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Enhanced robustness of single-layer networks with redundant dependencies
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Dependency links in single-layer networks offer a convenient way of modeling nonlocal percolation effects in
networked systems where certain pairs of nodes are only able to function together. We study the percolation
properties of the weak variant of this model: Nodes with dependency neighbors may continue to function
if at least one of their dependency neighbors is active. We show that this relaxation of the dependency rule
allows for more robust structures and a rich variety of critical phenomena, as percolation is not determined
strictly by finite dependency clusters. We study Erdős-Rényi and random scale-free networks with an underlying
Erdős-Rényi network of dependency links. We identify a special “cusp” point above which the system is always
stable, irrespective of the density of dependency links. We find continuous and discontinuous hybrid percolation
transitions, separated by a tricritical point for Erdős-Rényi networks. For scale-free networks with a finite
degree cutoff we observe the appearance of a critical point and corresponding double transitions in a certain
range of the degree distribution exponent. We show that at a special point in the parameter space, where the
critical point emerges, the giant viable cluster has the unusual critical singularity S − Sc ∝ (p − pc )1/4. We
study the robustness of networks where connectivity degrees and dependency degrees are correlated and find
that scale-free networks are able to retain their high resilience for strong enough positive correlation, i.e., when
hubs are protected by greater redundancy.
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I. INTRODUCTION

The desire for an increasingly accurate description of net-
worked systems has resulted in various useful generalizations
of the classical percolation theory of random graphs. One
branch of these generalizations stems from the notion that
the functioning of a particular node may depend on the func-
tioning of certain other nodes in the system to which the
node in question may not be directly connected. This idea
has led to the definition of mutually connected components in
interdependent (or multiplex) networks [1–3]. Such a network
is composed of various network layers and a node in one
layer may have various interdependency neighbors in other
layers. According to the most common definition, a mutually
connected component is one that is connected on all layers,
i.e., the interdependency neighbors of nodes in a connected
cluster in one layer must also form connected clusters on all
other layers. The giant mutually connected component shows
an increased vulnerability to random damage, compared to
the giant components of the individual layers and, for ran-
dom uncorrelated layers, collapses in a discontinuous hybrid
transition [3], such as the one also seen in, e.g., k-cores [4].
Interdependent and multiplex networks have enjoyed con-
siderable popularity in recent years due to their ability to
model important and easily observed real-world systems such
as online social networks, transportation networks, neuronal
networks, and many more [5].

The notion of dependencies between nodes in a net-
work was exploited in a somewhat simpler generalization
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of ordinary percolation by Parshani et al. in Ref. [6]. Here,
a single-layer network of connectivity links is considered,
where there may also be “dependency links” between certain
pairs of nodes. The percolation rule is given as a deactivation
process. Initially, a given fraction of nodes in the network is
activated, and nodes can only remain active if (i) they belong
to the giant connected component of active nodes and (ii) all
of their dependency neighbors are also active. This deactiva-
tion process either leads to a stable situation, where a fraction
of nodes in the network remain active, or all nodes in the
network are deactivated. Using the fraction of initially active
nodes as the control parameter, it was shown in Ref. [6] that
the stable fraction of active nodes may undergo a continuous
or a discontinuous transition, depending on the density and
configuration of dependency links in the network. The con-
tinuous transition regime is essentially characterized by the
fraction of nodes without dependencies and the discontinuous
one by the distribution of the sizes of dependency groups
(finite clusters of nodes connected by dependency links).
Scale-free networks, that are highly robust in the continuous
transitions regime, were found to be particularly fragile in
the discontinuous transitions regime. The effect of various
different dependency group size distributions is explored in
Refs. [7–9]. Several generalizations of this model have been
investigated in recent years, such as networks with directed
[10] and time-varying dependency links [11] and multilayer
networks with dependency links both between and within the
individual layers [12].

