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Channel current fluctuations conclusively explain neuronal encoding
of internal potential into spike trains
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Hodgkin and Huxley’s seminal neuron model describes the propagation of voltage spikes in axons, but it
cannot explain certain full-neuron features crucial for understanding the neural code. We consider channel current
fluctuations in a trisection of the Hodgkin-Huxley model, allowing an analytic-mechanistic explanation of these
features and yielding consistently excellent matches with in vivo recordings of cerebellar Purkinje neurons, which
we use as model systems. This shows that the neuronal encoding is described conclusively by a soft-thresholding
function having just three parameters.
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I. INTRODUCTION

Hodgkin and Huxley developed their neuron model to de-
scribe the propagation of voltage spikes (action potentials)
in giant squid axons [1]. This model describes the spike ini-
tiation and shape remarkably well, but it is now generally
thought that information is conveyed by the intervals between
spikes rather than the shape of the spikes. Unfortunately, the
model cannot explain the apparent stochastic variability of
these intervals in biological neurons in vivo. The importance
of spike intervals has been emphasized by experiments us-
ing electrical activation of the synaptic input of dendrites,
showing that the mean axonal output spike frequency tends
to be linear in input [2], down to a limit. Such a function
performs soft thresholding [max(0, a(x − b)) for input x; a,
b constants] and is known as a rectified linear unit (ReLU). It
has recently attracted wide attention as a powerful informa-
tion processing element in the machine learning and statistics
communities [3].

The Hodgkin-Huxley model is an equivalent circuit of ion
channels exporting potassium (K+) and importing sodium
(Na+). The K and Na channels are assumed to be uniformly
distributed, which is representative of the axon. However, for
the full neuron, the spatial distribution of these channels is
nonuniform. The density of functional Na channels is higher
in the axon initial segment than in the cell body (soma) and
its dendritic neighborhood [4], and the opposite density holds
for the K channels. To reflect these differences in distribution,
we divide the neuron into into a distal compartment covering
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the dendrites distal from the soma, a proximal compartment
covering the soma and proximal dendrites, and an axon initial
segment compartment, as shown in Fig. 1. This corresponds
to dividing the Hodgkin-Huxley circuit into three subcircuits
by two axial resistors, Rd p and Rpa [Fig. 2(a)].

II. RESULTS

First, we were able to derive the probability density of
spike intervals analytically using recent progress in first-
passage time theory. Second, by comparing the theoretical
density with in vivo electrophysiological spike train record-
ings from cerebellar Purkinje neurons, we found excellent
matches [e.g., Fig. 2(b)], allowing us to infer not only what
the neuron can do, but also what it cannot do. Third, from
this density we derived an expression for the encoding (activa-
tion) function, forming a soft-thresholding function. Its input,
gain (slope), and offset (bias) directly correspond to the three
model parameters.

III. RELATED WORK

In 1964, Gerstein and Mandelbrot [5] formulated the spike
interval distribution as a first-passage time problem, where

FIG. 1. Confocal photomicrograph of Purkinje neuron. The
photo has been edited by removing neighboring cells and enhancing
resolution, contrast, and sharpness. The stylized image shows the
division into three compartments.
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FIG. 2. Circuit model and validation. (a) Division of the
Hodgkin-Huxley model into three compartments by resistors Rd p and
Rpa. Symbols R, C, V , I denote resistances, capacitances, potentials,
and currents, respectively; indexes d , p, a denote distal, proximal,
and axon initial segment compartments, respectively. (b) Comparison
of the model’s first-passage time distribution and inter-spike interval
(ISI) histogram of the electrophysiological recording showing a typ-
ical, nearly perfect match (recording ID: HWP12).

a spike is generated when the internal potential—described
as a stochastic process—crosses a threshold. They used ran-
dom walks to a fixed boundary, and in 1967, Gluss [6]
introduced an exponentially shrinking boundary. However,
this early work was hindered by the lack of knowledge
of ion channel properties, which was only obtained after
the invention of the patch-clamp recording technique in
1976 [7].

From a theoretical point of view, efficient techniques for
solving first-passage problems with moving boundaries were
not generally known and still require nontrivial mathematical
tools today. Consequently, much of the work has focused on
empirical (phenomenological) models, which have the inher-
ent advantage of fitting data very precisely. A disadvantage
of this approach, compared to mechanistic models, which
are based exclusively on biophysical principles, is that only
the latter provide explanations, as discussed by Craver [8].
However, it is harder for mechanistic models to fit experimen-
tal data [9]. The ultimate challenge—and our objective—is,
therefore, to find a conclusive model, i.e., a mechanistic model
with the minimal number of parameters that fits data as well
as any empirical model.

