(2�1)
, (19)

which are highly inhomogeneous and anisotropic, while the
expressions of the basis-weighted growth functions are much
simpler.

We note that the basis-weighted growth functions
λi [see (14), (15)a, and (16)b] contain five parameters
(s, k, d1, α0, c2), and one needs to specify them to generate the
required current configurations. For this purpose, one needs
to use the information of the current configurations and the
solution [which contains an additional constant C1; see (16)].

Both A. muscaria and M. chlorophos have two types
of current configurations which are uniformly illustrated in
Figs. 4(b) and 4(c). We first consider the circular strip in
Fig. 4(b), which is completely determined by knowing the
coordinates (P1z, P1r ) and the four geometric parameters, ri

(inner radius), h (thickness), β (central angle), and γ (angle
between the z-axis and the vector joining P2 and P1). In para-
metric form, the circular strip is described by

z = r∗ cos α∗ + P1z − (ri + h) cos γ ,

r = r∗ sin α∗ + P1r + (ri + h) sin γ ,

− π

2
< −γ � α∗ � −γ + β < π, ri � r∗ � ri + h,

(20)

where r∗ and α∗ are two parameters for a family of circular
curves for the strip. Then, comparing with the solution (16),
and after some trivial calculations, we have

γ = −α0, β = kη0, h = s(ξ1 − ξ0), ri = sξ0 + d1/k,

P1r =c2−(sξ1 + d1/k) sin γ , C1 =P1z − (sξ1 + d1/k) cos γ .

(21)

It is noted that for removing the rigid body motion, P1z is here
considered as a prescribed quantity. We also point out that the
interval −π

2 < α∗(= α) < π ensures the invertibility of the
solution (16).

Similarly, for the circular strip in Fig. 4(c), we find that

γ =−α0, β =−kη0, h=s(ξ1 − ξ0), ri =−(sξ1 + d1/k),

P1r =c2−(sξ1+d1/k) sin γ , C1 =P1z − (sξ1 + d1/k) cos γ .

(22)

In this case, due to the positiveness of β, we find that
k < 0. Also, the interval 0 < α∗(= π + α) � π implies that
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TABLE I. The interpretation of geometric and growth parameters in (21)–(22).

Geometric parameters (ri, h, γ , β, P1r) Growth parameters (d1, s, α0, k, c2)

ri: inner radius of the elliptic strip d1: determines ri

h: thickness of the elliptic strip s: determines h

γ : angle between z-axis and the vector
−−→
P2P1 α0: determines γ which describes the formation of a central depression

β: central angle of the elliptic strip k: determines β and describes the upturn of the mushroom cap
P1r : r-coordinate of the point P1 c2: determines P1r and is related with the formation of a central depression

−π < α � 0, which ensures the invertibility of the solution
(16). The growth and geometric parameters in (21)–(22) are
summarized in Table I, where their definitions and roles in
determining the morphology of the mushroom cap are given.
Also, the ranges for these growth parameters are s > 0, k �=
0, d1 > 0, c2 � 0, 0 � γ < π/2.

We take four groups of values of the growth parameters
(s, k, d1, α0, c2) according to (21) to generate suitable values
of (ri, h, γ , β, P1r ), which produce Figs. 5(b) and 5(c) and
Figs. 6(b) and 6(c) by using the analytic solution (16) (with
prescribed P1z values). Another two groups of values accord-
ing to (22) generate Figs. 5(d) and 6(d). It can be observed
that Figs. 5 and 6 describe the different growth stages of A.
muscaria and M. chlorophos well; cf. Figs. 1 and 2. We also
point out that the cap turning upward happens in the two
mushrooms when the parameter k changes from a positive
value to a negative value. Also, the formation of a central
depression is represented by the parameter γ and related with
α0 and c2.

IV. DISCUSSION

The resulting morphological transitions for the two mush-
rooms are illustrated in Figs. 5 and 6, showing that A.
muscaria does not develop a central depression while
M. chlorophos develops one during the growth process.
Biologically, mushrooms are designed to expose their gills,

which carry the reproductive particles (spores) in order to
favor their dispersion. This explains well why the cap of these
two mushrooms expands outward during the growth process
and eventually turns upward. However, it is difficult to see
from a biological point of view why the depression (one
important feature of the cap) appears in M. chlorophos but
not in A. muscaria. In the following, we investigate some
physical features (volume v and height of gravity center z̄
of the mushroom cap) that may cause the onset of such a
morphological difference.

