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Cellular appendages conferring motility, such as flagella and cilia, are known to synchronise their periodic
beats. The origin of synchronization is a combination of long-range hydrodynamic interactions with physical
mechanisms allowing the phases of these biological oscillators to evolve. Two of such mechanisms have been
identified by previous work, the elastic compliance of the periodic orbit or oscillations driven by phase-dependent
biological forcing, both of which can lead generically to stable phase locking. In order to help uncover the
physical mechanism for hydrodynamic synchronization most essential overall in biology, we theoretically
investigate in this paper the effect of strong confinement on the effectiveness of hydrodynamic synchronization.
Following past work, we use minimal models of cilia where appendages are modeled as rigid spheres forced to
move along circular trajectories near a rigid surface. Strong confinement is modeled by adding a second nearby
surface, parallel to the first one, where the distance between the surfaces is much smaller than the typical distance
between the cilia, which results in a qualitative change in the nature of hydrodynamic interactions. We calculate
separately the impact of hydrodynamic confinement on the synchronization dynamics of the elastic compliance
and the force modulation mechanisms and compare our results to the usual case with a single surface. Applying
our results to the biologically relevant situation of nodal cilia, we show that force modulation is a mechanism
that leads to phase-locked states under strong confinement that are very similar to those without confinement
as a difference with the elastic compliance mechanism. Our results point therefore to the robustness of force
modulation for synchronization, an important feature for biological dynamics that therefore suggests it could
be the most essential physical mechanism overall in arrays of nodal cilia. We further examine the distinct
biologically relevant situation of primary cilia and show in that case that the difference in robustness of the
mechanisms is not as pronounced but still favors the force modulation.
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I. INTRODUCTION

The world has long been fascinated by the effect of
synchrony. Generally considered to be visually appealing,
synchrony is often exploited in sports, such as rhythmic
gymnastics or synchronized swimming, and in arts, such as
dance and film. Scientists have also addressed synchroniza-
tion, starting with the famous experiment of Huygens in the
17th century who noticed that two pendulum clocks hung on a
wall of a boat synchronize over time [1]. The scientific interest
in synchrony naturally grew over time with more examples
observed in nature, such as the simultaneous flashing of fire-
flies [2] that sparked the idea of self-organization that seemed
so “contrary to all natural laws” [3]. We later discovered that
synchronization was essential for various functions of living
organisms, for example the synchronization between the hu-
man circadian clock and the daylight cycle [4], and it is also
responsible for the establishment of the left-right asymmetry
in early stage embryos [5].

One aspect of synchronization that recently received a lot
of interest is that applied to cell motility, in particular in the
interactions between swimming appendages. The flagella of
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many cells beat in synchrony [6,7], while cilia are known
to deform collectively as metachronal waves [8–11], where
neighboring cilia beat with fixed phase differences. On a scale
of multiple microswimmers, hydrodynamic interactions can,
for example, be responsible for the synchronization of nearby
spermatozoa [12,13]. It was confirmed both experimentally
[14–17] and via numerical simulations [11,18] that hydro-
dynamic interactions between appendages are sufficient to
induce synchronization without the need for further chemical
coordination, an idea that was initially proposed by Taylor
[19]. Note that, in some unicellular organisms, synchroniza-
tion is mediated by intracellular (basal) coupling [20].

Although hydrodynamic interactions often appear to be a
necessary ingredient for synchronization, they of course need
to be combined with other physical mechanisms allowing the
phase of oscillators to change with time [21]. As a conse-
quence, additional physical features of flagella and cilia have
to be identified, which motivated a lot of theoretical and ex-
perimental work [22–26]. Numerous theoretically studies on
this topic modeled cilia and flagella as flexible active filaments
[11,18,22,25]. In order to help determine the exact physical
process that, when combined with hydrodynamics, leads to
synchrony, the community has also made use of minimal
models of cilia where each individual cilium is replaced by
a small rigid sphere driven along a circular orbit [27–29].
The simplicity of these sphere models not only allows for
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FIG. 1. Illustration of the dynamics of the ciliary beat pattern using an individual flagellum on the surface of the green alga Volvox carteri.
(a) Example of how the shape of a flagellum or cilium evolves during a beat. (b) Force density distribution along the flagellum or cilium during
the power and recovery strokes. (c) Location of the center of drag of the flagellum or cilium plotted together with the total force it exerts on
the surrounding fluid. Reproduced with permission from Ref. [15], licensed under CC BY 4.0.

analytical approaches but it also makes the conclusions robust
to changes in the geometrical details.

Using these minimal models, two generic physical mech-
anisms have been identified as enabling hydrodynamic
synchronization, namely one relying on elastic compliance
of the appendages and one requiring modulation of the force
driving the cilia. Elastic compliance includes all features
that originate from the bending elasticity of the appendage
(flagellum or cilium) or of its connection to the cell. It was
demonstrated to be a relevant physical mechanism leading
to hydrodynamic synchronization in experiments [30], nu-
merical simulations [31], and theoretical calculations [32].
In fact, elasticity was long thought of as a requirement to
induce hydrodynamic synchronization until the force mod-
ulation mechanism was proposed in Ref. [33]. Developed
specifically to address the dynamics of cilia, force modulation
allows the forcing on the cilium to depend on the location of
the cilium in its phase space, a model that reflects the ability
of an individual cilium to undergo an asymmetric two-phase
beat [9]: a power stroke vigorously pushing the fluid followed
by a recovery stroke hydrodynamically hiding with a smaller
disturbance to the fluid. Experiments with the flagella on the
surface of the green alga Volvox and reproduced in Fig. 1 allow
one to illustrate this asymmetric time-varying deformation
and the modulation of the force experienced by the cilium
along its path.

The synchronization of ciliary arrays is an important bi-
ological feature, and the lack of synchronization can lead to
severe pathological conditions [34]. One way to try and dis-
tinguish between them, and potentially uncover the physical
mechanism most essential overall in biology, is to probe the
robustness of these mechanisms under additional constraints.
Ciliary arrays are often found in confined areas of the body,
such as narrow tubes or cavities inside more complex organ-
isms. Examples include the Fallopian tube of humans [35] and
the walls of the human brain ventricles [36]. Confinement is
also relevant for synchronization during the close encounter
of ciliated organisms with each other or with flat surfaces,
e.g., collisions of two swimming Paramecium cells [37]. In
this paper, we therefore ask the following question: What is
the general impact of strong geometric confinement on the
hydrodynamic synchronization of cellular appendages? We
use the minimal sphere models of interacting cilia and, in

order to model the effect of strong hydrodynamic confine-
ment, place them between two nearby parallel rigid surfaces
in the limit where the distance between the surfaces is much
smaller than the typical distance between the model cilia. We
then investigate how each of the two synchronization mech-
anisms (elastic compliance vs force modulation) separately
performs under confinement. We compare our results with the
standard case of model cilia above a single surface and show
that, in the biologically relevant situation of nodal cilia, the
force modulation mechanism is significantly more robust to
confinement than elastic compliance. We finally carry out a
similar analysis on a second biologically motivated example,
that of primary cilia; in that case, the difference in robustness
between the mechanism is not as pronounced but it appears to
still favor force modulation.

Our paper is organized as follows. In Sec. II, we out-
line the general mathematical setup and notation that is used
throughout this study. In Sec. III we consider a preliminary
(symmetric) example that demonstrates the differences be-
tween the mechanisms. The most general synchronization
dynamics, and its comparison with the standard one-wall
case, is investigated in Sec. IV with Sec. IV A devoted to
the performance of elastic compliance and Sec. IV B to force
modulation. In Sec. V we apply our results to the cases of
nodal and primary cilia and address the robustness of the
two mechanisms to confinement. We finally summarize and
discuss our results in Sec. VI.

