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Experimental evidence lends support to the conjecture that cell-to-cell communication plays a role in the
gradient sensing of chemical species by certain chains of cells. Models have been formulated to explore this
idea. For cells with no identifiable sensing structure, Mugler et al. [Proc. Natl. Acad. Sci. (U.S.A.) 113, E689
(2016)] have defined a particular local excitation, global inhibition (LEGI) model that pits nearest-neighbor
communication against local reactions in a noisy environment to suggest how this sensing capability might
arise in a physical system. In this study, we generalize the nearest-neighbor communication mechanism in
the aforementioned LEGI model in order to explore the extent to which the gradient sensing characteristics
depend on the parametrization of the communication itself, as well as on the cell size, the radius of influence
of neighboring cells, and the influence of the background noise. Using our generalization and a collection of
particular candidate communication models, we find that the precision of gradient sensing is indeed sensitive
to the particular communication model, and we derive physical and analytic explanations for these results. The
framework established and the associated results should prove useful in understanding the appropriateness of
particular cell-to-cell communication models in gradient sensing studies.
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I. INTRODUCTION

The motion and biased growth in organisms as a conse-
quence of exposure to a chemical component gradient are
two manifestations of what is called chemotaxis. Chemotaxis
plays a role in wound healing, neuronal network development,
and tumor metastasis. Determining how cells detect such a
gradient, and the extent of this capability, are critical to un-
derstanding the individual and collective dynamics of cellular
chemotaxis.

Studies aimed at understanding chemotactic gradient sens-
ing have traditionally focused on the physical capabilities of
a single cell [1–3]. It is now clear that limiting ourselves to
understanding single-cell gradient sensing does not generally
explain chemotaxis for certain collections of cells [4,5], par-
ticularly when the cells in question do not have any apparent
dedicated organelle that can sense spatial chemical species
biases [3,6–8].

Cell-to-cell communication is a signaling pathway, poten-
tially critical in cell chemotaxis. Signaling is common among
cell networks; however, one could imagine that an intercellu-
lar signal would have to compete with substantial background

noise, and thus it is not obvious whether communication could
be a significant actor in gradient sensing. In fact, experiments
have demonstrated that it is the norm, rather than the excep-
tion, for the concentration of ambient chemical species in the
environment itself to be noisy (see Berg and Purcell [1], who
first made this point in analyzing the sensing of a gradient by a
single cell) and, as a possible consequence, interfere with the
cell’s ability to react to a bias in the exterior field of chemical
species [9–12].

The local excitation global inhibition (LEGI) framework
proposes that the dynamics of a receptor-chemical species
reaction internal to a cell is influenced by both local and
remote externalities [2,3]. The LEGI framework has been
extended to incorporate interactions between cells that form
part of a chain [7,13,14]. Mugler et al. [14], using an adap-
tation of the LEGI approach, proposed a model in which
each cell of a chain has internal cell receptors that sense the
local external chemical species field and the concentrations
present in neighboring cells via distinct, separate receptors.
The latter receptors are thus called communication recep-
tors. In developing their model, they proposed the simplest
possible communication scheme, namely by each cell that
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interacted with its nearest neighbors. Their model includes
a local reaction, coupled with an external diffusive chemi-
cal species and cell-to-cell communication. The background
noise is parametrized by a stochastic process. Using phys-
ically inspired ranges for model parameters, they were able
to determine that their modeled cells can discern differences
in the internal and the communicated signals even when
taking into account noise (see also [9]). This modeling out-
come suggests that cells may be able to sense gradients via
communication.

Obviously, exploring cell chain gradient sensing via mod-
els also depends critically on how the processes are captured
in the model, and most critically, on how the communica-
tion mechanism itself is formulated. The nearest-neighbor
communication scheme is the simplest formulation with a
physically plausible mechanism, but are the induced proper-
ties more appropriate than other models? Work remains to
be done on the experimental side to describe and understand
the specifics of the communication mechanism relevant to
gradient sensing. Given this uncertainty, we are motivated
to examine several alternative communication models. This
paper generalizes the model advanced by Mugler et al. [14]
by introducing a broad framework for the parametrization of
cell interaction. This opens the way for us to systematically
analyze several communication models that result from vari-
ous specializations of the general framework. In doing so, we
can compare various models with regard to their impact on
chemical species sensing in a noisy environment.

This study explores how adopting various alternative mod-
els for communication, derived from a common general
framework, affects the modeled ability of cell collections
to sense a gradient as measured by the signal-to-noise ratio
(SNR). The SNR was suggested by Mugler et al. as a way
to quantify gradient sensing. We will analyze this collection
of models in order to assess how cell size and intercellular
communication radius affect three model outcomes. First, we
estimate the phase and group velocities in order to better
understand how signals and disturbances evolve (spectrally)
as they move through the chain, along the way enhanc-
ing or suppressing the ever present noise that accompanies
these. Second, we compare how the various model alternatives
affect concentration correlations. Finally, the various special-
izations of the general framework are compared with respect
to their SNR, interpreted according to the preceding physical
qualities.

