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Gene expression is a complex biochemical process involving multiple reaction steps, creating molecular mem-
ory because the probability of waiting time between consecutive reaction steps no longer follows exponential
distributions. What effect the molecular memory has on metastable states in gene expression remains not fully
understood. Here, we study transition paths of switching between bistable states for a non-Markovian model of
gene expression equipped with a self-regulation. Employing the large deviation theory for this model, we analyze
the optimal transition paths of switching between bistable states in gene expression, interestingly finding that
dynamic behaviors in gene expression along the optimal transition paths significantly depend on the molecular
memory. Moreover, we discover that the molecular memory can prolong the time of switching between bistable
states in gene expression along the optimal transition paths. Our results imply that the molecular memory may
be an unneglectable factor to affect switching between metastable states in gene expression.
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I. INTRODUCTION

Phenotypic switching in gene expression, which allows
cells to switch between distinct gene-product states in re-
sponse to internal or external stochastic signals, has been
found in some biological entities, such as bacteria, yeast, and
cancer cells [1–4]. In fact, it has been confirmed that different
states in living systems, such as stem-cell decision, disease
states, and cancer subtypes, are associated with phenotypic
switching, whose probability distribution is multimodality
[5–7]. Thus, understanding how multiple gene-expression
states switch is of significance.

In gene regulatory networks, general mechanisms under-
lying switching between metastable states of gene expression
are positive-feedback gene circuits perturbed by intracellular
and extracellular stochastic signals [8–14], for example, signal
transduction of λ phage lysis [15], T-cell receptor signaling
pathways [16], and the P53 regulatory network [17]. In pre-
vious research, the process of gene expression can be mainly
described by chemical master equations (CMEs), and for lin-
ear biochemical reaction models their analytical solutions can
be analytically given out [18,19]. However, analytical results
for nonlinear gene regulatory models are impossible to be
found since positive feedback in gene regulations are math-
ematically defined as nonlinear functions (for example, Hill
functions). But, this kind of model can be well approximated
by Wentzel-Kramers-Brillouin (WKB) method [20], which
can efficiently find optimal transition paths of switching be-
tween metastable states for multiple-state systems [21].
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How metastable states in gene expression dynamics switch
each other always attracts researchers’ attention [22,23]. The
WKB method is very effective to explore this issue because it
can capture a path switching between two states in the sense
of maximum probability, meaning that this path is the most
likelihood. At present, the WKB method has been success-
fully applied in gene regulatory networks. In detail, Assaf
et al. [23] employed the WKB method to study the dynamical
behaviors of a generic-feedback on-off switch and to obtain
accurate results for probability distributions of messenger
RNA (mRNA) and protein copy numbers and for the mean
switching time. In Ref. [24], they further applied this method
to study a model of a Boolean-regulated genetic switch and
to obtain the result that extrinsic noise can significantly alter
the lifetimes of the phenotypic states. Ruben et al. in Ref. [25]
used the WKB approximation to research the effect of noise
in gene expression on pattering time and boundary position.
Lv et al. in Ref. [26] made use of the WKB method to study
a simplified budding yeast cell cycle model, showing that this
cycle is robust.

It is worth noting that the above examples and models
always assume that biochemical reactions involved in gene
expression to be Markovian processes, that is, next biochem-
ical reactions depend on only current states for a system,
and are uninfluenced by previous states. This memoryless
assumption on biochemical reactions is based on the fact
that the probability distributions of the waiting time between
successive biochemical reaction events follow exponential
distributions [27,28]. However, gene expression is, in real-
ity, a complex stochastic process with multistep biochemical
reaction events [29], such as switching of promoter activity,
chromatin remodeling, histone modifications, transcription
initiation, alternative splicing, recruitment of transcription
factors and polymerases elongating, protein translation,

2470-0045/2021/103(2)/022409(11) 022409-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6647-1153
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.022409&domain=pdf&date_stamp=2021-02-19
https://doi.org/10.1103/PhysRevE.103.022409


HONGWEI YIN, SHUQIN LIU, AND XIAOQING WEN PHYSICAL REVIEW E 103, 022409 (2021)

FIG. 1. A sketch map of gene expression with a self-regulation
circuit.

protein dimers, and so on, see Fig. 1. These multistep
biochemical reactions can add up to form a nonexponen-
tial distribution of waiting time between successive protein
production events, implying that the process of gene expres-
sion possesses the characteristic of the molecular memory.
Moreover, the recent literature [30] showed that the phases
of the inactive promoter in the prolactin gene have differ-
ent probability distributions, implying the existence of the
molecular memory during gene transcription. Besides, mRNA
degradation may also have the molecular memory since the
degradation process consists of multiple small biochemical
reactions [31], for example, in Escherichia coli (E. coli), the
degradation of mRNAs is mediated by the combined action
of endo- and exo-ribonuclease [31]. As a matter of fact, the
molecular memory can obviously affect stochastic dynamical
behaviors of gene expression. For instance, there exists an
optimal strength of the molecular memory that minimizes
the Fano factor of gene bursty expression [32]. Also, the
molecular memory can induce bimodality in the probability
sense for a genetic toggle switch without cooperative binding
[33]. Although the molecular memory of gene expression has
been investigated, some questions remain open, for example,
how would the molecular memory affect optimal transition
paths of switching between metastable states in gene expres-
sion? To answer this question briefly, in this paper we will
introduce a simple gene expression model, which involves a
self-regulation feedback and the molecular memory.