The dependency rules assumed in most of the initial work
on interdependent networks and single-layer networks with
internal dependency links are too restrictive to describe certain
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systems that do not exhibit the predicted fragility. A relaxation
of the standard multiplex percolation rule was explored in
Refs. [13,14] where a node is defined to belong to a com-
ponent if it has at least one neighbor on each layer in the
same component—without the requirement that the compo-
nent be connected on each layer. It was found that a two-layer
network, of uncorrelated random networks, in this case still
exhibits a continuous percolation transition, as opposed to the
discontinuous hybrid transition of the standard giant mutually
connected component. A different approach was studied in
Ref. [15] where mutually connected components in a multi-
plex network were required to be connected on at least two
layers, as opposed to all of them. For numbers of layers greater
than or equal to two, the addition of new layers in this case
increases the robustness of the system.

In this paper we consider single-layer networks with in-
ternal dependency links and propose a relaxation of the
percolation rule introduced in Ref. [6]. We consider a node
to belong to a component if it has at least one connectiv-
ity link to the given component and—if it has dependency
links—at least one of its dependency neighbors is also in
the same component. This weaker dependency rule may be
suitable for modeling systems where individual nodes require
some kind of input from other nodes to function, but this
input may be supplied by various different nodes, not just
one. This model has the interesting feature that the size of
the giant component is nonmonotonic as a function of the
density of dependency links. Very few dependencies, as well
as a high number of redundant dependencies both corre-
spond to robust structures, with a “valley” of more fragile
states in between. We investigate the percolation properties
of such systems, with Erdős-Rényi and scale-free connectiv-
ity networks, where dependency links are placed randomly,
i.e., the dependency network is Erdős-Rényi with a given
mean dependency degree. We find continuous and discontin-
uous percolation transitions separated by a tricritical point
for Erdős-Rényi connectivity networks. For scale-free net-
works with a finite degree cutoff we show that in a certain
range of the degree distribution exponent a critical point ap-
pears, which is accompanied by a nonsmooth switch between
continuous and discontinuous transitions, as well as double
percolation transitions. We show that at the point where a
critical point appears the giant component has the critical sin-
gularity S − Sc ∝ (p − pc)1/4. We also consider the situation
where connectivity and dependency networks are correlated
and find that robustness can be greatly improved by positive
correlations between connectivity and dependency degrees.

The paper is organized as follows. In Sec. II we introduce
our model and discuss some implications and important dif-
ferences compared to the definitions of Ref. [6]. In Sec. III
we set up self-consistency equations to solve our model for
uncorrelated random connectivity and dependency networks,
and present numerical solutions compared with simulation
results. In Sec. IV we explore the various possible forms of
critical behavior. We derive conditions for critical thresholds
and obtain the order parameter exponent for the various cases
analytically. In Sec. V we present results for scale-free con-
nectivity networks with a finite degree cutoff, explaining the
origin of double percolation transitions and the unique order
parameter exponent β = 1/4. In Sec. VI we study the effect

strong dependence

weak dependence

FIG. 1. Example of a simple network with dependencies consist-
ing of two connected components (in the standard percolation sense).
Solid black lines represent connectivity links, and dashed blue lines
represent dependency links. Strongly and weakly dependent compo-
nents (of the same network) are shown on the right.

of correlations between connectivity and dependency degrees.
We give our conclusions in Sec. VII.

II. CONNECTED COMPONENTS IN NETWORKS
WITH REDUNDANT DEPENDENCY LINKS

We consider an arbitrary undirected network of connectiv-
ity links between nodes and an arbitrary undirected network of
dependency links between the same nodes. Connectivity links
establish reachability relationships between nodes and serve
as the backbone for connected components. Dependency links
signify the conditions that certain nodes can only function if
they are able to reach certain other nodes. Connected compo-
nents in our percolation model of “weak dependencies” may
be defined as the stable state of the following iterative process:

(1) Identify all connected components based on connectiv-
ity links.

(2) Remove all connectivity links of all nodes i that have at
least one dependency neighbor, and none of these dependency
neighbors are in the connected component of node i.