II. MODELING CILIA MOTION NEAR SURFACES

A. Minimal cilia model

One of the first mathematical models for synchronization
of flagella was proposed by Taylor, who considered the in-
teraction of a pair of two-dimensional, infinite waving sheets
[19]. In order to examine analytically the collective behavior
of cilia under strong confinement, it is necessary to use instead
a finite-size model whose dynamics can be subject to either
one of the two physical mechanisms discussed above. We
thus adopt a version of the sphere model from Refs. [28,29]
in which individual cilia are modeled by small rigid spheres
whose motion in the fluid represents the tip of a cilium, or its
center of drag, driven along a cyclic orbit.
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FIG. 2. Illustration of the general geometrical setup used in our minimal model of cilia dynamics near walls. (a) The relative position of
the orbits and the walls. The distance between the walls H , the orbital radius R, the height of the centres above the lower wall h, the distance
between the centers l , and the phase angles φ1 and φ2 are all clearly marked. (b) Definitions of the angles θ and α.

This minimal model is supported by experimental mea-
surements, some of which have been reproduced in Fig. 1
in the case of the green alga Volvox [15]. The actual motion
of an individual cilium is recorded (technically it is termed a
flagellum for this organism but its dynamics is very similar
to that of standard cilia) [see Fig. 1(a)]. This allows one to
estimate the instantaneous velocity of the cilium along its
path and, in conjunction with resistive-force theory for slender
filaments [38], to predict the distribution of hydrodynamic
forces along the cilium [see Fig. 1(b)]. Using the predicted
force densities, a center of drag is found by weighting the
arc-length positions with the corresponding force densities,
and the evolution of the center of drag is shown in Fig. 1(c)
together with the total drag force that the cilium exerts on the
fluid. Examining the shape of its trajectory, it clearly supports
the minimal model of a sphere driven along a cyclic orbit.

B. Geometry

The general situation considered in this paper is therefore
a pair of such spheres, each of radius a, forced along circular
orbits placed between two infinite walls that are parallel to
each other; see Fig. 2. The entire gap between the walls is
filled with an otherwise quiescent fluid of dynamic viscosity
μ. We will also consider the case where the upper wall is not
present for the purpose of comparison [32]. Unless otherwise
stated the top wall is at distance H from the lower one.

The orbits, in general, will be allowed to have a variable
radius Ri, i = 1, 2 but have a fixed center at height h from
the lower wall while their centers are set a distance l apart
[see notation in Fig. 2(a)]. The orientation of a particular
orbit is described by two angles, θi (termed the tilt) and αi

in such a way that the normal to the plane of motion is
ni = R(ey, αi ) · R(ex, θi ) · ey [see Fig. 2(b)], where R(v, ϕ)
is a matrix representing a rotation around the axis parallel
to the vector v by the angle ϕ in the positive mathematical
sense and where ev is a unit vector in the v direction. We
measure the phase φi such that the radius vector of the sphere
is eRi = R(ey, αi ) · R(ex, θi ) · R(ey, φi ) · ex = Mi(φi ) · ex. The
tangential direction, in which the sphere is forced, is described
by a unit vector eφi = −Mi(φi) · ez.

C. Mechanics

Following the calculations in Ref. [32] we model the elas-
ticity of the cilium as a linear restoring force that is imposed in
the radial direction and that favors the unperturbed radius R0.
Spheres are forced along orbits by a tangential forcing F (φ),
and the existence of power and recovery strokes is reflected in
the explicit phase dependence of the forcing [33].

Since our goal is to model motile appendages of microor-
ganisms, it is safe to assume that the fluid flow will be
dominated by viscous forces (typically Re � 10−4 [39]) and
thus described by the incompressible Stokes equations. In the
Stokes limit, the spherical spheres must be force and torque
free and we can use Faxén’s laws to account for the mutual
interaction of the spheres to leading order [40]. The total drag
on each sphere, resulting from its motion in the flow created
by the neighboring sphere, is driven by the prescribed force in
the tangential direction along the path and balanced by elastic-
ity in the radial (perpendicular) direction [32,33]. At leading
order in a2/l2, Faxén’s first law for the sphere marked with
index 1 and projected onto the radial and tangential balance
has the following form

ζ (R1φ̇1 − eφ1 · u2→1) = F (φ1), (1)

ζ (Ṙ1 − eR1 · u2→1) = −k(R1 − R0), (2)

where ζ = 6πμa is the hydrodynamic drag coefficient of the
sphere, k is the spring constant of the radial elastic restoring
force and u2→1 is the fluid velocity of the flow caused by the
motion of sphere 2 evaluated at the center of the sphere 1. Note
that in a confined geometry, such as the one that we consider
here, the hydrodynamic resistivity of the sphere, ζ , depends
on the proximity of the sphere to either of the two walls. We
will assume that the size of the sphere a is much smaller than
its distance to either of the walls and thus will neglect the
corrections so that ζ takes the value for a sphere in a bulk
fluid.

The radial equation, Eq. (2), can then be simplified by
further assuming that the elasto-hydrodynamic relaxation
time, τ = ζ/k, is much shorter than the timescale on which
hydrodynamic interaction changes the radius considerably.
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The latter timescale increases when the interactions become
weaker, i.e., when the spheres are further away from each
other. Thus, we consider the far-field limit, R � l , and the
quasisteady approximation outlined above can then be justi-
fied [32] by using experimental measurements of the physical
parameters involved in the model [9,41]. In practical terms,
this means that the term Ṙ1 will then be neglected in what
follows, an assumption that can then be verified a posteriori.

D. Hydrodynamic interactions

In order to model the flow induced by each of the spheres,
we use the far-field approximation, thus assuming that the
spheres are much further apart than their size, a � l . Having
in mind the linearity of Stokes equations we can always write
the flow field as u2→1 = G(r1, r2) · F2, where F2 is the total
external force applied to sphere number 2 and G is a second-
rank tensor. Since the restoring elastic force is a response to
mutual interaction of the spheres, to leading order in a/l we
have F2 ≈ F (φ2)eφ2 . The flow caused by a moving sphere is
forced by the surface stress distribution on the surface of the
sphere through the boundary integral formula. In the far-field,
we then asymptotically expand the surface integral in powers
of the spatial decay of the flow. The leading-order term is a
point force singularity resulting from the total external force
applied on the sphere. In an unbounded fluid, G is a stokeslet,
which has the form of the Oseen tensor (I + rr/r2)/8πμr,
with r = r1 − r2 where I is the identity tensor.

Under confinement, the solid surfaces will screen hy-
drodynamic interactions. A standard way of dealing with
hydrodynamic singularities near solid boundaries is to use
image systems, similar to the one in electrodynamics, where
a set of hydrodynamic singularities is introduced in a fictional
fluid domain within the solid boundary to balance the original
singularity within the fluid and enforce the no-slip boundary
condition for the flow on the surface. Classically, it was shown
by Blake [42] that a stokeslet near a wall induces a set of three
images, a “stokeslet equal in magnitude but opposite in sign
to the initial stokeslet, a stokes-doublet and a source-doublet,
the displacement axes for the doublets being in the original
direction of the force.”