Two-compartment models have been proposed for biologi-
cal reasons [10,11], e.g., based on the structural observation
that only the distal dendrites have spiny branchlets, and
because of the limitations of single-compartment models.
Rospars and Lánský [12] noted that the single-compartment
integrate-and-fire model counterintuitively resets the memory
of the entire neuron for every spike. Naundorf et al. [13]
pointed out that biological neurons display a sharp kink at
the spike onset, which single-compartment models cannot
achieve, but Brette [14] showed that compartmentalization
can solve this problem. On the other hand, the difficulty
to analyze many-compartment models theoretically has also
contributed to the popularity of two-compartment models
[12,15–17]. Nevertheless, the mathematical treatment has re-
mained difficult [18, includes a review]. A comprehensive
review of currently popular models can be found in other
work [19].

It is often assumed that the variability is caused by spike
arrivals at synapses, but synaptic inputs alone cannot ex-
plain spike train variability, because Purkinje neurons fire
spontaneously with variable intervals even if synaptic inputs
are pharmacologically disabled [20]. It has alternatively been
suggested that channel current fluctuations contribute to vari-
ability [21,22], and modulated current injection experiments
in vitro for cortical interneurons have pointed to an important
role of K channels [23].

IV. THEORETICAL MODEL

We are only interested in the spike intervals; therefore, we
consider only the internal potential between the spikes, in the
vicinity of the “resting” potential [25], which we define as
zero for simplicity. Standard circuit theory describes the three-
compartment model in Fig. 2(a) by the equations

Cd
dVd

dt
= −Vd

Rd
− Vd − Vp

Rd p
− Isyn, (1)

Cp
dVp

dt
= −Vp

Rp
+ Vd − Vp

Rd p
− IK − Vp − Va

Rpa
, (2)

Ca
dVa

dt
= −Va

Ra
+ Vp − Va

Rpa
− INa. (3)

These equations look deceptively linear, but nonlinearities
lurk in the channel currents IK and INa. Isyn is the synaptic
current, IK is the positive (polarizing) current exported by K
channels in the proximal compartment, and INa is the negative
(depolarizing) current exported by Na channels in the axon
initial segment. These Na channels are voltage dependent,
INa = INa0 eαVa , where INa0 and α are constants (the latter
known as the logarithmic voltage sensitivity) [26].

The potassium current is of premium interest here. It can
be divided into two components, IK = Ifast + Islow [20,26–
28]. Component Ifast is a strong transient current generated
by voltage-gated K channels and big-conductance calcium-
gated K channels, together creating the quickly falling edge
of the most recent spike, seen to the left in Fig. 3, which
shows a sample simulation of the system. This current de-
cays exponentially and can be written Ifast = IK0 e−t/τK , where
IK0 is a constant describing the initial current and τK is the
time constant. In mice, its mean±standard deviation has been
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FIG. 3. Simulation example. Solution of model equations (1)–
(3). Here, a spike is triggered after 7 ms, upon the first threshold
passage of Vp. The generating program is provided in the Supple-
mental Material [24, section 5].

measured to 0.28 ± 0.01 ms (six samples) [20]. The other
component, Islow, is weaker but persistent and is generated
by the intermediate- and small-conductance calcium-gated
K channels known as SK channels [26,27]. We model this
current by the number n of open channels, each passing the
constant elementary channel current i, Islow = i n.

Importantly, the SK channels open and close stochasti-
cally; therefore, the number of open channels varies over time,
n = n(t ), creating channel noise. For example, Hirschberg
et al. [28] studied clones of the SK-channel subtype found
in Purkinje neurons [29] and measured open durations expo-
nentially distributed with mean durations between 1.2 ms and
11 ms.

Assuming that the ion channels are independent, n can
be modeled as a queueing process of Poisson arrivals having
rate λ, representing the channel opening events, and exponen-
tially distributed service duration with mean τ , representing
the channel open duration. The equilibrium value ρ of n
equals λτ , and we can define a noise current Ich � Islow − iρ
= i(n − ρ).

It has been shown [30] that (n − ρ)/
√

ρ approaches an
Ornstein-Uhlenbeck process for large ρ, such that Ich is de-
scribed by the stochastic differential equation

dIch

dt
= − Ich

τ
+ i

√
2λτ ξ, (4)

where ξ is zero-mean unit-variance white Gaussian noise.
Assuming stationary synaptic input during a spike inter-

val, we consider Vd to be nearly constant, because τd is
large compared to τp and the interval length, where τd and
τp = CpRpRd p/(Rp + Rd p) are the time constants for the distal
and proximal compartments, respectively. This is supported
by our patch-clamp measurements, which show that synaptic
input is heavily low-pass filtered on the way to the proximal
compartment (Fig. 4). On the other hand, Ca � Cp, because
the axon initial segment is much smaller than soma, so we
model the axon initial segment as a level detector [14].