II. THE NEAREST-NEIGHBOR LEGI MODEL

The evolutionary model due to Mugler et al. [14] cap-
tures the reaction equations of a one-dimensional chain of
cells, exposed to a diffusing external chemical species. Its
distinguishing feature is the presence of nearest-neighbor,
cell-to-cell communication of an internal chemical species.
We refer to this model as the nearest-neighbor LEGI
(NNLEGI) model. We refer the reader to [14] for the full de-
tails. Our presentation is brief and is mainly used to introduce
notation and our choice of scaling.

Consider a chain of m cells, each of length a, that are
placed in a field of a diffusing chemical species c(z, t ), where
z represents position and t is time. The dynamics of c(z, t )

TABLE I. Model parameters and their values (from [14]).

Name Symbol Value Units of

No. of cells m 6–100 (1)
Cell length a 10 × 10−6 (m)
Mean external concentration c0 ≈10−9 (mol)
Diffusion coefficient D 50 × 10−6 (m2 s−1)
Receptor binding rate α 105 (s−1)
Receptor unbinding rate μ 1 (s−1)
Intercellular activation rate β 100 (s−1)
Intercellular deactivation rate ν 1 (s−1)
Intercellular communication rate γ 100 (s−1)

are governed by the diffusion equation, with diffusion co-
efficient D. The nth cell in the chain, located at zn, has an
active receptor rn that binds and unbinds the external field
c(zn, t ) := cn with rate α and μ, respectively. The receptor
also activates the local and communicable species xn(t ) and
yn(t ) at the rate β. x is local to each cell while y can be
shared among neighbor cells at a constant rate γ and in a
manner modeled using a communication matrix denoted by
M. The receptor, local, and communicable species are subject
to thermal fluctuations. x and y are activated and deactivated
at the same rate, but the exchange of y between cells leads
to differences in the concentration of x and y in each cell.
This difference between the local and global concentrations
is proposed to be the underlying signal the cell uses to infer
the gradient of the external chemical field. For a summary of
these parameters and corresponding values, see Table I.

We nondimensionalize this system by dividing length
scales z and a by the total length of the system L, multiplying
t by D/L2, and multiplying the concentration of each species
by 1/c0, where c0 is a reference external concentration. Each
rate α, β, μ, ν, and γ is similarly nondimensionalized by scal-
ing by a factor of a2/D. Nondimensionalized, the NNLEGI
model is

ċ = ∇2c −
m∑

n=1

δ
( z

L
− zn

L

)drn

dt
,

ṙn = αcn − μrn + ηn,

ẋn = βrn − νxn + ξn,

ẏn = βrn − ν

m∑
n′=1

Mnn′yn′ + χn, (2.1)

where δ(z) is the (spatial) Dirac delta, dot notation refers to
the temporal derivative, and n = 1, . . . , m. M is given expli-
citly by

Mnn′ = δn,n′ (1 + 2γ /ν) − (δn−1,n′ + δn+1,n′ )(γ /ν),

where δi, j is the Kronecker delta. ηn, ξn, and χn are the
noise terms. As argued in [14], ηn = αcnδFn comes from the
“equilibrium binding and unbinding of external molecules to
receptors” and is in terms of δFn, the free-energy difference
associated with a molecule unbinding from the nth cell. The
units of Fn are those of the Boltzmann constant times tempera-
ture. The zero-mean noise terms, representing thermal effects,
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obey

〈ξn(t )ξn′ (t ′)〉 = δnn′ (βrn + νxn)δ(t − t ′),

〈χn(t )χn′ (t ′)〉 = [δnn′ (βrn + νyn + 2γ yn + γ yn−1 + γ yn+1)

− δn−1,n′ (γ yn−1 + γ yn+1)

− δn+1,n′ (γ yn−1 + γ yn+1)]δ(t − t ′), (2.2)

where δ(t ) represents the temporal Dirac delta. Positive terms
account for the Poisson noise and negative terms account
for the anticorrelation from each exchange. c, r, x, and y
represent mean steady-state solutions, which will be explicitly
described in Sec. IV B.