So far, there have been a lot of gene regulatory mod-
els, which are usually described by the CMEs because they
are supposed to be memoryless. Also, there are some works
[34–37] to model the molecular memory by using an implicit
method, that is, all biochemical reaction events and reaction
components involved in gene expression are fully modeled
by the CMEs. But, this straightforward method will be diffi-
cult to identify parameters’ values in the reaction events, and
result in a high-dimension system with more expensive com-
putational complexity, whose analytic solution is rarely given
out. An alternative approach is to simplify the biochemical
reactions in gene regulatory networks into a low-dimension
system by explicitly introducing the molecular memory. For
example, nonexponential probability distributions are used
to describe stochastic waiting times of multistep reaction
processes [35,38]. The mathematical form of this approach
usually involves complex convolutions and is completely dif-
ferent from the classical CMEs [32,33,39,40].

In this paper, we apply the continuous time random walk
(CTRW) theory to model a non-Markovian gene expression

with a positive self-regulation circuit. First, we introduce a
generalized waiting-time probability distribution for a process
of gene expression, and build a generalized CME model.
Second, we obtain a stationary generalized CME model by
some complex calculation. Third, for this stationary model we
adopt the WKB framework to study how the molecular mem-
ory affects the optimal transition paths of switching between
metastable states of this model. We find that the molecular
memory can significantly affect the optimal transition paths
and the switching time.

II. THE NON-MARKOVIAN GENE EXPRESSION WITH A
SELF-REGULATION LOOP

Here, we will build a non-Markovian model of gene ex-
pression with a positive feedback, as shown in Fig. 1. During
the process of gene expression, a gene has two states: the
active state (ON) and the inactive state (OFF), which can
switch each other [41]. Here, we consider the simplest model
of gene expression, in which the gene is always in the active
state. Also, introducing generalized probability distributions
of waiting time between successive protein copy events can
simplify the processes of gene transcription and protein trans-
lation. This simplification is from the viewpoint of queuing
theory, which has been successfully used in Ref. [38]. For
clarity, we list the simplified biochemical reaction events in
the process of gene expression as follows:

DNA
p1(t )−→ DNA + X, X

p2(t )→ ∅, (1)

where X represents the gene product; p1(t ) and p2(t ) are the
waiting-time probability density functions (PDFs) of produc-
ing and degrading proteins, respectively. The mean waiting
time of producing proteins is given by E1 = ∫ ∞

0 t p1(t )dt , and
then 1/E1 is the mean rate of producing proteins.

∫ ∞
t p1(t ′)dt ′

should be read as the probability that protein’s production will
not occur in the time interval [0, t],

∫ ∞
t p2(t ′)dt ′ being the

probability that the degradation of one protein will not occur
in [0, t]. Then (

∫ ∞
t p2(t ′)dt ′)n is the probability that none of

n proteins will degrade in [0, t]. Therefore,

ψ (t, n) = np2(t )

(∫ ∞

t
p2(t ′)dt ′

)n−1

, (2a)

is the waiting-time PDF that one of n proteins will degrade
at time t . Without loss of generality, in the microcosmic scale
our model always assumes that at an instantaneous moment
one protein is either produced or degraded, meaning that pro-
tein’s production and degradation cannot occur at the same
time. Let

φ1(t, n) = p1(t )
∫ ∞

t
ψ (t ′, n)dt ′, (2b)

represent the waiting-time PDF of the event occurring in
which at time t protein’s production occurs but its degradation
does not when the system has n proteins, and let

φ2(t, n) = ψ (t, n)
∫ ∞

t
p1(t ′)dt ′, (2c)
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represent the waiting-time PDF of the event occurring in
which protein’s production does not occur but its degradation
does at time t for n proteins.

Here, our model considers that the positive self-regulation
of gene expression is the Hill function as

f (X ) = α + βX m

X m + K
, (3)

where α is a basic rate of producing proteins, β is a strength
of the feedback, m is the Hill coefficient, K is the parameter
of X needed for half-maximum. Here, we define a function

F (n) = � f
( n

�

)
, (4)

where n is the protein’s copy number, � is the system’s vol-
ume. According to the CTRW theory [42], we can obtain a
generalized chemical master equation (seeing Appendix A for
detail),

∂Pn(t )