Adding a second wall significantly complicates the image
system, and now an infinite series of hydrodynamic images
with respect to each of the walls is required in order to en-
force the no-slip boundary condition on both surfaces. Liron
and Mochon [43] managed to simplify the expression for the
leading-order flow field far from the stokeslet in the direction
parallel to the surfaces, and obtained

u1→2 ≈ 3H

2πμl2

(
l

ρ

)2 y1

H

(
1 − y1

H

)y2

H

(
1 − y2

H

)
︸ ︷︷ ︸

〈y1,y2〉

× (2ρ̂ρ̂ − I + eyey)︸ ︷︷ ︸
S

·F (φ1)eφ1 , (3)

where ρ = (I − eyey) · r1→2 = lex + O(R cos θ/l ) is the rel-
ative horizontal position of the two spheres and yi = h +
Ri sin θi sin φi is the y coordinate of the ith sphere. Note that
we have defined the function 〈y1, y2〉 in Eq. (3) as well as
the tensor S. This far-field flow is exact up to corrections

that decay exponentially with the horizontal distance over the
characteristic length scale of the interwall distance, H . Thus,
the Green’s function for hydrodynamic interactions in this
setting can be well approximated by

G(r2, r1) ≈ ζ−1β〈y1, y2〉l2ρ−2 S, (4)

where β � 9Ha/l2 is a dimensionless group that quantifies
the strength of the flow due to sphere 1 near sphere 2 (or
vice versa) compared with the unperturbed linear velocity
of the spheres. To simplify the notation, let us introduce the
tensor T � ζβ−1 MT

2 · G · M1, which is purely geometric and
quantifies the interaction as

eR2 · u1→2 ≈ βex · MT
2 · G · (−M1) · ez V1 = −βTxz V1, (5)

and similarly

eφ2 · u1→2 ≈ βTzz V1,

eR1 · u2→1 ≈ −βT T
xz V2 = −βTzx V2, (6)

eφ1 · u2→1 ≈ βT T
zz V2,

where Vi = F (φi)/ζ is the leading-order approximation of the
instantaneous, phase-dependent, tangential velocity of the ith
sphere.

E. Phase dynamics

In the asymptotic limit where the spheres are far apart,
i.e., β � 1, and under the aforementioned assumption that the
radial dynamics are quasisteady, the radial equation (2) for the
first sphere yields R1 = R0 − βτTzxV2. Substituting R1 into the
phase equation, Eq. (1), we obtain

φ̇1 = (V1 + βTzzV2)R−1
0

(
1 − βτTzx

V2

R0

)−1

. (7)

After expanding the right-hand side of Eq. (7) to first order in
β and carrying out the same procedure for the second sphere,
the phase evolution ends up being described by the coupled
system of nonlinear equations

φ̇1 = F (φ1)

ζR0
+ β

F (φ2)

ζR0
Tzz + βτ

F (φ1)

ζR0

F (φ2)

ζR0
Tzx, (8)

φ̇2 = F (φ2)

ζR0
+ β

F (φ1)

ζR0
Tzz + βτ

F (φ2)

ζR0

F (φ1)

ζR0
Txz. (9)

For most of the calculations presented here it will be necessary
to simplify the tensor T by truncating it at leading order in R/l ,
and, under this approximation, S simplifies to exex − ezez.

In order to examine solely the effects of elastic compliance,
we set F (φ) = ζR0ω0 to be constant, where ω0 is the angular
frequency of an isolated sphere. In contrast, in order to ex-
amine solely the effects of force modulation, we set k → ∞
(which implies τ = 0).

F. Synchronization

Two oscillators are said to synchronize if, through mutual
interaction, the phase difference φ2 − φ1 converges to a value
that is constant in time (a phase-locked state). However, when
the forcing is phase dependent, the measured phase differ-
ence can be dominated by the difference in forcing and the
final synchronization states (other than completely in phase)
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are less physically obvious from the information on φ2 − φ1.
A way of solving this problem, without having to compare
the contributions from the phase dependent forcing and the
interactions, is to change below to a different phase gauge
so that the phase-dependent forcing effects are essentially
factored out. Note that this new phase gauge is, in fact, how
the phase is often defined in literature for complex systems
with periodic dynamics [44]; due to the physical meaning of
the geometric phase φ introduced above, we choose to refer
to it as a different phase gauge. Namely, it is denoted by �(φ)
and defined as

�(φ) = 2π
K (φ)

K (2π )
, where K (φ) =

∫ φ

0

dφ′

F (φ′)
, (10)

which evolves in time at a constant rate for an isolated sphere.
Indeed, �(0) = 0, �(2π ) = 2π , so � changes by 2π during
a single revolution of the bead and, for an isolated sphere, we
have

�̇ = 2π

K (2π )

φ̇

F (φ)
= 2π

K (2π )
(ζR0)−1 �  = const. (11)

Hence, this transformation is a proper change of phase gauge
and, for two spheres with the same orbit properties, the phase
difference in the new gauge will depend only on the in-
teractions. In situations where the force modulation model
is examined, we will be interested in the time evolution of
� � �1 − �2. As we will usually be interested in the case
where the force modulation is weak, i.e., the forcing varies
only weakly from its mean value, the difference �(φ) − φ

will be small, on the order of force modulation. Thus, if we
reach a phase locked state � ≡ �0 in the new gauge, we
could say that φ1 − φ2 ∼ �0, asymptotically, with corrections
on the order of the force modulation. As long as �0 is of
order O(1) this is an asymptotically correct statement, which
will allow us to conclude on the physics of synchronization.
However, �1 − �2 ≡ 0 implies φ1 − φ2 ≡ 0, so the asymp-
totic expression fails only for small but nonzero �0, and this
should be kept in mind when deriving physical conclusions.

III. CILIA ORBITS IN THE MIDPLANE

In this section, we first consider the case where the spheres
are orbiting in the plane located exactly halfway between the
two walls and parallel to both. This simple setup allows us to
illustrate two important points: (i) the presence of the second
(upper) wall has a markedly different impact on the elastic
compliance and force modulation mechanisms, and (ii) the
relative orientation of the cilia is an important factor in both
cases. Although the situation where the orbits are parallel
to the walls is not a perfect representation of ciliary beats,
for any periodically forced quasi-two-dimensional structure
tightly fitting between plates, e.g., active artificial microgels
[45], this is a relevant limit to consider.

Setting the orbits in the midplane with αi = θi = 0 leads
to a couple of mathematical simplifications. In that case,
〈y1, y2〉 is exactly equal to 1/16 so we will absorb it into
β = 9Ha/16l2, only in this section; furthermore, T turns out
to be a symmetric tensor even without approximating the
interaction kernel S. Knowing that Txz = Tzx makes it then
obvious that a completely in-phase state φ1 = φ2 is a solution

of Eqs. (8) and (9), but to say the spheres synchronize in-phase
we have to investigate the stability of this state.

A. No synchronization by elastic compliance

First we address the case where the forcing along the orbit
is constant, i.e., the elastic compliance model. Considering
both Eqs. (8) and (9), with the terms F (φi)/ζR0 replaced by
ω0, and since T is symmetric even without the linearization
of the interaction kernel in R0/l � 1, the phase difference
φ1 − φ2 remains constant up to O(β2). This means that the
elastic compliance mechanism leads to no synchronization up
to order O(β2). Comparing to the case of cilia orbits near a
single wall [32], where the spheres always synchronize to an
in-phase state at leading order in β, we thus see that in that the
presence of strong hydrodynamic confinement disables elastic
compliance as a synchronization mechanism.