III. GENERALIZATION OF THE NNLEGI MODEL

We consider a limiting generalization of Eq. (2.1) where
the number of cells is very large, i.e., m → ∞ and a → 0.
Heuristically, this represents the limit of indistinguishable
cells as the cell size is negligible compared to the size of
the domain overall. In this limit, the resulting set of partial
differential equations can be written as

ċ = ∇2c −
∫
C

δ(z − z∗)ṙdz∗,

ṙ = (αc − μr) + η,

ẋ = βr − νx + ξ,

ẏ = βr − νy + γ (w ∗ y) + χ (3.1)

for t > 0 and z ∈ 
, the physical domain. c(z, t ), r(z, t ),
x(z, t ), and y(z, t ) represent continuous concentrations and
are assumed known at t = 0. The random processes η(z, t ),
ξ (z, t ), and χ (z, t ) are now functions of space and time. We
will refer to the term (w ∗ y) as the communication term. It is
the convolution of y and a weight function (kernel) w(z). The
(spatial) convolution is defined as

(w ∗ y)(z, t ) :=
∫ ∞

−∞
w(u)y(z − u, t )du. (3.2)

Certain integrability properties need to be imposed on the
kernel w for this general communication term to be well-
defined. In the following section, we will show that the
simplest approximation of the communication term in fact
leads to the NNLEGI model; however, the manner in which
this generalized communication term is approximated leads
to several other alternative LEGI models with communica-
tion. The purpose of this exposition is to provide a flexible

framework of models that captures a wide range of qualitative
model outcomes.

A. Alternative communication models

To investigate the impact of the communication model in
Eq. (3.1), we focus on the convolution kernel w. The goal of
this section is not only to derive candidate functions for w, but
to provide a motivation for these candidates, and to understand
how various candidates approximate the convolution term in
Eq. (3.2), what errors are invoked during the approximation,
and what physical properties can be expected when employing
them. When the diffusion scale is small compared to the
correlation length of communication, the manner in which
the kernel is mapped onto a discrete cell chain becomes im-
portant. Specifically, some approximations lead to a sensitive
dependence of gradient sensing estimates on the nature of
the kernel. In the discussion that follows, we make use of
finite-difference approximation notation and terminology; for
reference, see [15] or similar text.

We make several simplifying assumptions about the phys-
ical properties of w. First, the kernel cannot have a net effect
on the total amount of the global intercellular species. Hence,
the kernel w has the zero-sum property∫

C
w(z)dz = 0. (3.3)

Secondly, in order to make comparisons with the outcomes
in [14], we specifically limit our analysis to kernels w that
do not endow directional preferences to the fluxes of con-
centration. In other words, we are assuming that w should
be spatially symmetric, i.e., w is an even function about the
origin, and, as a result, the integral of the product of w(z)
with an odd function about the domain C will be zero. This
last property will be important for deriving the generalized
models.

An example of a continuous kernel that satisfies these
properties, wc, which we will use to compare the behavior
of the approximations to, is

wc(z) := d2

dz2

ae−z2/2a2

√
2π

. (3.4)

We analyze the communication operator when the support
of w is small by using a series expansion approach. As in [16],
we expand y into a Taylor series centered at z, obtaining, to
lowest order, a second-order operator approximation. To see
this,

∫ ∞

−∞
w(u)y(z − u, t )du ≈

∫ ∞

−∞
w(u)

(
y(z, t ) − uy′(z, t ) + u2

2
y′′(z, t ) + O(u3y(3) )

)
du

≈ y(z, t )
∫ ∞

−∞
w(u)du − y′(z, t )

∫ ∞

−∞
w(u)u du + y′′(z, t )

∫ ∞

−∞

u2

2
w(u)du. (3.5)

The symmetry and zero-sum assumptions of w imply that
the first two terms in the preceding integral expression are
zero. The remaining term is a number solely dependent on the
structure of the kernel in use. We call this number �1, allowing

us to simply write

w ∗ y ≈ y′′(z, t )
∫ ∞

−∞

u2

2
w(u) du = �1y′′(z, t ).
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Substituting this approximation into Eq. (3.1), we obtain the
differential equation,

ẏ = βr(z, t ) − νy(z, t ) + �1γ y′′(z, t ) + ξ . (3.6)

That is, we find that when the convolution kernel w has rel-
atively small support, i.e., communication can only be shared
among a small fraction of the cells in the entire chain of cells
in a given time, then the convolution can be approximated to
second order with a second derivative operator. The accuracy
of this approximation is in terms of, and depends on, the
smoothness of y, since the magnitude of the terms being
neglected is dominated by the behavior of higher derivatives
of y and the support of the kernel w. To investigate the con-
sequence of the order of approximation of the convolution,
we will also consider the next highest order of convolution
approximation, a fourth-order approximation (the third-order
term drops out as a result of the symmetry assumption on w),

ẏ = βr(z, t ) − νy(z, t ) + �1γ y′′(z, t ) + �2γ y(4)(z, t ) + χ,

(3.7)
where �2 = ∫

w(u)u4/24 du.
Up to this point, we have considered a continuous chain of

cells. To compare our results with those of Mugler et al., we
must ultimately focus on a finite chain of cells and discretize
the preceding partial differential equations. The discretization
of this model forces us to consider an approximation to the
spatial derivative operators in either Eq. (3.6) or Eq. (3.7).
This choice leads to another layer of approximation on top
of the approximation to the convolution operator.