A. muscaria has a cap around 10–20 cm in diameter and a
stalk about 10–25 cm in height [25], and it can be classified
as a type of tall and big mushrooms. M. chlorophos has a cap
up to 3 cm in diameter atop a stem 0.6–3 cm long [6], and it
can be classified as a type of short and small mushroom. The
elastic stability against the environmental wind is essential for
the survival of both mushrooms, which by adaptation tend to
lower their center of gravity. Based on the derived analytic
solutions, we can obtain the following formulas for the mush-
room volume v and the height z̄ of the center of gravity:

v =
∫

V
μ1μ2μ3 d V = a1c2 + a2, (23)

and

z̄ = C1 + a3

a1
− a2a3 − a1a4

a1c2 + a1a2
, (24)

FIG. 5. Illustration of the morphology of A. muscaria in Fig. 1 by applying the analytic solutions (14)–(17) together with parameters (21)–
(22). Initial parameters are a = 0.78, b = 0.54, hb = 0.41, β0 = 0.64π , D1 = 1.5, D2 = 0, and the growth parameters and position constant
are s = 0.77, α0 = 0, c2 = 0 and for (b)–(d), respectively, k = 0.72, 0.10, −0.16, d1 = 0.82, 1.8, 2.4, and P1z = 6, 8, 8.5.
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FIG. 6. Illustration of the morphology of M. chlorophos in Fig. 2 by applying the analytic solutions (14)–(17) together with parame-
ters (21)–(22). The initial parameters are a = 1.12, b = 0.86, hb = 0.34, β0 = 0.82π , D1 = 3.6, D2 = 0.1, and the growth parameters and
position constant are s = 0.94, P1r = 0.1, and for (b)–(d), respectively, γ = −α0 = 0.09π, 0.25π, 0.037π , k = 0.93, 0.73, −0.19, d1 =
0.088, 1.0, 2.5, and P1z = 6, 10, 10.2.

where

a1 = πη0k[(sξ1 + d1/k)2 − (sξ0 + d1/k)2],

a2 = 2π

3
[(sξ1 + d1/k)3 − (sξ0 + d1/k)3][cos α0 − cos(α0 + kη0)],

a3 = 2π

3
[(sξ1 + d1/k)3 − (sξ0 + d1/k)3][sin(α0 + kη0) − sin α0],

a4 = π

8
[(sξ1 + d1/k)4 − (sξ0 + d1/k)4][cos 2α0 − cos(2α0 + k2η0)]. (25)

It turns out that z̄ is an increasing function of c2 when other pa-
rameters are given; see Fig. 7(a). Thus, the strategy to achieve
elastic stability for the mushroom cap is to minimize z̄, having
c2 = 0 in the growth function [it is needed that c2 � 0 for
r � 0; see (17)]. Next, for c2 = 0, we examine the turning
upward process, which is described by k decaying from a
positive value to a negative one, to see whether zero c2 value
can have an influence on other growth parameter(s). We study
the behavior of growth functions (in particular, μ2) when
k → 0+. It is found from (19) that when α0 �= 0, μ2 → ∞,
which is physically impossible. On the other hand, when α0 =
0, μ2 has a finite limit value d1�

1/(c sinh �3 sin �1 + D2) as
k → 0+. Thus, for cap turning upward to happen, physically
it is needed that α0 = 0, which leads to γ = −α0 = 0 [cf.
(21)]. This means that forming a depression is physically
not allowed, since it occurs only when γ �= 0; see Fig. 4. In

FIG. 7. (a) The z-coordinate of the center of gravity as a function
of c2, given other parameters as in Fig. 5(b); (b) The volume v as a
function of γ , given other parameters as in Fig. 6(d).

conclusion, to maintain the lowest center of gravity (physical
feature) and to allow turning up to happen (biological feature),
A. muscaria does not develop a central depression. Also, it
turns out that the volume achieves a maximum value for a
nonzero γ ; see Fig. 7(b). Thus, this mushroom never achieves
an extremal volume.

Since M. chlorophos is smaller and shorter, stability against
wind may not be an issue. Therefore, it is not necessary to
impose c2 = 0. Also, its stem penetrates into the cap, which
imposes a further geometrical restriction on the cap [26–28].
Here we take the view that the penetration of the stem into
the cap restricts the position of the depression edge point
such that its coordinate P1r is treated as a growth parame-
ter [which implies that c2 varies with other parameters as
c2 = P1r + (sξ1 + d1/k) sin γ ; see (21)e]. Taking this expres-
sion for c2 into (19), it is found that μ2 tends to a finite
value of [s(ξ1 − �3) sin γ + d1�

1 cos γ ]/(c sinh �3 sin �1 +
D2) as k → 0+, which means turning upward is allowed even
when γ = −α0 �= 0 [cf. (21)]. Since the biological purpose
of turning upward for exposing spores can be achieved for
a nonzero γ , a physical strategy for this mushroom is to
maximize the volume. From Fig. 7(b), one can see that zero
γ actually gives the smallest volume while a nonzero γ can
give a bigger volume and the biggest one at an optimal value.
We note that the growth strategy to have a nonzero γ implies
that a central depression is formed. In conclusion, without
the stability concern, the turning upward (biological reason)
can be achieved for any γ , but physically to achieve a bigger
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FIG. 8. Simulation of the growth of a tomato pericarp. (a, b)
Respectively, the initial and current configurations. (c) The cross
section of (b) and (d) the cross section of a tomato pericarp, which is
adapted from Ref. [42].

or even the biggest volume, it is needed that γ is nonzero,
which explains the formation of a central depression in M.
chlorophos.