For subthreshold Vp, Eq. (2) can be written

Cp
dVp

dt
= Vd

Rd p
− Vp(Rp + Rd p)

RpRd p
− IK, (5)

FIG. 4. Measurements. PF = parallel fiber. (a) Mean and stan-
dard deviation (in gray) of PF-evoked responses in dendrites and
soma (12 samples) of Purkinje neurons when PFs are electrically
stimulated. Curves offset vertically for clarity. (b) Dendritic attenua-
tion. Power spectrum of PF-evoked signals in the dendrite and soma.
Dashed lines indicate linear regressions.

Equation (5) is a second stochastic differential equation driven
by the colored noise Ich via IK. We can use the fact that τ � τp

(Llano et al. [11] measured τp in the range of 0.2–0.4 ms in
vitro in rat Purkinje neurons), and apply a technique from
Stratonovič [31] using stochastic equivalence to transform
Vp to an Ornstein-Uhlenbeck process x. This conversion is
described in detail in the Supplemental Material [24, section
2], and results in the first-passage boundary condition

x(t ) < σ∞ + σ1 e−t/τ + σ2 e−t/τK + σ3 e−t/τp (6)

for x defined by

dx

dt
= − x

τ
+

√
2ξ,

where σ∞, σ1, σ2, and σ3 are dimensionless constants. σ∞ is
the normalized distance between the spiking threshold and the
resting potential, and becomes a linear function of the input.

The Na channels are inactivated for some time after a spike.
During this refractory period, the probability of spiking is
low, hiding the last two exponential terms of Eq. (6). We
can include the refractory period in the model by capping the
boundary with the ceiling σmax by using a smoothed minimum
or log-sum-exp function,

σ (t ) � − log[e−σmax + e−σexp(t )],

where, letting σ0 � σ∞ + σ1,

σexp(t ) � σ∞ + (σ0 − σ∞)e−t/τ .

We can now write the boundary condition as

x(t ) < σ (t ), (7)

having the free parameters τ , σ∞, σmax, and σ0. Given a
recording, the identification of these is an inverse problem,
requiring a fast method for solving forward first-passage
problems with moving boundaries. Such a method based on
time-variable eigenfunction expansion was recently proposed
[32], and details are provided in the Supplemental Material
[24, section 2].

The solution of the first-passage time problem is the
theoretical spike-interval cumulative distribution function
F (t ). We can calculate the parameter values by fitting the
probability density dF/dt to the inter-spike interval
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histogram—or better, the kernel density estimator—of a
recorded spike train.

V. EXPERIMENTAL VALIDATION

We performed two series of recordings: the first to ver-
ify that synaptic input is low-pass filtered on the way to
the soma and the second to collect spike trains. We carried
out the recordings as previously described [33–35], but here
for Purkinje neuron dendrites and somata in lobule V of
the pars intermedia of the cerebellar anterior lobe of cats.
All procedures on animals were approved in advance by the
Malmö/Lund Animal Research Ethics Committee (permit
number and approval-ID: M32-09).

To investigate dendritic damping in vivo we used lo-
cal electrical stimulation of parallel fibers by single 0.2-ms
square current pulses and whole-cell recordings from den-
drites and somata [12 samples each; Fig. 4(a)]. We included
only recordings containing low-threshold responses to avoid
triggering spikes that would bias the measurements. Somatic
recordings—performed with lowered internal potential (hy-
perpolarization), again to avoid action potentials—disclosed
slow, flat responses to the stimulus [Fig. 4(a)]. The power
spectra of the signals recorded from dendrites and soma are
shown in Fig. 4(b), indicating a roll-off of 20 dB per decade
and confirming that the effect of distal synaptic input on high
frequency variability at the soma is small.

To collect spike trains, we used long (>1000 intervals, cor-
responding to ≈23 s total duration) extracellular recordings
of Purkinje neuron somata (14 samples) without stimula-
tion while ensuring their stationary behavior. By severing the
cerebro-cerebellar connection, we ascertained that the record-
ings could be performed undisturbed by internally generated
signals from the neocortex or by any degrading influences on
the neuronal network or neuron membranes due to anesthetics.
Details of the recordings, including the recorded spike trains,
can be found in the Supplemental Material [24, sections 3
and 6].

We analyzed the spike train data (14 samples) and esti-
mated parameter values by fitting the theoretical probability
density dF/dt to the spike train kernel density estimators. As
the fitness function, we used 1 − R2, where R2 is the coef-
ficient of determination. Details of the statistical procedures
and the source code of the analysis tool INSTANT are given in
the Supplemental Material [24, sections 4 and 5].