For Eq. (3.6), the simplest approximation to y′′(z, t ) is
given by the centered finite-difference scheme,

y′′(z, t ) ≈ y(z + a, t ) − 2y(z, t ) + y(z − a, t )

a2
, (3.8)

where, again, a = 1/m represents the size of each cell in the
model. This discretization is a second-order approximation,
meaning that the error induced is O(a2y(3) ). This choice coin-
cides with the candidate convolution kernel

w(2,2)(z) := 1

a2
[δ(z + a) − 2δ(z) + δ(z − a)], (3.9)

where δ(z) represents the spatial Dirac delta. In this case,
�1 = 1 and the resulting model leads exactly to the NNLEGI
model. The superscripts in w(n,k) denote that the kernel
induces a kth-order discretization of the nth-order approx-
imation to the convolution operator. Therefore, we have
established a partial differential framework that encapsulates
the NNLEGI model and provides a vehicle in which to under-
stand the communication term through the theory of (linear)
partial differential equations. It is this framework and connec-
tion that motivates us to consider additional communication
mechanisms.

The choice of Eq. (3.9) effectively dictates that each cell
can only communicate with its two adjacent cells per unit
time. However, this modeling assumption need not hold, and
we investigate in this paper the effect of assuming various
ranges of cell communication per unit time. It is important
to distinguish that in the following arguments we are not
supposing that a cell can physically interact with nonadjacent
cells, but simply that communication can reach a larger radius
during a particular model time step. We will define the radius

of influence to be the number of cells directly engaged by the
communication kernel in the communication process, per unit
time. Obviously, the radius of influence for Eq. (3.9) is 3. With
this in mind, we propose the alternative kernel

w(2,4)(z) := 1

12a2
[−δ(z + 2a) + 16δ(z + a) − 30δ(z)

+ 16δ(z − a) − δ(z − 2a)], (3.10)

which represents a fourth-order approximation to the second
derivative term in Eq. (3.6), the induced error is O(a4y(5) ),
and it effectively couples five cells per model time step, rather
than 3.

While the kernel Eq. (3.10) provides a more accurate ap-
proximation to Eq. (3.6), we will want to consider kernels
that also approximate Eq. (3.7). We can similarly discretize
the fourth-degree spatial derivative using a simple central
finite-difference scheme. A kernel that corresponds to a
second-order approximation of the fourth-order spatial deriva-
tive is given by

w(4,2)(z) := 1

a4
[−δ(z + 2a) + 4δ(z + a) − 6δ(z)

+ 4δ(z − a) − δ(z − 2a)], (3.11)

for which �1 = 0 and the second derivative term naturally
drops out.

To summarize, there are two levels of approximation that
we are exploring with these three candidate convolution ker-
nels. When compared to a continuous convolution kernel, we
have presented candidates that functionally act as a second-
and fourth-order approximation to the convolution opera-
tor (3.2). These convolution approximations lead to partial
differential equations with either second-order—Eq. (3.6)—or
fourth-order—Eq. (3.7)—spatial derivatives in y. The dis-
cretization of these spatial derivatives leads to the second
layer of approximation that must be made in the choice of
finite-difference coefficients.

The candidate in Eq. (3.9) represents a choice that leads
to the original NNLEGI model, which approximates both
the convolution operator and subsequent spatial derivative
operator with second-order approximations. The candidate
w(2,4) in Eq. (3.10) also functions as an approximation to the
continuous convolution operator with a second-order approx-
imation, but it approximates the subsequent spatial derivative
to fourth order. Importantly, this second candidate should
behave similarly to w(2,2) in some respects, since both candi-
dates approximate the same operator, but the latter candidate
couples five cells in a given model time step. Finally, the
candidate w(4,2) in Eq. (3.11) approximates the convolution
operator to a higher order, i.e., fourth order, resulting in
a higher spatial derivative that induces additional behaviors
not captured by the preceding two candidates. Each of these
approximations highlight important immediate physical char-
acteristics that must be taken into account during the modeling
process: the radius of influence and the characteristic of the
derivative operator they are replacing. Our analysis will show
that consideration of both the manner in which the convolution
is approximated and the radius of influence play a role in the
gradient sensing outcomes of the particular model.
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Invoking these convolution kernel candidates leads to a
discretization of Eq. (3.1) similar to Eq. (2.1) except with the
generalization

ẏn = βrn − ν

m∑
n′=1

W (p,q)
nn′ yn′ + χn.

The matrix W (p,q)
nn′ has parameters p, q associated with the ap-

propriate communication model w(p,q) described above (and
appropriately chosen boundary conditions).

Before assessing how the various models of the com-
munication mechanism impact gradient sensing, it must be
emphasized that there is no a priori way of knowing which
of these approximations is the one that captures the actual or
appropriate biological communication mechanism. We will be
using the term approximation to emphasize how a particular
communication model is derived.