V. CONCLUSION

There is a long history for scientists and engineers seeking
inspirations from natural systems (such as mushrooms [29],
octopi [30], bats [31], and plant roots and tendrils [32,33])
to provide ingenious and efficient solutions to complex prob-
lems. Bio-inspired applications inspired by mushrooms are
mainly focused on chemical principles [29], while the shape
adaptivity of their caps during growth is almost ignored. The
green alga Acetabularia acetabulum has a cap-stalk struc-
ture [34,35]: its physical morphogenetic principles [35] were
used to design and to fabricate a novel elastomer structure
(termed baromophs), which may undergo fast, controllable,
and complex shape transformations under applied pressure
[36]. The outcomes of this work allow deriving from the ana-
lytic relations (21) and (22) new physical insights into the

growth parameters and resulting morphologies, which may
bring innovative bio-inspired concepts of material design. For
example, from (21)c, one can deduce that the thickness of
the circular strip h = slog[(a + b)/(ã + b̃)] ≈ shb/a = sha/b
for small hb/a or ha/b. Therefore, h is proportional to the
growth parameter s and the initial geometric quantity hb/a
or ha/b. Moreover, if (b − a)/a is small (the elliptic strip in
R0 is close to a circular one), one can deduce from (21)b that
β = k[π + arctan ( b

a tan β0)] ≈ kβ0. In this case, the central
angle of the circular strip is proportional to the growth pa-
rameter k and the central angle β0 of the ellipse. Thus, once
the explicit expressions for the growth functions have been
obtained, we explicitly know how to adjust such parameters
with external stimuli to generate a wide variety of controllable
morphologies.

Further work will be devoted to integrate morphogens’
diffusion into the elastic model of fungal growth [37]. Some
specific morphogens of fungi have been identified (such
as sirenin, antheridiol, oogoniol, and trisporic acid), while
many others are still debated [38,39]. Moore and Frazer [40]
classified the morphogens into two categories which locally
inhibit and stimulate growth, respectively. The morphogens
are usually dispersed from localized sources and may cover
developing tissues of no larger than about 100 cell diam-
eters within a characteristic time of the same order as the
viscoelastic one [40,41]. The microscopic phenomenon of
morphogens’ diffusion can be integrated within the proposed
stress-free growth model assuming a chemo-mechanical feed-
back driving growth and tissue remodeling. The morphogens
are indeed dispersed from a concentrated source and diffuse
to local areas with a concentration gradient which leads to
differential growth of the local tissues (mushroom cap) and
contain information about cell positioning as well as growth
factors. On one hand, differential growth may yield geomet-
ric incompatibilities within the tissues, which are quickly
released through viscoelastic effects, which drive tissue re-
modeling for achieving a stress-free configuration of the kind
described here. On the other hand, the volumetric expansion
due to growth may affect in turn the morphogen concentration

FIG. 9. Simulation of the development of a walnut shell. (a) The initial configuration and (b–e) the current configurations in different
growth stages during which both the thickness and inner radius of the shell increase. The graph at the top is adapted from Ref. [43] under CC
BY-NC-ND license [44].
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gradient in the tissue, thus further influencing the growth at
later stages. This chemo-mechanical feedback may finally
admit stationary solutions of the kind described here, thus
enhancing the findings of our quasistatic stress-free growth
model.

This type of analytic solution can also generate some
other interesting patterns of biological relevance [42,43] (see
Appendix B, where geometrical meanings of this family of
growth functions are also provided).

ACKNOWLEDGMENTS

We acknowledge from the National Natural Science Foun-
dation of China (Project No. 11702027), the GRF grant
(Project No. CityU 11303718) from the RGC of HKSAR, P.R.
China, and the PRIN 2017 grant “Mathematics of active ma-
terials: from mechanobiology to smart devices,” from MIUR,
Italy.

APPENDIX A: RIEMANN CURVATURE TENSOR

It is well known (see Refs. [23,24]) that the necessary
condition for the local compatibility of the growth metric M =
GT G = FT F (for elastic deformation being a local rotation)
is the vanishing of the associated Riemann curvature tensor
R. For the present problem with M given in (1), R = 0 are
reduced to

1

λ1
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− λ3
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∂λ3

∂�1

]

= 0. (A1)

It turns out that (A1)a is directly equivalent to (13). Also, it is
easy to show that, when (11) and (12) are satisfied, (A1)b−d are
also satisfied. Therefore, the two constraints (12) [with (11)]
and (13) satisfy the necessary condition R = 0.