∂t
=

∫ t

0

(
E−1 − I

)
M1(t − t ′, n)Pn(t ′)dt ′

+
∫ t

0
(E − I)M2(t − t ′, n)Pn(t ′)dt ′, (5)

where Pn(t ) is the probability of having n proteins at time t ; E
and E−1 are one-step operators with respect to the state of pro-
tein’s copy number n. For example, for a state function ϕ(n),
we define E [ϕ(n)] = ϕ(n + 1) an E−1[ϕ(n)] = ϕ(n − 1)d .
I is a unit operator. M1(t, n) and M2(t, n), respectively,
represent the memory functions for protein’s production and
degradation [42], whose Laplace forms (referring to Ap-
pendix A) are given by

M̃i(s, n) = sφ̃i(s, n)

1 − φ̃1(s, n) − φ̃2(s, n)
, i = 1, 2, (6)

where the notation f̃ denotes the Laplace transform of a func-
tion f with respect to time t . For the model (5), we often focus
on its steady state. Since the model (5) involves a convolution,
we apply the Laplace transform with respect to time t to
Eq. (5). Then, one can obtain

sP̃n(s) − Pn(0) = (
E−1 − I

)
M̃1(s, n)P̃n(s)

+ (E − I)M̃2(n, s)P̃n(s). (7)

Multiplying by s on both sides of Eq. (7) and applying the final
value theorem of the Laplace transform, lims→0 sP̃n(s) = Pn,

yield (
E−1 − I

)
m1(n)Pn + (E − I)m2(n)Pn = 0, (8)

where Pn is the solution to the corresponding stationary
equation of (5). Let m1(n) = lims→0 M̃1(s, n) and m2(n) =
lims→0 M̃2(s, n), and

m1(n) =
∫ ∞

0 p1(t )
[∫ ∞

t ψ (n, t ′)dt ′]dt∫ ∞
0 [

∫ ∞
t p1(t ′)dt ′ ∫ ∞

t ψ (n, t ′)dt ′]dt
, (9a)

m2(n) =
∫ ∞

0 ψ (n, t )
[∫ ∞

t p1(t ′)dt ′]dt∫ ∞
0 [

∫ ∞
t p1(t ′)dt ′ ∫ ∞

t ψ (n, t ′)dt ′]dt
, (9b)

referring to Appendix B.
Some biological experiments have implied that the Erlang

distribution can better fit with some experimental data than the

exponential distribution [36], where the Erlang distribution is
defined as

Er(t ) = μk


(k)
t k−1e−μt , 0 < t < ∞, (10)

k is an arbitrary positive integer and μ is an arbitrary pos-
itive constant. Its mean and variance are k/μ and k/μ2,
respectively. In fact, gene expression following the Erlang dis-
tribution has a reasonable biological explanation: the process
of producing proteins essentially consists of k stages, through
each of which the time to progress is assumed to be the expo-
nential distribution with the mean 1/μ [36], and consequently
the process of gene expression follows the convolution of
k identical exponential distributions. Moreover, we have the
following formula:

k stages︷ ︸︸ ︷
μe−μt ∗ μe−μt ∗ · · · ∗ μe−μt = μk


(k)
t k−1e−μt (11)

where ∗ denotes the convolution. When k = 1, the Erlang
distribution reduces to the exponential distribution with the
mean 1/μ. As k increases, the Erlang distribution becomes
more symmetrical and more closely centered around its mean.
To investigate the effect of the molecular memory on optimal
transition paths of switching between metastable states in
gene expression, we further simplify the waiting-time PDFs of
protein’s production and degradation, that is, p1(t ) and p2(t ),
respectively, follow an Erlang probability distribution and an
exponential probability distribution, that is,

p1(t ) = μk


(k)
t k−1e−μt , p2(t ) = δe−δt . (12)

Our assumption means that producing proteins is non-
Markovian, and degrading proteins is Markovian. For this
case, after performing some calculation, Eq. (9) is rewritten
into

ψ (t, n) = nδe−δt

[∫ ∞

t
δe−δt ′

dt ′
]n−1

= nδe−nδt , (13a)

m1(n) =
∫ ∞

0
μk


(k) t
k−1e−μt [

∫ ∞
t nδe−nδt ′

dt ′]dt∫ ∞
0

[∫ ∞
t

μk


(k) t
′k−1e−μt ′dt ′][∫ ∞

t nδe−nδt ′dt ′]dt

= μk (nδ + μ)−k∑k−1
i=0

[
μi(nδ + μ)−i−1

] = μknδ

(nδ + μ)k − μk
,

(13b)

m2(n) =
∫ ∞

0 nδe−nδt
[∫ ∞

t
μk


(k) t
′k−1e−μt ′

dt ′]dt∫ ∞
0

[∫ ∞
t

μk


(k) t
′k−1e−μt ′dt ′][∫ ∞

t nδe−nδt ′dt ′]dt

=
∑k−1

i=0 [μiδn(nδ + μ)−i−1]∑k−1
i=0 [μi(nδ + μ)−i−1]

= δn. (13c)

We want to uncover what effect the molecular memory has
on optimal transition paths of switching between metastable
states in gene expression. According to the mathematical
meaning of Eq. (4), we take μ = F (n), and then

m1(n) = [F (n)]kδn

[nδ + F (n)]k − [F (n)]k
. (14)
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FIG. 2. The stationary probability distributions and the Fano factors of gene expression. (a) The probability distributions for the different
molecular memories k. α = 0.5, β = 1, K = 5, m = 2, δ = 0.2, and � = 5. (b) The Fano factors in the protein copy number for the different
molecular memory parameter k. α = 0.5, β = 1, K = 5, m = 2, k = 2, and � = 5. (c) The Fano factors for the different feedback strength β.
(d) The Fano factor versus k and β. α = 0.5, K = 5, m = 2, δ = 0.2, and � = 5.