IV. ANALYSIS OF THE GENERAL AND APPROXIMATE
MODELS

We now turn our attention to understanding how the com-
petition between deactivation, communication, and thermal
noise impacts the ability of the cells to perform gradient
sensing via intercellular communication, as represented by the
various alternative communication models. First, we analyze
the mean dynamics in Fourier space with an aim of determin-
ing the rate at which disturbances travel through a network and
whether the model acts as a filter. As such, it might amplify or
suppress noise. We will also compare the various alternative
communication models with regard to their gradient sensing
capabilities, as measured by the SNR. Along the way, we
will be interested in determining how the radius of influence
impacts the outcomes.

A. Competition between deactivation and communication

We examine the role of deactivation and communication in
the transient dynamics of y. The key parameters are ν and γ .
The noise terms are additive in the rate equations, and we will
drop these in order to focus on the mean dynamics. (Consid-
eration of the noise will be taken up in the next subsection.)
For some field g(z, t ), the Fourier transform is defined here as

ĝ(k, t ) = F (g) := 1√
2π

∫ ∞

−∞
g(z, t )e−ikzdz. (4.1)

Application of the transform to Eq. (3.1) yields

˙̂c = −k2ĉ − αĉ + μr̂, ˙̂y = αĉ − μr̂,

˙̂x = β r̂ − νx̂, ˙̂y = β r̂ − νŷ − γ ŵŷ, (4.2)

where ĉ, r̂, x̂, ŷ, ŵ denote the Fourier counterparts to the orig-
inal space variables. Note that ŵ(k) is solely a function of the
wave number k. The system of ordinary differential equations
Eq. (4.2) is linear and can be represented by a system of
equations whose eigenvalues are distinct for parameter values
given in Table I. To explore model outcomes as a function of
γ , ν, and the choice of model for communication, we consider
the evolution of the system subject to a Dirac δ distribution for
the initial concentration in y at t = 0. In this case, solving the

0
(a) (b)
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-200a

-150a

-100a

-50a

0

ak

I[
v p

]
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v g
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w(2,2)

w(2,4)

w(4,2)
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FIG. 1. (a) Phase velocities corresponding to three approxima-
tions, w(2,2), w(2,4), w(4,2), for the convolution term in Eq. (3.1), and
for the Gaussian-inspired kernel wn, plotted in units of a, the size of
the cell. The nearest-neighbor model uses Eq. (3.9), while Eq. (3.10)
uses a higher-order second derivative approximation, and finally
Eq. (3.11) includes the fourth derivative term to the approximation,
Eq. (3.7). (b) Similarly, the group velocities for these approxima-
tions, in units of a. Figures produced with parameters

√
γ /ν = 10;

smaller ratios decrease the magnitude of velocities, especially for
ak > 1.

resulting differential equations gives

y(z, t ) = 1√
2π

∫ ∞

−∞
ŷ(k, 0)eikze−t[γ ŵ(k)+ν]dk. (4.3)

From Eq. (4.3), it can be read off that the dispersion relation
for this differential equation is given by

ω(k) = i[γ ŵ(k) + ν].

We note that γ � 0 and ν � 0, with the physically relevant
parameter regime γ > ν. For this range of parameters, the
solution is highly dispersive due to the communication mech-
anism. With the dispersion relationship in hand, the phase and
group velocities are, respectively,

vp = ω(k)/k and vg = dω

dk
.

For
√

γ /ν = 10, Figs. 1(a) and 1(b) depict the phase (vp)
and group velocities (vg), respectively, for the various commu-
nication models and their associated w(p,q). We also include in
this analysis the velocities for the continuous communication
kernel Eq. (3.4). It is helpful to think of ak as an estimate of
the roughness of the external gradient. We note that ŵ(0) = 0,
since mass is conserved. For small wave numbers, ŵ(k)/k →
0, while ν/k → ∞ (large wavelength) disturbances are pri-
marily dominated by deactivation, with parameter ν, relative
to communication with parameter γ . Large-scale disturbances
are similar, regardless of the communication model.

It is in the analysis of the velocities at larger wave numbers
where the physical interpretation of the convolution kernels
and their impact on gradient sensing becomes significant. The
qualitative analysis from these velocities will be critical to
understanding the gradient precision calculations performed
in Sec. IV B.

For larger wave numbers, the communication term domi-
nates the dynamics. The communication term can potentially
improve the discernment of signal structure by the cell net-
work (as compared to a model with no communication term).
The various alternative communication models handle small-
scale disturbances differently, as is evident in the dispersion
relations plotted in Fig. 1(a). The continuous case has the
smallest dispersion and variation in the group velocity. Higher
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FIG. 2. Spatial autocorrelation R(p,q)(z, t ) of Eq. (4.3) for the
three communication kernels w(2,2), w(2,4), and w(4,2), respectively,
plotted with lag in units of a. For each R(p,q)(z, t ) the snapshots of
the decaying autocorrelations are taken at times t = 0.01 (highest R
at zero lag), 0.05, and 0.1 (lowest R at zero lag). Autocorrelations
of the two second derivative approximations, w(2,2) and w(2,4), are
nearly indistinguishable for t � 0.05. Here

√
γ /ν = 10.

dispersion, as is evident in the alternative models, means that
a signal will develop a time and space dependence as it propa-
gates through the network. In the large wave-number regime,
the phase velocity is monotonic for the model associated with
wn, but not for the other (truncated) approximations. We see
from Fig. 1 that the various models induce differences in
qualitative and quantitative behavior.