If, instead of (1), one uses the usual component form for
M (with five nonzero components for an axisymmetric defor-
mation), R = 0 gives a very complicated system of nonlinear
PDEs, from which it is difficult to look for special solutions
for μi (or λi). On the other hand, the two constraints (12)
[with (11)] and (13), derived here through the use of the polar
decomposition and the adoption of the proper basis vectors,
are in simple forms, from which one can find certain special
solutions without much difficulty.

APPENDIX B: EXTRA EXAMPLES

The family of three basis-weighted growth functions and
the corresponding analytical solutions given in (14)–(17) can
be used to describe the morphologies of some plants and
fruits, and here we give two more examples.

1. The donut shape of a tomato pericarp

The tomato is a commonly seen fruit in our daily life and
may have many varieties. One type of tomato has a donut-
shaped pericarp when mature, which may develop from an
initially ellipsoidal pericarp. This growth process turns out
to be well captured by our model by taking certain values of
the growth parameters in the three growth functions and one
integration constant in the solutions.

The initial cross section is an elliptic strip in the ZR-
plane which can still be described by (18) (with β0 = π ),
and as a result the three growth functions are still given by
(19). The current cross section is still a circular strip, which
can still be described by (20). For the initial configuration,
we choose the parameter as a = 3.0, b = 2.4, hb = 0.7, β0 =
π , and for the current configuration we set s = 3.7, k =
1.6, d1 = −1.8, α0 = −0.3π, c2 = 4.3, and C1 = 0. Based on
these parameter values, we plot the initial and current config-
urations in Fig. 8. One can see that the donut morphology of
the tomato pericarp is captured well by the analytical results.

2. The growth of a walnut shell

In Ref. [43] it is reported that during the growth of a walnut
shell, while its inner radius always increases, its thickness
increases gradually and then remains constant at a later stage.
This growth process was studied in the 2D setting in Ref. [18],
and here we revisit it in a more realistic 3D setting.

The initial cross section in the ZR-plane is a half circle,
which can be described by

R = �3 sin �1,

Z = �3 cos �1,

Ra � R � Rb, 0 � �1 � π. (B1)

Correspondingly, from (14), (15)a, and (16)b, we obtain the
growth functions:

μ1 = λ1|g1| = ks + d1

�3
,

μ2 = λ2|g2| = r

R
= sin(k�1 + α0)(s�3 + d1/k) + c2

�3 sin �1
,

μ3 = λ3|g3| = s. (B2)

To simulate the walnut shapes shown in the top graphs
of Fig. 9, we need to fix the involved geometric pa-
rameter values. For the initial configuration described by
(B1), we set Ra = 1, Rb = 1.125, which yields Fig. 2(a).
For the shapes at different growth stages, we take k =
1, α0 = 0, c2 = 0, C1 = 0 and four groups of values for
(s, d1): (1.714,−0.705), (2.143,−1.125), (2.429,−1.393),
and (2.714,−1.554). Then the analytical solution (16) gener-
ates a sequences of patterns shown in Figs. 9(b)–9(e). It can be
seen that the analytical results capture well the morphological
development of the walnut shell. It is noted that, if taking
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Fig. 9(e) as the reference configuration with inner and outer
radii to be 1.2 and 1.5 respectively, then by setting s = 1, the
thickness of the shell will remain unchanged thereafter, while
the inner radius can be adjusted by d1, which can capture the
later growth stage of the walnut shell that the inner radius
increases and the thickness remains constant.

Finally, we point out that, although the extra examples here
and those in the main text mimic different growth processes,
it is possible to put the growth functions in a unified form.
The current configuration is described by (16) and the basis-
weighted growth functions are given by (14), (15)a, and (16)b,
and from these equations, it is easy to deduce that

λi|g̃i| = 1, i = 1, 2, 3 (no summation for i), (B3)

where g̃i is the contravariant basis vector in the current con-
figuration, which can be calculated from the covariant basis
vector g̃i = ∂x/∂�i, where x is the position vector in the
current configuration. Therefore, we have

μi = λi|gi| = |gi|
|g̃i| = |g̃i|

|gi| =
√

g̃ii

gii
, i = 1, 2, 3, (B4)

where gii = gi · gi and g̃ii = g̃i · g̃i are the metric coefficients
in the initial and current configurations, respectively. From
(B4), we may interpret growth functions μi as the square roots
of the ratios of metric coefficients in the current and initial
configurations.
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