The literature [32,40] has uncovered that the molecular mem-
ory is equivalent to a negative feedback. In Fig. 2(a), using
a generalized Gillespie stochastic simulation method [43],
which can efficiently simulate non-Markovian reaction pro-
cesses, we plot the probability distributions of the protein copy
number for the different strength of the molecular memory k.
We observe that under the fixed parameters, the shape of the
stationary probability distribution of the protein copy number
turns sharp with the increase of k in the waiting-time prob-
ability distribution, implying that the molecular memory can
repress stochastic fluctuation in protein copy number. Here,
we use the Fano factor (F ), a natural quantity to measure
deviation of a given probability distribution from Poisson
distribution with F = 1 and defined as the variance divided by
the mean, to characterize variability in the gene copy number
[5]. We plot the Fano factors of protein’s distributions as the
function of the molecular memory in Fig. 2(b), showing that
the Fano factor decreases with the molecular memory. For
k = 1 (that is, the case of Markov), the probability distribu-
tion of the protein copy number is obviously super-Poisson.
Also, for the weaker molecular memory (such as k = 2),
the probability distributions of the protein copy number are

still super-Poisson. For the stronger molecular memory, the
distributions, however, can be sub-Poisson. Also, for the fixed
parameter k, we show how the strength of the positive feed-
back, β, can affect the Fano factor in gene expression in
Fig. 2(c). We find that the positive feedback can magnify the
Fano factor, as shown in Refs. [44,45]. Then, a natural ques-
tion is what effect the combination of the molecular memory
and the positive feedback has on the probability distribution
in protein’s copy number. Figure 2(d) demonstrates how the
Fano factor in protein’s copy number is affected by the param-
eters k and β. We observe that the larger parameter k can more
significantly reduce the Fano factor even when the feedback
strength is stronger.

III. WKB APPROXIMATION

Define the protein density x in the system’s volume � by
x = n/�. Here, we use the WKB approximation to deal with
the stationary system (8). The WKB ansatz reads

Pn ≈ exp[−�S(x)], (15)
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where S(x) is a mechanical quantity known as the action
[46–48], which is defined by

S(x) =
∫ t2

t1

L(x, x′)dt, (16)

where L(x, x′) is a Lagrangian function and will be given
out in Eq. (18). Substituting Eq. (15) into Eq. (8), doing
some algebra calculation, and keeping the leading order of
�, yield the Hamilton equation in the form H (x, S′) = 0 (see
Appendix C), where H is called the Hamiltonian function and
given by

H (x, λ) = M(x)(eλ − 1) + δx(e−λ − 1), (17a)

where λ = S′ is a conjugate momentum, and

M(x) = m1(x�)/� = [F (x�)]kδx

[x�δ + F (x�)]k − [F (x�)]k

= [ f (x)]kδx

[xδ + f (x)]k − [ f (x)]k
. (17b)

Then, the Lagrangian L(x, x′) in (16) is given by

L(x, x′) = sup
λ∈R

{x′λ − H (x, λ)}. (18)

If k = 1 (that is, the process of producing proteins is Marko-
vian), then M(x) reduces into f (x), which is a classical
feedback function. But, for k � 2, M(x) always depends on
the parameter k, implying that the process of producing pro-
teins has the characteristic of the molecular memory.

In previous studies, which assumed that producing pro-
teins is Markovian, the corresponding Hamiltonian function
is composed of a feedback function of producing proteins and
a function of degrading proteins [23]. Besides these two func-
tions, in our model (17), the Hamilton function H includes
the parameter of the molecular memory k. This is the most
significant difference from the previous studies. Next, we can
write the canonical equations of motion of motion of Eq. (17a)
as follows:

ẋ = ∂H

∂λ
= M(x)eλ − δxe−λ, (19a)

λ̇ = −∂H

∂λ
= −M ′(x)(eλ − 1) − δ

(
e−λ − 1

)
, (19b)

where

M ′(x) = f k (x)kδ2x2 (xδ + f (x))k

(−(xδ + f (x))k + f k (x))
2
(xδ + f (x)) f (x)

βxmmK

(xm + K )2x

− δ f k (x)((− f (x) + δ(k − 1)x)(xδ + f (x))k + f k (x)(xδ + f (x)))

(xδ + f (x))(−(xδ + f (x))k + f k (x))
2 .