B. Synchronization by force modulation

In the force modulation model (i.e., in the limit τ → 0), we
can examine the linear stability of the in-phase state φ by in-
troducing a small perturbation in the form φ1 = φ + �, φ2 =
φ, where

φ̇ = F (φ)

ζR0
[1 + βTzz(φ, φ)]. (12)

By calculating the average of the perturbation growth rate,
〈σ 〉, and examining its sign over a single beat it is then possi-
ble to conclude on the stability characteristics of the in-phase
state. The linearization of Eqs. (8) and (9) for small � leads
to

�̇ = F (φ + �) − F (φ)

ζR0
[1 − βTzz(φ + �,φ)]

= F ′(φ)

ζR0
[1 − βTzz(φ, φ)]� + O(�2), (13)

which allows us to calculate the time-averaged growth rate as

〈σ 〉 ≡ 1

T0

∫ t+T0

t

�̇

�
dt = 1

T0

∫ 2π

0

F ′(φ)

F (φ)

1 − βTzz

1 + βTzz
dφ

= −2β

T0

∫ 2π

0

F ′(φ)

F (φ)
Tzz dφ + O(β2), (14)

where T0 is the period of the in-phase state φ. These results
turn out to be identical to those obtained in the case of a
single wall [33] since both are characterized by Tzz(φ, φ) =
−C cos 2φ + const, with C > 0. A particular forcing function
F (φ) that leads to in-phase synchronization near a single wall
will do so in the presence of the second one and vice versa, at
order β. Thus, in this setting, the force modulation mechanism
is robust to strong hydrodynamic confinement.

C. Impact of the relative orientation

To illustrate the importance of the relative orientation of the
orbits in this situation, we can consider the situation where one
of them has been flipped by 180◦, i.e., we let θ2 = π . Phys-
ically this models a situation where the cilia are tethered on
the opposing walls and thus they beat in different directions.
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In this case, the tensor T is no longer symmetric and the sub-
traction of Eqs. (8) and (9) under the elastic compliance model
[F (φ) = ζR0ω0] yields the equation for the phase difference
� = φ1 − φ2 as

�̇ ≈ −2βτω2
0 sin �, (15)

with corrections of order R/l . This is the famous Adler equa-
tion with a stable equilibrium at � ≡ 0, and cilia always
synchronize to a completely in-phase state in that case. If the
case above of spheres beating in the same direction has indi-
cated that elastic compliance might lead to no synchronization
in strong confinement, this shows that the relative orientation
is an important factor that needs to be carefully included in
any further investigation.

Beyond two-cilia synchronization, elastic compliance can
also lead to the development of metachronal waves for cilia
beating in alternating directions. Consider a linear array of
2N model cilia, each at a distance l from its neighbors and
orbiting in the midplane such that θ2k = 0 and θ2k−1 = π

for k = 1, . . . , N . We assume that each sphere interacts only
with its nearest neighbors on either side. Assuming periodic
boundary conditions where the spheres at the ends of the array
interact with each other, the evolution equation becomes

φ̇n = ω0 + βω0(cos χn + cos χn+1)

+βτω2
0(sin χn+1 − sin χn), (16)

χ̇n = βω0(cos χn+1 − cos χn−1) + βτω2
0(sin χn+1

− 2 sin χn + sin χn−1), (17)

where χn = φn − φn−1. The same set of equations was re-
ported in Ref. [32] for a chain of oscillators beating in
the same direction near a single wall. Clearly, the sys-
tem in Eq. (17) admits a solution χn = � = const, which
corresponds to a metachronal wave where the neighboring
oscillators beat at the constant phase difference �. This wave
is unstable for cos � < 0 and marginally stable for cos � � 0.
We have verified the existence of these metachronal waves
numerically for an array of 50 spheres with periodic boundary
conditions and starting from random initial phases. Our results
are illustrated numerically in Fig 3 in the form of the time
evolution of the phases φn [Fig. 3(a)] and the phase differences
of the neighboring spheres χn [Fig. 3(b)]. More precisely,
[(χn − π ) mod 2π ]/π is plotted as a proxy for χn. Over time,
the system reaches a metachronal state with χn close to 0 for
all n = 1, . . . , 50, which agrees with the prediction that the
waves with cos χn � 0 are marginally stable.

This setup is the simplest possible one to investigate the
organization of many cilia and it shows that the mechanism is
able to produce the same phenomenon (metachronal waves) as
in the single-wall case [32]. Including full long-range interac-
tions beyond the nearest-neighbor case might further change
the global organization of cilia. It was previously shown that
a similar minimal model exhibits near a single surface a tran-
sition from metachronal waves to more complex states as the
range of the interactions increases [46]. The different nature
of the Green’s function in strong confinement, including the
presence of the additional length scale H , could of course lead
to different dynamics than in the single wall case.

-1

0

1

(a) sin φi

50

1

i

20 0tω/2π

0

1

250

1

i

20 0tω/2π

[(χn − π) mod 2π]/π(b)

FIG. 3. Formation of metachronal waves from random initial
conditions with periodic boundary conditions for an array of cilia
beating in alternating directions. We plot the time evolution of sin φi

in subfigure (a) and [(χn − π ) mod 2π ]/π in subfigure (b) with i =
1, . . . , N . Simulations were done for N = 50 cilia with β = 0.16 and
λ = τω = 0.9. Values for β and λ are chosen to be relatively large
only for the purpose of reducing the number of periods the system
takes for developing the metachronal waves.

IV. CILIA WITH ARBITRARILY ORIENTED ORBITS

As shown in the previous section, the orientation of the
cilia orbits play a crucial role in allowing synchronization to
take place. In this section, we therefore allow the orientations
of the cilia arrays to be arbitrary and compute mathematically
the consequence on the synchronization dynamics for both
physical mechanisms. We will then apply our mathematical
results to two biologically relevant cases in Sec. V.

A. Hydrodynamic synchronization by elastic compliance

In this first part, we address the synchronization by elastic
compliance. We use our general derivation in Eqs. (8) and (9)
and exclude the force modulation by setting F (φ) = ζRω0 =
const, which results in the phase dynamics

φ̇1 = ω0 + βτω2
0Tzx + βω0Tzz, (18)

φ̇2 = ω0 + βτω2
0Txz + βω0Tzz. (19)

By subtracting these two equations, we obtain an equation for
the phase difference � = φ1 − φ2 as

�̇ = φ̇1 − φ̇2 = βτω2(Tzx − Txz ). (20)

We can next simplify T at leading order in R0/l by approxi-
mating l/ρ ≈ 1 and ρ̂ ≈ ex, which leads to

�̇ ≈ −βτω2〈y1, y2〉[(cos θ1 − cos θ2) sin(α1 + α2) cos �

+ (1 − cos θ1 cos θ2) cos(α1 + α2) sin �]. (21)

The result in Eq. (21) resembles the Adler equation, a
resemblance we can make more obvious using a few algebraic
manipulations. Defining r2 � [(1 − cos θ1 cos θ2)2 cos(α1 +
α2)2 + (cos θ2 − cos θ1)2 sin(α1 + α2)2]

1/2 � 0 and the
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angle �
(2)
0 as

r2 cos �
(2)
0 = (1 − cos θ1 cos θ2) cos(α1 + α2), (22)

r2 sin �
(2)
0 = (cos θ2 − cos θ1) sin(α1 + α2), (23)

transforms Eq. (21) into

�̇ = −βτω2〈y1, y2〉r2 sin
(
� − �

(2)
0

)
. (24)

Note that we have used the superscript 2 in the notation �
(2)
0

in order to emphasize that this is the result in the case of
two walls. Since all the prefactors in Eq. (24), including r2

and 〈y1, y2〉, are positive numbers, the phase difference �
(2)
0 is

the linearly stable solution to Eq. (24) while �
(2)
0 + π is the

unstable solution. This is true even though the term 〈y1, y2〉 is,
in fact, phase dependent and therefore Eq. (24) is not entirely
equivalent to the Adler’s equation. It is important to note that
both r2 and �

(2)
0 are a function of the orientation of the orbits

only. Note that the prefactor r2 indicates that the magnitude
of the contribution of the hydrodynamic interactions to the
rate of change of the phase difference strongly depends on the
orientation of the orbits. It is therefore an important factor in
quantifying the strength of synchronization towards �

(2)
0 and

thus in measuring the importance of hydrodynamic interac-
tions relative to any other effects not included in our model,
for example noise of any kind.