Analyzing the candidate kernels in Fig. 1, both w(2,2) and
w(2,4) induce velocities that are similar quantitatively and
qualitatively, and these in turn are different from w(4,2) quan-
titatively. In particular, there is a slight shift in the peaks of the
velocities of w(4,2) toward larger wave numbers. The figures
suggest that the choice of communications model is more crit-
ical than the radius of influence in modeling gradient sensing
differences. The continuous kernel, too, has a shift in the peak,
but toward smaller wave numbers. For wave numbers greater
than the cell size, we expect interaction with noisier parts of
the signal spectrum. Therefore, both the scale and location
of the peaks of these velocities impact the amplification of
noise. Since the continuous kernel has phase velocity peaks of
much lower relative magnitude that also center around smaller
wave numbers, we expect this kernel to induce better cellular
precision and a higher signal-to-noise ratio when compared
to the discrete convolution kernels—but the precise extent of
this impact is indeterminable from Fig. 1. The impact of the
placement and scale of the peaks of the velocities correspond-
ing to w(4,2), in particular, would possibly indicate both higher
precision—because the magnitude of velocities corresponding
to larger wave numbers is small—but also lower precision—
because the peak of the velocities is skewed toward much
noisier frequencies.

In summary of our dispersion analysis, the dispersion re-
lation suggests that the competition between deactivation and
communication leads to a nontrivial transient aspect to gradi-
ent sensing and transport and thus to a coupling of space and
time (with a finite correlation length) of the signaling process.

We also consider the autocorrelation of the solution
Eq. (4.4) induced by the three discrete convolution kernels.
Autocorrelation, a measure of the spatiotemporal coupling
that results in the competition of the deactivation and com-
munication, is quantified in Fig. 2 and denoted by R(p,q) for
the various models w(p,q). R(2,2) and R(2,4) are comparable in

space and time and nearly identical for t � 0.05, while R(4,2)

has a noticeably longer sustained autocorrelation. It appears
again that the radius of influence has a smaller impact on
physical results when compared to the nature of the model:
it is the analytic properties of w(4,2) and the nature of its
approximation to the convolution term that induce a much
larger lag for a given time and therefore a more complicated
communication model.

Finally, a simple calculation following Eq. (4.3) provides
a deeper layer of insight into this competition between com-
munication, diffusion, and deactivation in the transient phase.
The analysis will focus on the second-order model trunca-
tion, which can be carried farther analytically, but it is clear
from what follows that the fourth-order differential operator
approximation would yield a similar procedure and story.
Assuming ŵ(k) is sufficiently smooth, we can represent it in
terms of a Taylor expansion about a cell location, which we
truncate at the quadratic term. Keeping our original assump-
tions about w (w is even), we can simplify this series and write
the stationary-phase solution as

y(z, t ) ≈ e−tν

2π

∫
e−i[kz−iγ k2/2ŵ′′(0)t]dk, (4.4)

for which a closed-form solution for an approximation of
y(z, t ) exists, viz.,

y(z, t ) ≈ e−tν− z2

2ŵ′′ (0)γ t

√
2πŵ′′(0)γ t

, (4.5)

where ŵ′′(0) is understood to be the coefficient of the second-
order term in ŵ. Having this expression enables a fruitful
analysis of the species’ dependence on the parameters ν, γ .

There are three immediate conclusions that can be drawn
from formula (4.5). First, for a fixed t , γ affects the vari-
ance of the distribution of y. This matches the intuition and
physical reasoning that γ , being the communication param-
eter, diffuses the species y among the cells in the system.
Similarly, ν acts only as a rate of exponential decay. This
again intuitively matches our expectation that ν controls the
rate of deactivation of y. Lastly, when t is relatively small,
the importance of the diffusive term, and thus γ and the
choice of communication model, are greater than ν. Setting
the argument of the exponential in Eq. (4.5) to zero, it is
possible to find a space/time horizon, which is approximately
defined as z/t = ±√

ν2ŵ′′(0)γ . Taking this into account and
the decaying nature of y as a function of time, it is thus
expected that the autocorrelation of y begins compact, decays
to zero for large distances, and relaxes in time. With this
analysis, it is not difficult to reason about the behavior of more
general kernels than those considered here, especially those
that do not respect spatial symmetry, which would manifest in
advective-like behaviors.