The Hamiltonian equations (19) are a two-dimensional dy-
namical system. For the case without the molecular memory
(that is, k = 1), its corresponding Hamilton equations (19) are
given by

ẋ = ∂H

∂λ
= f (x)eλ − δxe−λ, (20a)

λ̇ = −∂H

∂λ
= − f ′(x)(eλ − 1) − δ

(
e−λ − 1

)
, (20b)

where

f ′(x) = βxmmK

(xm + K )2x
.

The present literature mostly focused on finding optimal
transition paths for Hamilton systems without the molecular
memory as Eq. (20), and no literature, as far as we know, stud-
ies it for the Hamilton systems with the molecular memory
like Eq. (19). Equations (19) along the deterministic line of
λ = 0 are described by

ẋ = ∂H (x, λ)

∂λ
|λ=0 = M(x) − δx, (21)

which is a classical rate equation for a deterministic model
for gene expression with the molecular memory. For the pa-
rameters α = 0.2, β = 5, K = 10, m = 10, and δ = 0.2, the
system (21) with k = 1 (i.e, a Markovian process) has an
unique positive equilibrium point, but the system (21) with

the molecular memory (such as k = 2, 3, . . . , 10) has three
positive equilibrium points (one is unstable, and the other two
are all stable), which is shown in Fig. 3(a). This implies that
the molecular memory can induce bistable states [33,40]. For
the different strength of the molecular memory, the mean-
field (21) can have three different positive equilibrium points,
denoted, respectively, by x0, x1 and x2 with x0 < x1 < x2.
Wherein, for the system (21), x0 and x2 are stable points, but
x1 is an unstable point. They are sometimes called the low
(x0), intermediate (x1), and high (x2) states of gene expression,
respectively. To uncover the difference of the positive equilib-
rium points for the different molecular memories, Fig. 3(b)
with δ = 0.35 shows the equilibrium points for the differ-
ent parameter k, implying that the strength of the molecular
memory can reduce the value of the high state (x2) in gene
expression. Furthermore, the Hamiltonian equations (19) also
have three fixed states (x0, 0), (x1, 0), and (x2, 0) in the
two-dimensional phase plane (x, λ), which, for convenience,
are still called the low, intermediate, and high states, respec-
tively. The three fixed states, however, are all unstable saddle
points, referring to Fig. 4. In detail, x0 and x2 are stable on the
local manifold of λ = 0, and unstable on the local manifold
of λ 	= 0, but the stability of x1 is the opposite. Here, for the
model (19) we are mainly interested in the optimal transition
paths of switching between the low and high states of gene
expression. According to Eq. (15), the optimal transition path
means that the action S is minimum along it, implying that
the probability of switching along this path is maximal among

022409-5



HONGWEI YIN, SHUQIN LIU, AND XIAOQING WEN PHYSICAL REVIEW E 103, 022409 (2021)

FIG. 3. (a) The curves of the functions in the system (21). The black line is δx. The red curve is the feedback function f (x) with-
out the molecular memory, the green and blue curves corresponding to the feedback functions with k = 5 and k = 3, respectively. (b)
Equilibrium points versus the strength of the molecular memory k, where the low, intermediate and high states correspond to the points
x0 (stable), x1 (unstable) and x2 (stable), respectively. The parameters are taken as α = 0.2, β = 5, K = 10, m = 10, δ = 0.2 in (a), and
δ = 0.35 in (b).

all possible paths. The optimal transition path of switching
between the states (x0, 0) and (x2, 0) corresponds to the zero
energy (H = 0) in the phase space (x, λ). In this phase space,
(x2, 0) and (x0, 0) are saddle points, but locally stable nodes
on the line along λ = 0 (the zero conjugate momentum). Thus,
the optimal transition path of switching from (x0, 0) to (x2, 0)
is composed of two segments: the first segment is the hetero-
clinic trajectory with nonzero momentum that connects the
point (x0, 0) with the intermediate point (x1, 0); the second
segment is the line of λ = 0 from (x1, 0) to (x2, 0), referring
to Fig. 4. Similarly, the optimal transition path from (x2, 0) to
(x0, 0) is composed of the heteroclinic trajectory with nonzero
momentum connecting (x2, 0) and (x1, 0) and the line of
λ = 0 from (x1, 0) to (x0, 0). Then, the minimum action from

FIG. 4. The phase diagram (x, λ) of the Hamilton system (19).
The points (x0, 0), (x1, 0) and (x2, 0) are all unstable saddle points.
The parameters are taken as α = 0.2, β = 5, K = 10, m = 10, k =
1, and δ = 2.

x0 (the low state) to x2 (the high state) can be given by

Sopt (x0 → x2) =
∫ x2

x0

λopt (x)dx =
∫ x1

x0

λopt (x)dx. (22)

The minimum action from x2 to x0 is similarly given by

Sopt (x2 → x0) =
∫ x1

x2

λopt (x)dx. (23)