We can now compare these results with the case of a single
wall. Past work involving solely elastic compliance as the syn-
chronization mechanism has considered only the horizontal
orbits, so for the purpose of comparison we adjust the model
of Ref. [32] to arbitrarily oriented orbits close to a single wall.
We obtain that result by changing the interaction kernel to a
linearized Blake tensor β̃exex. Here, β̃ � 9ah2/l3 and it is a
parameter analogous to β but relevant to the single-wall case.
These nondimensional groups are a relative measure of the
speed of synchronization since the number of periods around
the orbits required before reaching a synchronized state is
proportional to 1/β.

After performing the same calculations as for the case of
two walls, we obtain

�̇ = β̃τω2(Tzx − Txz )

≈ −β̃τω2[(cos θ1 sin α1 cos α2 − cos θ2 sin α2 cos α1) cos �

+ (cos α1 cos α2 + sin α1 sin α2 cos θ1 cos θ2) sin �], (25)

and we see synchronization similar to the case of two walls.
Defining r1 > 0 as

r2
1 = (cos θ1 sin α1 cos α2 − cos θ2 sin α2 cos α1)2

+ (cos α1 cos α2 + sin α1 sin α2 cos θ1 cos θ2)2, (26)

and the angle �
(1)
0 via

r1 cos �
(1)
0 = cos α1 cos α2 + sin α1 sin α2 cos θ1 cos θ2, (27)

r1 sin �
(1)
0 = − cos θ1 sin α1 cos α2 + cos θ2 sin α2 cos α1,

(28)

we obtain

�̇ = −β̃τω2r1 sin
(
� − �

(1)
0

)
. (29)

Notice also that there is no synchronization to leading order if
and only if r1 = 0. It is notable that this condition can arise in
the case of identical orbits αi = α0 and θi = θ0. In this case,
r1 = 0 is equivalent to α0 = ±π/2 and θ0 = ±π/2, which
is the case of vertical orbits perpendicular to the x axis, i.e.,
to the direction connecting its centres. Intuitively this is clear
since we linearized the Blake tensor to β̃exex, so in this case
orbits have no interaction to this order.

Thus, we have found that in both cases, one or two walls,
the system synchronizes to a phase locked state. The value
of that terminal phase difference �

(i)
0 (where the label i is

the number of walls in the setup) is different in cases of one
and two walls and it is also a function of the orientation of
the orbits. In Sec. V, we will quantify the difference between
�

(1)
0 and �

(2)
0 in two biologically relevant cases and use this

information as a measure of robustness to confinement of the
elastic compliance as a mechanism for hydrodynamic syn-
chronization.

B. Hydrodynamic synchronization by force modulation

In order to address the force modulation model, we follow
the approach outlined in Sec. II F and perform a change of
variable, �(φ), so that the new phase variable now grows in
time at constant rate  = 2π/T0, where T0 is the oscillation
period of an isolated model cilium. The change of variables is
given by

�(φ) = 2π
K (φ)

K (2π )
, where K (φ) =

∫ φ

0

dφ′

F (φ′)
, (30)

or, equivalently, �̇ = φ̇/F (φ). If we now let �i = �(φi ) and
introduce �̄ = 1

2 (�1 + �2) and � = �1 − �2, we can an-
ticipate that � is a slow variable and � = 0 is an in-phase
solution. In general, it is possible to invert Eq. (30) so that
φi = φ(�i ) = φ(�̄ ± �/2) and the phase evolution equations
(8) and (9) become

�̇1


= 1 + β

F (�2)

F (�1)
Tzz(�1,�2), (31)

�̇2


= 1 + β

F (�1)

F (�2)
Tzz(�1,�2), (32)

where we have used the shorthand notation f (�) ≡ f (φ(�)).
Subtracting these two equations leads to

�̇ = β

[
F (�̄ − �/2)

F (�̄ + �/2)
− F (�̄ + �/2)

F (�̄ − �/2)

]

× Tzz(�̄ + �/2, �̄ − �/2)

≡ W (�̄,�). (33)

Under the assumption of weak interaction β � 1, we confirm
a posteriori that � is indeed a slow variable and �̄ ≈ t at
leading order in β.

In order to examine the evolution of the phase difference,
it is instructive to coarse grain the timescale by averaging
Eq. (33) over the fast period of the mean phase, as

〈�̇〉 = 1

2π

∫ 2π

0
W (�̄,�) d�̄ ≡ −dV (�)

dt
, (34)
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where we have defined the effective potential that governs the
long-time evolution of �. The location of the global minimum
of V , if it existed, would be the state to which the system
synchronizes; the goal is therefore to determine this potential.
However, since W (�̄,�) is a periodic function in �, the
function V (�) must have the form of a tilted washboard po-
tential with no global minimum. A real physical system would
thus spend a relatively long time in the local minima with
occasional biased phase slips to the other minima caused by
the stochastic noise (not included in our model). This feature
has been observed in experiments [15] and is correctly cap-
tured by the force modulation model [33]. Hence, the relevant
features of the potential V (�) for the synchronization are (i)
the location of local minima inside the interval [−π, π [ and
(ii) the direction of the tilt.

Since it is difficult to proceed further with a general force
profile, we will focus the first mode of force modulation,
F (φ) = F0[1 + A sin(φ + δ)]. This choice is motivated by

experimental results on the dynamics of short flagella on the
somatic cells of Volvox carteri [15]. As shown in Fig. 1, a
hydrodynamic point force was fitted to measured flow field
from beating cilia; the magnitude of this fitted force shows
one strong peak during a single beat, suggesting that the
fundamental mode of force modulation is dominant.

The assumption that A � 1 allows us to invert Eq. (30) up
to O(A2) and obtain

φ(�) = � + [cos δ − cos(� + δ)]A + {
sin(� + δ)[cos δ

− cos(� + δ)] + 1
4 [sin(2� + 2δ) − sin 2δ]

}
A2

+ O(A3). (35)

Furthermore, in the process of recovering the effective poten-
tial V (�) the terms are truncated at O(A3) since, based on the
single wall case [33], we expect synchronization at that order.
We also approximate the hydrodynamic interactions at leading
order in R/l so that

Tzz(φ1, φ2) ≈ 〈y1, y2〉 {cos(α1 + α2)[sin φ1 sin φ2 − cos θ1 cos θ2 cos φ1 cos φ2]

+ sin(α1 + α2)[cos θ1 cos φ1 sin φ2 + cos θ2 cos φ2 sin φ1]}. (36)

The derivation of Eq. (36) is the last step in this section
that can be carried out by hand, while in what follows we
employ symbolic manipulation using Mathematica. Due to
a large number of parameters of this model, even with the
simplification of working to second order in A, the potential
V (�) ends up having 5131 term and therefore we omit its full
form here. We can proceed by making the further assumption

that h and R are of comparable magnitude. This is supported
by experimental measurements of the cilium beating pattern
[47] and by the fact that a sphere in the minimal cilium model
is meant to represent the tip of a cilium [28], so both the size
of the orbit and the height above the surface are expected to
have the same scaling. Keeping only the leading-order terms
in h/H and R/H , we then obtain

V (�) = βA
hR

H2

(
C0� + B1(1 − cos �) + B2

2
(1 − cos 2�) + A1 sin � + A2

2
sin 2�

)
+ O(A2(h/H )2, A(h/H )3), (37)

where the five constants are now defined as

C0 = − 1
2 [sin 2α sin δ sin(θ1 − θ2) + cos 2α cos δ(sin θ1 − sin θ2)], (38)