As a result, we found that the fits were excellent, achieving
an average R2 of 0.993, where R2 = 1 means identity. An
example is illustrated in Fig. 2(b), and this match is not excep-
tional; the fit is similarly good for all measured spike trains, as
can be seen in the Supplemental Material [24, section 7]. The
optimal value of σmax was nearly the same for all spike trains.
As the fitness was also rather insensitive to this value, we
fixed σmax to 3.3 as a hyper-parameter, reducing the number
of model parameters to three. The mean±standard deviation
of the time constant τ was 5.5 ± 2.7 ms, conforming with the
value 8.6 ± 2.2 ms (ten samples) we measured intracellularly
for another set of Purkinje neurons.

To investigate the linearity of the activation function, we
computed the output spike rate (frequency) as the reciprocal

FIG. 5. Linearity. (a) Activation function. Output frequency as
a function of input current (Isyn, effectively −σ∞). The black dot
identifies recording NWP13. (b) Gain control. The slope is controlled
by the open duration τ .

of the mean spike interval duration,

f = 1

E [t]
=

{∫ ∞

0
[1 − F (t )]dt

}−1

.

This expression yields a function of −σ∞, which is essentially
a rectified linear unit with a rounded corner [Fig. 5(a)] for
measured biological values of the parameters. This property
holds for all measured neurons and is in agreement with pre-
vious experimental results [2]. The parameter τ influences the
slope of f but not its linearity as such for measured biological
values of τ [Fig. 5(b)].

VI. DISCUSSION

The significant congruence between the theoretical and
experimental spike distributions means that the receiving neu-
ron cannot reliably determine values of additional parameters
beyond the triple (σ∞, τ, σ0), unless the lengths of spike trains
are increased beyond a reasonable limit, i.e., the duration of
stationarity.

Adding a fourth parameter is thus redundant and
would reduce the accuracy of the estimates of the other
parameters without any substantial improvement in fitness.
Conversely, we cannot further remove a parameter without
gravely mismatching the theoretical and experimental dis-
tributions. In other words, the Purkinje neuron computes
the soft-thresholding activation function and that is it—no
more, no less. Whereas the neuronal encoding function ap-
pears simple—having only three parameters—its expressional
power should not be underestimated. In a large ensemble of
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neurons operating together, such a function can be surpris-
ingly powerful [3].

What would the biological function of spike train variabil-
ity be for stationary input? The high-frequency jitter in spike
timing may at first appear useless, because it will be removed
when the spike train is low-pass filtered by the receiving neu-
ron. Nevertheless, such jitter does have the important function
of improving the temporal resolution and reducing the dis-
tortion of low-intensity signals in pulse frequency modulated
(PFM) transmission schemes. Were it not for the jitter, only
high-intensity signals, corresponding to short spike intervals,
could be transmitted with high resolution. This principle re-
lates to stochastic resonance [36], which can be illustrated
in the following way: Suppose that we want to digitize an
analog signal by a comparator. Used directly, it delivers only
one-bit (spatial) resolution, but if we dither the analog signal
by adding some high-frequency zero-mean random noise, and
then digitally low-pass filter the comparator’s output, we can
increase the resolution.

Why the emphasis on stationary inputs? In this work,
we have gone to great lengths to guarantee stationarity of
neuronal input (e.g., by statistical testing and isolating the
cerebellum from cortical input). The major reason for this ap-
proach is that we wanted to eliminate the influence of potential
error sources, such as mental processes. However, given an
accurate model for stationary input, we can directly generalize
to the non-stationary case by taking the distal compartment’s
low-pass action into account. It removes the high-frequency
content of input to make it vary only slowly (pseudosta-
tionary). While stationary input is represented by a constant
threshold distance σ∞ via a linear function, nonstationary in-
put is represented by a slowly time-varying threshold distance
σ∞(t ), still via the same linear function, but now following
the low-frequency component of the input. More technical
discussions of the close relation between stationary and non-
stationary behaviors can be found in the papers by Johnson
[37,38].

Although Purkinje neurons offer good model systems, dis-
playing the whole range of cytological features that are found
in neurons in general [39], there are certainly other types
whose behavior differs greatly from Purkinje neurons. Such

neurons need to be studied separately to draw conclusions
about their activation functions.

VII. CONCLUSIONS

The K-channel current fluctuations between spikes, to-
gether with a division of the Hodgkin-Huxley model into
three compartments, explain both the variation in spike in-
tervals and the rectified linear unit characteristics, which are
two features that are essential for the neuron as an infor-
mation processing element. The three-compartment model
allows for analytical derivation of the interspike interval his-
togram, which matches in vivo recordings well. The distal first
compartment integrates the input; the proximal second com-
partment generates a ramp and probes it stochastically; and
the third, axon initial segment third compartment performs
threshold detection and spike initiation.

The Purkinje neuron implements a rectified linear unit with
a rounded corner, comprising only three essential parame-
ters: the internal potential, accumulating the synaptic input;
the proximal K-channel mean open duration, providing the
prominent time constant and the gain of the activation func-
tion; and a delay parameter, corresponding to the bias of the
activation function.
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