Next, we will uncover how the molecular memory affects
the optimal transition paths and the actions Sopt along them.
We have known that for the same parameters in Eq. (19),
the different molecular memories can produce different equi-
librium points [referring to Fig. 3(b)]. To compare how the
molecular memory affects the optimal transition paths and the
actions along them, these paths should have the same starting
and ending points. To this end, we introduce a continuous
rescaled map 
, defined by


(s) =
{

x0 + s(x1 − x0), 0 � s < 1,

x1 + (s − 1)(x2 − x1), 1 � s � 2,
(24)

with 
(0) = x0, 
(1) = x1 and 
(2) = x2. Figure 5, which is
performed by the method of the geometric minimum-action
method [49], shows the optimal transition paths of switching
between the points (x0, 0) and (x2, 0) and their corresponding
actions. Wherein, the rescaled points (2, 0), (0, 0), and (1, 0)
correspond to the high state (x2, 0), the low state (x0, 0), and
the intermediate state (x1, 0), respectively. From Fig. 5(a),
we find that the optimal transition path of switching from the
low state to the high state turns long with the strength of the
molecular memory, the corresponding action also increasing
[referring to Fig. 5(c)]. However, the optimal transition path of
switching from the high state to the low state turns short with
the strength of the molecular memory, and the corresponding
action decreases, as seen in Figs. 5(b) and 5(d). In a word,
for the stronger molecular memory, the switching from the
low state to the high state along the optimal transition path
needs more action than the switching from the high state to the
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FIG. 5. The optimal transition paths and the minimal actions versus the strength of the molecular memory k. (a) The optimal transition
paths of switching from the point (0, 0) to the point (2, 0). (b) The optimal transition paths of switching from the point (2, 0) to the point
(0, 0). (c) The minimal actions along the optimal transition paths in the subplot A. (d) The minimal actions along the optimal transition paths
in the subplot B. The parameters are set as α = 0.2, β = 5, K = 10, m = 10, and δ = 0.35.

low state, but for the weaker molecular memory, the opposite
result occurs. The reason is that the stronger molecular mem-
ory in the gene regulatory network, which implies a longer
mean time to produce proteins, can repress gene expression
essentially. This is one of the main results of our paper.

IV. SWITCHING TIME

Now, we will study the time of switching between the
low state and the high state of gene expression. According
to the calculation method of the switching time in multistep
reactions in Ref. [50] (see Appendix D), the time of switching
from the low state x0 to the high state x2 can be plotted in
Fig. 6(a) for the different parameters k. By a similar method,
we also plot the time of switching from x2 to x0 in Fig. 6(b).
From Fig. 6, we find that the times of switching from x0 to
x2 and from x2 to x0 increase with the parameter k, implying
that the molecular memory can prolong the time of switching
between the low high states in gene expression. This is another
main result in this paper.

V. CONCLUSION

Bistable models of genetic toggle switch have been exten-
sively studied about the production of bistability, stochastic
switching induced by extrinsic or intrinsic signaling, and
the optimal transition paths of switching between metastable
states and so on. In the present literature, the WKB method
is a common method to explore the optimal transition paths
of switching between metastable states for a genetic toggle
switch. It is worth noting that the literature always assumed
that the process of gene expression is Markovian [51], which
is usually modeled by the CME. However, gene expression is
an extremely complex process, which involves plenty of small
biochemical reaction events, such as switching of activity
of genetic promoters, accumulation of transcription factors,
mRNA transcription, posttranscriptional modification, protein
translation, and so on. Completing each reaction event must
go through a waiting time. Consequently, the whole process
of gene expression is no longer Markovian, but governed
by the molecular memory. Although the molecular memory
has been studied in gene expression, the researched questions
mainly focused on how it affects burst in gene expression
[32] and on whether or not it can induce a bimodality in the
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FIG. 6. The switching time versus the molecular memory k. (a) The time of switching from the low state to the high state. (b) The time of
switching from the high state to the low state. The parameters are set as α = 0.2, β = 5, K = 10, m = 10, � = 50, and δ = 0.35.

sense of probability distributions [33]. However, no paper, to
our knowledge, has studied how the molecular memory af-
fects optimal transition paths of switching between metastable
states in gene expression. Here, we have researched the gene
regulatory model with the positive feedback, which is de-
scribed by the generalized CME. We have found that the
molecular memory can induce bistable states in gene ex-
pression. This result is consistent with that in Ref. [33].
In addition, we have shown that the action along the opti-
mal transition path of switching from the low state to the
high state increases with the strength of the molecular mem-
ory, and that it, along with the optimal transition path of
switching from the high state to the low state decreases with
the strength of the molecular memory. Moreover, we have
demonstrated that the time of switching between the low
and high states increases with the strength of the molecular
memory. Our results have implied that the molecular memory
can much affect switching between metastable states in gene
expression.