B1 = − 1
8 {2 cos 2α sin δ(sin θ1 + sin θ2)(cos θ1 cos θ2 + 1) + sin 2α cos δ[−6 sin(θ1 + θ2) + sin 2θ1 + sin 2θ2]}, (39)

B2 = − 1
4 {cos 2α sin δ(sin θ1 + sin θ2)(1 − cos θ1 cos θ2) + sin 2α cos δ[1 − cos(θ1 − θ2)] sin(θ1 + θ2)}, (40)

A1 = − 1
4 (sin θ1 − sin θ2)[cos 2α cos δ(cos θ1 cos θ2 − 3) − sin 2α sin δ(cos θ1 + cos θ2)], (41)

A2 = 1
4 {sin 2α sin δ sin(θ1 − θ2)[1 − cos(θ1 + θ2)] + cos 2α cos δ(sin θ1 − sin θ2)(cos θ1 cos θ2 − 1)}, (42)

and 2α = α1 + α2. In Fig. 4, we plot the full potential V (�)
and its leading-order approximation, Eq. (37), for A = 0.1 and
R = h = 0.1H (top row). Note that since our focus is on the
landscape, and specifically the location of the local minima,
we do not need to include the prefactors when plotting the
leading order in Fig. 4, right. Even for the relatively large
values of the parameters treated as small in the calculations,
we see that the landscape of the leading-order approximation
agrees well with the full expression.

For the purposes of comparison, we can then repeat the cal-
culations in the case of a single wall; to best of our knowledge,

the effective potential arising for arbitrarily oriented orbits has
not been reported in the literature, though the potentials were
previously calculated and plotted for a few cases with θ1 = θ2

in [48]. The only adjustment necessary in the calculations con-
sists in altering the interaction kernel, where we now use the
Blake tensor linearized in R/l , ζ−1β̃h−2y1y2exex. Assuming
again that the radii of the orbits and their distances to the
substrate are comparable, we obtain in the one-wall case

Tzz = y1y2

h2
(cos φ1 cos θ1 sin α1 + cos α1 sin φ1)

× (cos φ2 cos θ2 sin α2 + cos α2 sin φ2), (43)
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FIG. 4. Effective synchronization potential V (�) for three different values of α = (α1 + α2)/2 = 0, π/4, π/2. Top row: Two-wall case,
full potential V (�) [in (a)] and its leading-order approximation in h/H and R/H [in (b)] for θ1 = 0.4, θ2 = 0.45, A = 0.1, R = h = 0.1H , and
δ = 0. Bottom row: Analogous potentials for the single-wall case [(c) and (d), corresponding to (a) and (b), respectively]. Note the vertical
axes are scaled differently, which does not affect the location of the local minima in each graph.

with β̃ = 9ah2/l3, which is the same as previously defined in elastic compliance subsection. Finally, the potential ends up having
the exact same form as Eq. (37) in the case of two walls but with a different prefactor of β̃AR/h and with the constants now
defined as

C0 = 1
2 [cos α2 sin θ2(sin α1 sin δ cos θ1 + cos α1 cos δ) − cos α1 sin θ1(sin α2 sin δ cos θ2 + cos α2 cos δ)], (44)

B1 = 1
4 {sin α2 cos θ2[cos α1 cos δ(3 sin θ1 − sin θ2) + sin α1 sin δ cos θ1(sin θ1 + sin θ2)]

− cos α2[sin α1 cos δ cos θ1(sin θ1 − 3 sin θ2) + cos α1 sin δ(sin θ1 + sin θ2)]}, (45)

B2 = 1
4 {cos α2[sin α1 cos δ cos θ1(sin θ1 − sin θ2) − cos α1 sin δ(sin θ1 + sin θ2)]

− sin α2 cos θ2[cos α1 cos δ(sin θ1 − sin θ2) + sin α1 sin δ cos θ1(sin θ1 + sin θ2)]}, (46)

A1 = 1
4 (sin θ1 − sin θ2)[sin α1 cos θ1(sin α2 cos δ cos θ2 + cos α2 sin δ) + cos α1(sin α2 sin δ cos θ2 + 3 cos α2 cos δ)], (47)

A2 = 1
4 {cos α1[cos α2 cos δ(sin θ2 − sin θ1) + sin α2 sin δ cos θ2(sin θ1 + sin θ2)]

− sin α1 cos θ1[sin α2 cos δ cos θ2(sin θ1 − sin θ2) + cos α2 sin δ(sin θ1 + sin θ2)]}. (48)

Similarly to the case of two walls, this leading-order approx-
imation in h/H an R/H agrees well with the full form for
relatively large force modulation amplitude, as illustrated in
Fig. 4. Compared with previous work [48,49], it is notable that
the leading-order potential is now linear in A since in these
references it was reported to be quadratic. This is because past
work only considered the case where the orbits were horizon-
tal, θ1 = θ2 = 0; in that case, the leading order reported here
vanishes, thereby leading to synchronization at order O(A2).

A limit that is easier to compare with previous work is
when the vertical amplitude of motion, R sin θi, is assumed
to be much smaller than the height h of the center of the
orbit from the bottom wall. This assumption, that does not
appear very relevant in the context of biology, is, however,
what is usually done in the previous toy models [32,48].
Assuming R sin θi � h, we can then approximate 〈y1, y2〉 ≈
h2/H2 and, after repeating the aforementioned procedure in
the case of a single wall and in the case of the two walls, we
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obtain

V1(�)

β̃
= A2

4
(1 − cos �)r1(π − θ1, θ2)

× sin
[
2δ − �

(1)
0 (π − θ1, θ2)

]
,

V2(�)

β
= A2

4
(1 − cos �)r2(π − θ1, θ2)

× sin
[
2δ − �

(2)
0 (π − θ1, θ2)

]
. (49)

where Vi is relevant for the case with i walls and ri and �(i)

are the same as in the elastic compliance model but with the
substitution θ1 �→ π − θ1. Again, β̃ is the same as previously
defined above.

Just like the elastic compliance mechanism, force modu-
lation therefore always leads to a single stable phase-locked
state both for one and two walls. To examine the robustness
of force modulation to strong hydrodynamic confinement, we
examine in the next section the differences between the phase-
locked states in two biologically relevant cases, and compare
them to elastic compliance.

V. ROBUSTNESS OF SYNCHRONIZATION MECHANISMS

Since there are many degrees of freedom even in the min-
imal models we consider, it is difficult to compare the results
obtained for different synchronization mechanisms across the
entire parameter range. Furthermore, it is clear that some of
the parameter values would be far from any of the biologically
relevant limits that motivated this work originally. In this sec-
tion, we therefore focus on two specific biological situations
in order to set biologically relevant values for the parameters
in our model.

Before introducing the details of the biological examples,
we can already fix some of the model parameters by using the
general knowledge of of ciliary arrays. First, cilia are known
to self-organize to all beat in the same direction [26,50].
Although hydrodynamic interactions could in theory play a
role in setting this, it is a reasonable assumption that we will
assume to be true in what follows. Using our notation, this
means that α1 = α2 = α. Secondly, the physical interpretation
of the phase shift δ in the assumed force profile that we have
used in our calculations, F (φ) = F0[1 + A sin(φ + δ)], is that
the maximal drag on the cilium will occur when φ = π/2 − δ.
Although it is rather difficult to measure this phase of maximal
force, in the model that we are using here, φ = π/2 represents
the point at which the sphere is at its highest distance from the
surface on which the cilium is attached. This means that at
this phase the sphere is most exposed to the fluid drag and it
is thus reasonable to assume that δ = 0.