B. Signal-to-noise ratio

Having focused on the competition of deactivation and
communication, we now consider how these forces are af-
fected by the presence of noise intrinsic and extrinsic to each
cell in the network. In [14] it is argued that gradient sensing
for a given network can be assessed by computing the SNR
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of the difference between the internal and communication
signals relative to the noise in the system (see below for the
precise definition). In this section, we derive the SNR again
and analyze the SNR induced by the four convolution kernel
candidates considered heretofore.

In the first step in our SNR derivation, we give the mean
steady-state solutions to Eq. (3.1). Assuming appropriate
boundary conditions, we denote c as the steady-state solution
for the concentration c, which satisfies ∇2c = 0. A simple
form for the concentration c that obeys this equation and
boundary conditions varies linearly in space with slope g such
that ag/c � 1. We will assume this form for c. The remaining
steady-state solutions are

r = α

μ
c, x = β

ν
r = βα

μν
c,

y = F−1

{
β

ν
F (r)

1 + γ

ν
F (w)

}
= αβ

μν
F−1

{ F (c)

1 + γ

ν
F (w)

}
,

(4.6)

where F is the spatial Fourier transform defined previously.
Now, turning to the discrete setting for the rest of this section,
the last line in Eq. (4.6) becomes

yr
n = αβ

μν

m∑
n′=1

K (p,q)
nn′ cn′ , (4.7)

where K p,q
nn′ = (W p,q )−1

nn′ . When γ = 0, there is no communi-
cation, and y = x. When the communication term is nonzero,
the deviation of y from x provides an indication of the impact
of communication on the system and if the cell is near higher
concentrations of c. To this end, we follow [14] and define the
following deviation of mean states:

�n = (xn − yn). (4.8)

The ability for a cell to detect the gradient of the external
chemical field among a noisy background is the ratio of the
square of this mean deviation and the variance in species
concentrations of x, y,

SNR =
(

�n

δ�n

)2

, (4.9)

where (δ�n)2 = (δxn)2 + (δyn)2 − 2Cxy
nn′ , and Cxy

nn′ is the
cross-correlation between x and y. To calculate the variances,
we start by computing the power spectra of r, x, and y: Srr ,
Sxx, and Syy. We must make a series of assumptions for the
relevant timescales: the integration time T is longer than the
receptor equilibration time, messenger turnover time (1/ν),
and messenger exchange time (1/γ ) (we borrow these as-
sumptions from [14], which describes them in more detail).
Under these assumptions, covariances in long-time averages
are given by the low-frequency limits of the power spec-
tra, Cxy

nn′ = limω→0 Sxy
nn′ (ω). In the discrete setting, Ref. [14]

invokes the fluctuation-dissipation theorem, makes a linear
noise approximation, and provides a derivation of Srr

n , which
we use unaltered in our generalization,

Srr
nn′ (ω) = 2αcn

μ2

{
1 + α

2πaD , n′ = n,
α

4πaD
1

|n−n′| , n′ = n.
(4.10)
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FIG. 3. Precision of gradient sensing with temporal integration.
Signal-to-noise ratio SNR(p,q), defined as Eq. (4.9), when using ap-
proximations w(2,2), w(2,4), and w(4,2). SNR(4,2). Here, N refers to the
number of cells in the system. We use α/a3μ = β/ν = 100, D =
50 μm2/s, a = 10 μm, μ = ν = 1 s−1, T = 10 s, and

√
γ /ν = 10.

Parameter values as suggested in [14].

The power spectra Sxx
nn′ , Syy

nn′ , and Sxy
nn′ can more easily

be computed by calculating the (co)variances of the Fourier
transforms of Eq. (3.1) in space and time,

Sxx
nn′ (ω) = 〈F (δxn)∗F (δxn′ )〉

= 1

ν2 + ω2

[
Srr

nn′ (ω) + 〈F (dξn)∗F (dξn′ )〉],
(4.11)

Syy
nn′ (ω) = 〈F (δyn)∗F (δyn′ )〉

= 1

ν2

∑
j j′

K̃ p∗
n j K̃ p

n′ j′
[
Srr

j j′ (ω) + 〈F (dχ j )
∗F (dχ j′ )〉

]
,

(4.12)

and

Sxy
nn′ (ω) = 〈F (δxn)∗F (δyn′ )〉 = 1

ν(ν + iω)

∑
j

K̃ p
n jS

rr
n′ j (ω),

(4.13)

where W̃nn′ := Wnn′ − i(ν/ω)δnn′ . The spectra of the thermal
noise terms dξn and dχn can be calculated using the steady-
state means and Fourier transform in a similar way to get,
respectively,

〈F (dξn)∗F (dξn′ )〉 = 2νxn,

〈F (dχn)∗F (dχn′ )〉 = 2νW (p,q)
nn′yn′ . (4.14)

Finally, combining Eq. (4.11) into the definition of
(δ�n)2 = (δxn)2 + (δyn)2 − 2Cxy

nn and Eq. (4.9) allows us to
compute a metric for the ability of the cells to extract gradient
information from a noisy background. In Fig. 3, we depict
the SNR corresponding to the various approximations to
w(p,q): Eqs. (3.9), (3.10), and (3.11) yield the curves SNR(2,2),
SNR(2,4), and SNR(4,2), respectively, as a function of system
size.