In this paper, our model is a classical genetic self-
regulation model, and considers neither the promoter archi-
tecture of gene transcription nor switching between the active
and inactive states of promoters on DNA. In fact, biochemical
reactions in gene expression involve multiple transcription
factors regulating the activity of the promoters. Our model
assumes that a gene is always in an active state, and the
positive self-regulatory feedback depends on the quantity of
transcription factors, whose mathematical form is a Hill func-
tion. This feedback is a canonical and a simple form, but
neglects the spatial distribution of regulatory factors and regu-
latory delays. Moreover, our model is very ideal because it has
neglected interaction among regulations of multiple genes. A
canonical example is that the genes lacI and tecR mutually
repress each other in the lac operon of E. coli [52,53]. Finally,
there are some other ways to describe the molecular memory
in gene expression, such as queuing models [54] and delay
models [55,56]. Therefore, our model needs to be further
modified. The above factors will be investigated in our future
work.
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APPENDIX A: A GENERALIZED CHEMICAL MASTER
EQUATION

Our model (5) is a generalized CME, which is non-
Markovian in contrast to the conventional gene regulatory
model that is Markovian. In order to reduce complexity,
we will focus on the biochemical reactions (1). We define
Rk (t, n) as a joint PDF of the waiting time that protein’s copy
number reaches n after undergoing k reaction steps, and then
we have

Rk+1(t, n) =
∫ t

0
[Rk (t ′, n − 1)φ1(t − t ′, n − 1)

+ Rk (t ′, n + 1)φ2(t − t ′, n + 1)]dt ′, (A1)

and R0(t, n) = Pn(t )δ(t ), where Pn(t ) is a probability that
protein’s copy number reaches n at time t ; δ(t ) is a delta
function; φ1(t, n) and φ2(t, n) have been defined in Eq. (2).
Note that the total R(t, n) = ∑∞

k=0 Rk (t, n) is the PDF of
the waiting time that a protein’s copy number reaches n after
undergoing any number of reaction steps. Let

�(t, n) = 1 −
∫ t

0
φ1(t ′, n) + φ2(t ′, n)dt ′ (A2a)

represent the probability that no biochemical reaction occurs
during the time interval (0, t) when the system has n proteins.
Therefore, we have

Pn(t ) =
∫ t

0
R(t ′, n)�(t − t ′, n)dt ′. (A2b)
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Marking the Laplace transform on the both sides of (A1)
yields

R̃k+1(s, n) = R̃k (s, n − 1)φ̃1(s, n − 1)

+ R̃k (s, n + 1)φ̃2(s, n + 1). (A3)

Summing both sides of Eq. (A3) over k, we obtain

R̃(s, n) = R̃0(s, n) + R̃(s, n − 1)φ̃1(s, n − 1)

+ R̃(s, n + 1)φ̃2(s, n + 1). (A4)

Making the Laplace transform on both sides of (A2b) yields

P̃n(s) = R̃(s, n)[1 − φ̃1(s, n) − φ̃2(s, n)]/s. (A5)

Substituting Eq. (A5) into Eq. (A4), we obtain

sP̃n(s) = Pn(0) + R̃(s, n − 1)φ̃1(s, n − 1)

+ R̃(s, n + 1)φ̃2(s, n + 1)

− R̃(s)[φ1(s, n) + φ2(s, n)]. (A6)

Now, we let

M̃1(s, n) = sφ̃1(s, n)

1 − φ̃1(s, n) − φ̃2(s, n)
, (A7a)

M̃2(s, n) = sφ̃2(s, n)

1 − φ̃1(s, n) − φ̃2(s, n)
. (A7b)

According to Eq. (A5), we have

M̃1(s, n)P̃n(s) = R̃(s, n)φ̃1(s, n), (A8a)

M̃2(s, n)P̃n(s) = R̃(s, n)φ̃2(s, n). (A8b)

Inserting Eq. (A8) into Eq. (A6) yields the generalized chem-
ical master equation in the form of the Laplace transform,

sP̃n(s) = Pn(0) + M̃1(s, n − 1)φ̃1(s, n − 1)

+ M̃2(s, n + 1)φ̃2(s, n + 1)

− M̃1(s, n)φ̃1(s, n) − M̃2(s, n)φ̃2(s, n)]. (A9)

Taking the inverse Laplace transform on both sides of
Eq. (A9), we can obtain the master Eq. (5) in the main text.