As demonstrated above, both physical mechanisms (elastic
compliance vs force modulation) lead to stable phase-locked
states. In order to quantify the difference in the synchronized
states between the presence of two walls (strong confinement)
and that of a single nearby surface, we then introduce the nor-
malized distance μ1−2 between the “locked-in” phases on a
unit circle, μ1−2 = (|�(2)

0 − �
(1)
0 | mod π )/π . Thus, μ1−2 =

0 means that under both levels of confinement these locked-in
phases are identical while if they differ by the maximal value
of π the distance will take its maximal value of μ1−2 = 1.

For the elastic compliance mechanism, the value of �
(i)
0 , with

i = 1, 2 was previously defined as a stable fixed point of the
phase difference. Similarly, in the context of force modula-
tion, this definition extends to a stable fixed point obtained as
a local minimum of V (�) inside the interval [−π, π [.

We now consider separately two common types of cilia,
nodal and primary, due to their different geometrical features.

A. Nodal cilia

In this subsection, we first focus on the specific case of
nodal cilia. These are found at the ventral surface of the node
during the early stage of the embryo development. Nodal
cilia are believed to cause the breaking of the left-right body
symmetry by creating a leftward flow of the extraembryonic
fluid [5]. The internal architecture of nodal cilia is slightly
different than that of primary cilia. There is no central pair
of microtubules, which makes nodal cilia beat in such a way
that they trace a tilted conelike surface. The tilt of the orbit
can be quite pronounced, as illustrated in Fig. 5 from mice
experiments in Ref. [51]. The tilt in the mice embryos was
measured to be θ = 40◦ ± 10◦ in Ref. [47], while values in
in the range θ ∈ [15◦, 35◦] have also been reported in the
literature [51]. Changing the mean tilt turns out to not affect
our final results considerably, so, to capture the effect of the
tilt variability on the synchronization, we assume θ1 = 40◦
and vary the value of θ2 between 10◦ and 70◦. It should be
noted that our far-field model cannot describe the cases of
nodal cilia that physically touch the epithelium cells (see the
extensive tilt in Fig. 5) and thus the results that follow would
not be applicable to such cases.

We consider two specific limits in which the results are
compared. In one, we assume that the vertical extend of the
orbit is much smaller than its height above the lower wall
(R sin θi � h) while in the other, more realistic limit, we
assume that those quantities are of similar magnitude, i.e.,
R sin θi � h. Note that, in the first case, the range of the tilt
angle θi is still assumed to be that of nodal cilia (quoted
above). This is meant to represent the small radius R limit,
a limit that is not particularly biologically motivated but does
stress the difference in the synchronization mechanisms, as
shown below. The results of the elastic compliance mecha-
nism are independent of the choice of the limit, but it makes
a substantial difference in the results for the force modulation
mechanism (see calculations in Sec. IV B).

Under the assumption R sin θi � h, we obtain that the force
modulation mechanism leads to the same state of synchroniza-
tion, with or without the upper wall, for any values of θ1, θ2,
and α. This can be seen from Eqs. (49) since both potentials
have minimum at either 0 or π , with a stable point that de-
pends only the sign of sin �

(1)
0 and sin �

(2)
0 . From Eqs. (23)

and (28), it is straightforward to see that these always have the
same sign, as

sin �
(1)
0 sin �

(2)
0 = 1

2 r−1
1 r−1

2 (cos θ2 − cos θ1)2 sin2 2α � 0.

(50)

Consequently, the force modulation mechanism is ab-
solutely robust to confinement and the synchronization
dynamics is unchanged by the presence of the second nearby
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FIG. 5. Dynamics of nodal cilia in mice embryos. Experimental measurements of the trace of the cilium tip motion (left) are used to
determine the average tilt of nodal cilia (right). Black dots indicate positions of the roots while the colored curves (blue, green and orange)
show the trace of the tips of cilia. Blue and green traces indicate the small tilt in cilia (middle right) while the orange trace corresponds to the
extensive tilt (bottom right). Reprinted with permission from Ref. [51], licensed under CC BY 4.0.

surface. In contrast, the elastic compliance mechanism does
not provide the same level of robustness, as illustrated in
Fig. 6(a) for fixed θ1 = 40◦. There, we see a plot of the
measure μ1−2, introduced above, for the elastic compliance
mechanism. We fix the orbit of the first sphere to have the tilt
θ1 = 40◦ equal to the average tilt of nodal cilia, and let the tilt
of the second one vary between 10◦ and 70◦. We also vary the
angle α = α1 = α2, which corresponds to the angle between
the pumping direction and the vector connecting centres of
the orbits. Warmer color in the plot indicates a higher value
of μ1−2 and thus a lesser level of robustness. Visually, we can
notice that for about a half of the {α, θ2} parameter space the
elastic compliance mechanism leads to a similar synchroniza-
tion state in both cases of confinement while for the other half
of the space it leads to very different states. We will quantify
this observation at the end of this section.

Under the different geometrical limit R sin θi � h, the co-
efficients in the potential from Eq. (37) become

C(2)
0 = − 1

2 cos 2α(sin θ1 − sin θ2), (51)

B(2)
1 = − 1

8 sin 2α[−6 sin(θ1 + θ2) + sin 2θ1 + sin 2θ2], (52)

B(2)
2 = − 1

4 sin 2α[1 − cos(θ1 − θ2)] sin(θ1 + θ2), (53)

A(2)
1 = − 1

4 (sin θ1 − sin θ2) cos 2α(cos θ1 cos θ2 − 3), (54)

A(2)
2 = − 1

4 cos 2α(sin θ1 − sin θ2)(1 − cos θ1 cos θ2), (55)

where the superscript (2) is indicates the two-wall case. In
case of a single wall, these coefficients reduce to

C(1)
0 = − 1

4 (1 + cos 2α)(sin θ1 − sin θ2), (56)

B(1)
1 = − 1

16 sin 2α[−6 sin(θ1 + θ2) + sin 2θ2 + sin 2θ1], (57)

B(1)
2 = − 1

8 sin 2α(1 − cos(θ1 − θ2)) sin(θ1 + θ2), (58)

A(1)
1 = − 1

8 (sin θ1 − sin θ2)[cos 2α(cos θ1 cos θ2 − 3) − 3 − cos θ1 cos θ2], (59)

A(1)
2 = − 1

8 (sin θ1 − sin θ2)[cos 2α(1 − cos θ1 cos θ2) + 1 + cos θ1 cos θ2]. (60)

Comparing the two results, we see that the normalized potentials satisfy

V̂ (1) = V̂ (2) − 1
8 (sin θ1 − sin θ2)

(
2� − (3 + cos θ1 cos θ2) sin � + 1

2 (1 + cos θ1 cos θ2) sin 2�
)
. (61)
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(a) Elastic compliance
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α
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1
(b) Force modulation
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α

0

0.5

1

(c)

20 ππ

α

μ1−2

1

0

FIG. 6. Isovalues of the normalized phase difference, μ1−2, comparing the stable phases to which the oscillators synchronize in cases of a
single wall and two walls for the elastic compliance (a) and force modulation (b) mechanisms. Colors indicate the value of μ1−2 in the case
α1 = α2 = α and θ1 = 40◦. The red line shows the location of the θ2 = 50◦ section shown in (c).

Bearing in mind that φ1 − φ2 = �1 − �2 + O(A), we plot
in Fig. 6(b) the values of the normalized difference in stable
phases, μ1−2, for the same choice and range of θi and αi as was
previously set for Fig. 6(a). As detailed above, results for the
elastic compliance mechanism are independent of the choice
of the geometric limit and hence Fig. 6(a) captures the ro-
bustness of this mechanism in the limit currently considered,
as well. We first note that dependence on θ is much weaker
than that on α. Secondly, it is clear from the figure that the
force modulation mechanism [Fig. 6(b)] is significantly more
robust to confinement than the elastic compliance mechanism
[Fig. 6(a)]. This is further illustrated in Fig. 6(c) where we
plot a section of the graphs for the specific value θ2 = 50◦.