For large cell numbers, the precision of gradient sensing
when including more accurate approximations to the
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convolution seemingly degrades. This provides a clue to our
analysis from Fig. 1 that the location of the peak of the phase
velocities has a larger impact on the signal-to-noise ratio than
the peak’s magnitude. We also see that the Gaussian-inspired
kernel induces the greatest sensory precision of the models
tested. The radius of influence does not appear to be the
critical aspect, since the SNR of w(2,4) is similar to the nearest
neighbor’s SNR; rather, the analytic properties associated with
each parametrization are more aligned with model outcomes.
We find that the use of the fourth derivative approximation
w(4,2) has a dramatic impact on the ability of cells to determine
the gradient of the external chemical field. For large system
size, and a high-order approximation of the kernel, the gra-
dient sensing degrades by an order of magnitude. The impact
of the more effective communication model (see Fig. 2) is to
propagate more information from noisy frequencies.

V. SUMMARY AND CONCLUSIONS

Gradient sensing in chains of cells and organisms that
have no specialized gradient sensing organelles is not well
understood. Experimental evidence lends support to the con-
jecture that the ability of chains of cells to sense the gradient
of an external chemical species’ concentration could involve
cell-to-cell communication. This hypothesis is central to a
local excitation global inhibition (LEGI) model proposed by
Mugler et al. [14] (we denoted it here as the NNLEGI model).
In this particular LEGI model, communication is restricted to
nearest-neighbor communication. Using physically inspired
parameters and a measure of signal discernment between
internal and neighboring inputs, relative to the background
noise, they showed that their modeled cell chain could sense
this external gradient.

Given that there is no a priori reason to assume that
cell communication, in a single model time step, is only
effected with nearest neighbors, a significant consideration
for pursuing gradient sensing via communication is the
range of communicating cells, as it directly impacts the cell
concentration, SNR, and thus the overall capability of the
cell to sense a gradient. In contrast to diffusive processes,
the communication process modeled via a convolution has
a finite speed of signal communication, and thus it makes
sense to analyze generally how disturbances are affected by
a competition of dissipation and competition, all the while
taking into account local background noise.

In this paper, we replaced the nearest-neighbor
communication term in the NNLEGI model by a more
general convolution-dependent model. By generalizing, we
aimed to explore how the gradient sensing capabilities of
the model depend on the radius of influence as well as on
the approximating order of the convolution kernel itself. The
radius of influence refers to the number of neighbors involved
in the communication, per unit time. The approximating order
refers in turn to how the convolution kernel is approximated
locally. The NNLEGI model was shown to be subsumed
into the more general model, and thus we also furthered the
analysis of the original nearest-neighbor model as well.

The generalized model was analyzed with the aim of
establishing how cell size, cell chain length, and alternative
proposals for the intercellular communication mechanisms
manifest themselves in the gradient sensing model outcomes.

Our analysis of the general model shows that the manner
in which information was shared and the properties of the
convolution approximation are more critical to the precision
of gradient sensing than the radius of influence alone. We
found that the choice of communication parametrization
(model) produced meaningful differences on model outcomes
like information velocities (Fig. 1), signal autocorrelation
(Fig. 2), and the SNR (Fig. 3). Further, we determined
spatiotemporal ranges where one expects to see deactivation-
dominated or advective-dominated (via communication)
reactions and how the sensitivity of the model was related to
those parameters and the choice of the communication kernel.

We found that the NNLEGI exhibits high SNR as com-
pared to a model equipped with higher-order approximations
for the communication. The NNLEGI and the continuous
Gaussian-inspired kernel mode for communication had
comparable SNR. However, the discrete nature of the various
approximations, vis-á-vis the continuous kernel convolution,
lead to dispersive signaling, affecting both the coherence
of the signal as well as propagation of background noise.
The dispersion relation of the models with second order, and
the fourth-order approximations to the second-order spatial
derivative, were similar to each other but were not similar
to the continuous Gaussian-inspired kernel. The model that
approximates the convolution to the fourth order, however,
exhibits a significantly lower SNR as a consequence of more
effective communication and propagation of higher-frequency
information. As a result, it is more prone to propagate
frequencies corresponding to thermal noise.

The introduction of a communication aspect to gradient
sensing in models for chains of cells introduces nuances
related to finite-time signal propagation that need to be con-
sidered in making comparisons with the physical systems they
model. Both the discernment of signals in a noisy environment
and transient behavior should be a consideration in developing
a LEGI model for gradient sensing that compares well with
observations. Understanding how communication models im-
pact gradient sensing, it is argued here, could lead to better
models for gradient sensing, but more importantly, to a better
basic understanding of how cells and collections of these
sense an external gradient.
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