APPENDIX B: EXISTENCE OF lims→0 M̃i(n, s)

In fact, the existence of the limit lims→0 M̃i(n, s), i = 1, 2 has been shown in Ref. [32]. Here, we restate this proof. In detail,

M̃1 = s
∫ ∞

0 e−st
[
p1(t )

∫ ∞
t ψ (t ′, n)dt ′]dt

1 − ∫ ∞
0

[
e−st p1(t )

∫ ∞
t ψ (t ′, n)dt ′]dt − ∫ ∞

0

[
e−stψ (t, n)

∫ ∞
t p1(t ′)dt ′]dt

= s
∫ ∞

0 e−st
[
p1(t )

∫ ∞
t ψ (t ′, n)dt ′]dt

1 + ∫ ∞
0 e−st d

[∫ ∞
t p1(t ′)dt ′ ∫ ∞

t ψ (t ′, n)dt ′]
=

∫ ∞
0 e−st

[
p1(t )

∫ ∞
t ψ (t ′, n)dt ′]dt∫ ∞

0

[
e−st

∫ ∞
t p1(t ′)dt ′ ∫ ∞

t ψ (t ′, n)dt ′]dt
. (B1)

Thus, we obtain

lim
s→0

M̃1(n, s) =
∫ ∞

0

[
p1(t )

∫ ∞
t ψ (t ′, n)dt ′]dt∫ ∞

0

[∫ ∞
t p1(t ′)dt ′ ∫ ∞

t ψ (t ′, n)dt ′]dt
. (B2)

Similarly, we can obtain

lim
s→0

M̃2(n, s) =
∫ ∞

0

[
ψ (t, n)

∫ ∞
t p1(t ′)dt ′]dt∫ ∞

0

[∫ ∞
t p1(t ′)dt ′ ∫ ∞

t ψ (t ′, n)dt ′]dt
. (B3)

APPENDIX C: DERIVATION FOR THE HAMILTONIAN FUNCTION

Here, we give out the detailed derivation for the Hamiltonian function (17a) from Eq. (8).
We can rewrite (8) as the following form:

m1(n − 1)Pn−1 + m2(n + 1)Pn+1 − [m1(n) + m2(n)]Pn = 0. (C1)

As usual, we assume � 
 1, and let x = n/�. The transition rate mr (n) = mr (�x), r = 1, 2, can be represented as the
following expansion in �:

mr (n) = mr (�x) = �Mr (x) + ur (x) + O

(
1

�

)
, (C2)

where x and the scaled transition rates Mr and ur are O(1). Now, we approximate Eq. (C1) by using the WKB method. Assume
that the stationary probability Pn has the form of the WKB ansatz,

Pn ≈ exp[−�S(x)]. (C3)

022409-9



HONGWEI YIN, SHUQIN LIU, AND XIAOQING WEN PHYSICAL REVIEW E 103, 022409 (2021)

This ansatz and Eq. (C2) are substituted into the master equation (C1), yielding

0 =
[
�M1

(
x − 1

�

)
+ u1

(
x − 1

�

)
+ O

(
1

�

)
exp

[
−�S

(
x − 1

�

)]
+

[
�M2

(
x + 1

�

)
+ u2

(
x + 1

�

)
O

(
1

�

)]
× exp

[
−�S

(
x + 1

�

)]
−

[
�M1(x) + u1(x) + �M2(x) + u2(x) + O

(
1

�

)]
exp[−�S(x)]. (C4)

In the above equation, the functions of x ± 1/� are performed
by a Taylor series expansion, that is,

M1(x − 1/�) = M1(x) − M
′
1(x)/� + O(1/�), (C5a)

u1(x − 1/�) = u1(x) − u
′
1(x)/� + O(1/�), (C5b)

M2(x + 1/�) = M2(x) + M
′
2(x)/� + O(1/�), (C5c)

u2(x + 1/�) = u2(x) + u
′
2(x)/� + O(1/�), (C5d)

S(x ± 1/�) = S(x) ± S′(x)/� + O(1/�). (C5e)

Substituting the above approximations into Eq. (C4), one can
obtain the leading order term of �, as follows:

0 = M1(x)exp[−�S(x) + S′(x)] − M1(x))exp[−�S(x)]

+ M2(x)exp[−�S(x) − S′(x)] − M2(x)exp[−�S(x)].

(C6)

Multiplying both sides of Eq. (C6) by exp[−�S(x)] yields

0 = M1(x)[exp[S′(x)]−1] + M2(x)[exp[S′(x)]−1]. (C7)

Let M1(x) = M(x), where M (x) has been defined in Eq. (17b),
M2 = δx and S′(x) = λ. Finally, one obtains

H (x, λ) = M(x)
(
eλ − 1

) + δx
(
eλ − 1

)
, (C8)

which is the Hamiltonian function in the main text.

APPENDIX D: SWITCHING TIME OF THE
GENERALIZED MULTISTEP REACTION SCHEME

We here give out the formula to calculate the time of
switching of multistep biochemical reactions. According to
Ref. [50], the time of switching from the low state x0 to the
high state x2 can be given by

τ = 2π

w+(x0 )

exp
[− ∫ x1

x0
(u+/w+ − u−/w−)dx

]
√|S′′(x1)|S′′(x0)

× exp[�[S(x1) − S(x0)]], (D1)

where

S(x1) − S(x0) =
∫ x1

x0

ln [w−(x)/w+(x)]dx.

For our model, we have

w+ = [ f (x)]kδx

[xδ + f (x)]k − [ f (x)]k
, u+ = x�M ′(x), (D2a)

w− = δx, u− = δx� (D2b)
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