To draw a quantitative conclusion on the robustness of the
two mechanisms, we next introduce an integrated measure μI

by relying on two assumptions drawn from known informa-
tion on nodal cilia. First, we assume that the roots of cilia are
isotropically distributed, i.e., that α is uniformly distributed
in the interval [0, 2π [. Secondly, we choose the tilt θ2 to be

normally distributed with mean 40◦ and standard deviation
10◦, thus reflecting the experimental measurements from
Ref. [47]. As a result, the integrated measure μI is defined
as the integral

μI = 1

2πC

∫ 2π

0
dα

∫ 70◦

10◦
dθ2 fn(θ2) μ1−2(α, θ2), (62)

where fn(x) = (2πσ 2)1/2 exp[−(x − m)2/2σ 2], with m =
40◦, σ = 10◦, and C = ∫ 70◦

10◦ fn(θ2) dθ2 ≈ 0.9954.
Using this definition, we can compute the values of μI

for the two synchronization mechanisms. We obtain that for
elastic compliance the value is μEC

I = 0.4871, supporting the
visual observation that for about a half of the parameter space
the elastic compliance mechanism leads to a similar synchro-
nization state in both cases of confinement (μ1−2 close to
0) while for the other half it leads to very different states
(μ1−2 close to 1). In contrast, for the force modulation mech-
anism we obtain the much smaller value of μFM

I = 0.1178,
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TABLE I. Equations for the evolution of the phase difference for different levels of confinement (one vs two walls) and different
synchronization mechanisms, i.e., elastic compliance (EC) vs force modulation mechanism (FM). Note that B = [1 + 2(h − H )hR−2]/2.

One wall Two walls

EC �̇/τω2 = −β̃ cos2 α sin � −β〈y1, y2〉 cos 2α sin �

FM 〈�̇〉/A2 = − hR
2H2 cos2 α(1 + 2 cos �) sin � − R3(2h−H )

2H4 cos 2α(cos2 � + 2B cos � + B) sin �

indicating a much higher level of robustness to confinement
when compared to elastic compliance.

B. Primary cilia

In this second subsection, we investigate the robustness of
the two synchronization mechanisms in the case of primary
cilia. Unlike nodal cilia, primary cilia have a central pair
of microtubules and additional internal structures that break
the axial symmetry and guide these active filaments to beat
in a plane perpendicular to the substrate to which they are
attached. In terms of our model, this translates to assuming
θ1 = θ2 ≈ π/2, i.e., taking vertical orbits. We still keep the
other assumptions outlined above and cilia beat in the same
direction α1 = α1 = α with a maximal drag obtained at the
highest point of the orbit, i.e., δ = 0. Under these assumptions
the equations for the evolution of the phase difference become
simplified and are given in Table I.

We first note that both mechanisms in either case of con-
finement do exhibit stable fixed points of the phase difference,
meaning that in all cases the system synchronizes to a fixed
phase difference. For a single wall, both mechanisms lead
to the in-phase synchronization for almost all pumping di-
rections α (excluding when cos α = 0, which is a set of
measure zero). On the other hand, in the case of two walls,
the value of the ultimate phase difference depends not only on
the mechanism but also on the sign of cos 2α. Specifically,
the elastic compliance mechanism with two walls leads to
in-phase synchronization if cos 2α > 0 but opposite phase
(� = π ) if cos 2α < 0. The force modulation mechanism
similarly leads to in-phase synchronization if cos 2α > 0 but
if cos 2α < 0 the system synchronizes to a phase difference

whose value depends on the geometry of the orbit; it is given
by � = ±�0(h, R) with

cos �0 = −1

2
+ h(H − h)

R2
−

(
h2(H − h)2

R4
− 1

4

)1/2

. (63)

Interestingly, having in mind the geometrical limits R < h and
R < H − h (i.e., the orbit has to fit between the walls), the
range of possible values for this geometry dependent phase
difference is relatively narrow, 1.94 < �0 < 2π/3 ≈ 2.09 (in
radians), and thus the dependence on the nonorientational
parameters of the orbit is weak.

Even though the mathematical results in the case of pri-
mary cilia are clearer than for the nodal cilia, the results for
the robustness to synchronization are not as conclusive. In
the geometric case cos 2α > 0, when cilia are pumping in a
direction relatively close to the one joining their anchoring
points (see illustrative summary in Fig. 7), both mechanisms
lead to in-phase synchronization in both levels of confine-
ment; we thus have perfect robustness to confinement in that
case. In contrast, when cos 2α < 0, the elastic compliance
mechanism leads to opposite-phase synchronization in the
strongly confined setup so the robustness measure (see the
start of the section) is μ1−2 = 1. In the same situation, force
modulation leads to a phase-locked state with a phase differ-
ence �0 ≈ 2π/3 and thus a smaller robustness measure of
μ1−2 ≈ 2/3. Unlike the nodal cilia case, it is therefore more
difficult to definitely gauge the dominance of one mechanism
over the other. Notably, this difference between the phase-
locked states of the two cilia (π and �0 ≈ 2π/3) obtained
in half the parameter space (the domain where cos 2α < 0)

FIG. 7. Illustration of the dependence of the stable phase difference under strong confinement (�(2)
0 ) and the robustness measure (μ1−2) on

the relative position of two primary cilia. Results for the elastic compliance and force modulation mechanisms are shown separately in (a) and
(b), respectively.
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might be important in the collective organization of a large
ciliary array.

VI. DISCUSSION

It is now well accepted that the synchronization of cilia
is due to a combination of long-range hydrodynamic interac-
tions with physical mechanisms allowing the ciliary phases
to evolve. Two of such mechanisms have been identified by
previous work, the elastic compliance of the periodic orbit
or oscillations driven by phase-dependent biological forcing,
both of which can lead generically to stable phase locking. In
this paper, we used minimal models of cilia to theoretically in-
vestigate the effect of strong confinement on the effectiveness
of hydrodynamic synchronization.

Specifically we have compared the usual ciliary dynamics
near a single no-slip wall to the dynamics arising when a
second nearby surface is introduced. We called this confine-
ment strong because the distance between the surfaces is much
smaller than the typical distance between the cilia. We com-
puted separately the impact of hydrodynamic confinement on
the synchronization dynamics of the elastic compliance and
the force modulation mechanisms and compared our results
to the standard case where the cilia are orbiting near a single
surface. Applying first our results to the biologically rele-
vant situation of nodal cilia rotating near surfaces, we show
that force modulation is a mechanism with a higher chance,

than the elastic compliance mechanism, to lead to similar
phase-locked states under strong confinement to those without
confinement. Our results point therefore to the robustness of
force modulation for synchronization of nodal cilia, an impor-
tant feature for biological dynamics suggesting that it could be
the physical mechanism most essential overall in these ciliary
arrays. In the second biologically relevant situation of primary
cilia, whose beat patterns are qualitatively different from those
of nodal cilia, results on robustness are not as pronounced but
still favor the force modulation mechanism.

Although, to the best of our knowledge, experiments have
yet to investigate issues of synchronization under strong
confinement, recent results using the algae of the genus
Chlamydomonas confined in channels about twice their sizes
have shown the important role of the higher moments of the
distribution of viscous forces in the far-field flow of these
motile cells [52]. Combined with these results, the modeling
approach presented in our paper could be adapted to study
flagellar synchronization in the case where the cells on which
the flagella are anchored are free to move in the fluid.
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