(3) Repeat steps 1 and 2 until no further changes are made.
We will refer to the resulting components as weakly de-

pendent components (WDCs) to distinguish from “ordinary”
connected components based purely on connectivity links.
Similarly we will refer to the components defined in Ref. [6]
as strongly dependent components (SDCs). Note that in the
strong dependence model step 2 of the above iterative process
is replaced with “remove all connectivity links of all nodes
i that have at least one dependency neighbor, and at least
one of these dependency neighbors is not in the connected
component of node i.” A schematic representation of strongly
and weakly dependent components is shown in Fig. 1 for a
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FIG. 2. Phase diagrams of (a) Erdős-Rényi and (b) scale-free
connectivity networks with mean connectivity degree zc, both with
an Erdős-Rényi dependency network of mean degree zd . The scale-
free connectivity network is an uncorrelated random network with
a degree distribution of the form Pc(k) ∼ (k + B)−γ , with lower
and upper degree cutoffs kmin = 1 and kmax = 1000, respectively.
The parameter B was chosen to achieve a given mean degree zc.
The degree distribution exponent was γ = 3. The phase separation
curves were obtained by numerical analysis of the self-consistency
equations presented in Sec. III.

simple network of two connected components (in the standard
percolation sense).

From the definitions it follows that the SDC that node i
belongs to is always a subgraph of its WDC. Also, the sizes of
WDCs may increase or decrease as a result of the addition of
a dependency link, while the sizes of SDCs cannot increase.
For large, sparse, random uncorrelated connectivity and de-
pendency networks the giant connected component (GCC) of
the dependency network constitutes a barrier to the existence
of SDCs: None of the nodes that belong to the GCC of the
dependency network can belong to an SDC. For this reason it
is the finite clusters (dependency groups) of the dependency
network that determine the percolation properties under the
strong dependency rule [6–9]. Such a restriction does not
apply in the case of the weak dependency rule. This might
make the weak dependency model (or some combination of
the weak and strong models) a better candidate to describe
the behavior of certain real-world systems with dependen-
cies. Similarly to k-cores and mutually connected components
in multiplex networks, the probability that a random node
belongs to a finite dependent component that contains de-
pendencies is negligible in large, sparse, uncorrelated random
networks, according to both the weak and strong definition.
Finite components, with non-negligible probability, exist in
both models only if none of the nodes in the given component
have dependencies.

In this paper we focus on the properties of the giant weakly
dependent component (GWDC) for Erdős-Rényi and random
scale-free connectivity networks, with an Erdős-Rényi depen-
dency network. To demonstrate the effect of the weak model
(compared to the strong model), in Fig. 2 we present phase
diagrams of these two types of connectivity networks, indicat-
ing the regions where a giant dependent component—strong
or weak—exists. The threshold value of zc in the strong model
is a monotonically increasing function of zd , while it initially
increases, then decreases in the weak model due to an increas-
ing number of redundant dependency links. This qualitative
behavior applies to both types of connectivity networks. The
weak model allows for stable structures in a much wider range
of parameters. (Note the logarithmic scale on the y axis.)

III. SELF-CONSISTENCY EQUATIONS

For infinite sparse random uncorrelated connectivity and
dependency networks, exploiting their local tree-likeness, the
problem of finding the relative size of the GWDC may be
solved by setting up appropriate self-consistency equations.
Let us consider a connectivity network with degree distribu-
tion Pc(k) and a dependency network with degree distribution
Pd (k). We consider each connectivity link to be active with
probability p. We introduce two probabilities that will allow
us to write exact self-consistency equations for this problem.
First, let x be the probability that following a random con-
nectivity link in a random direction we can reach the GWDC.
Second, let y be the probability that we encounter a node in
the GWDC by following a random dependency link emanat-
ing from a node in the GWDC. We can write the following
equation for x,

x = p

[
1 −

∞∑
k=1

kPc(k)

zc
(1 − x)k−1

][
1 −

∞∑
k=1

Pd (k)(1 − y)k

]
,

(1)

where zc denotes the mean degree of the connectivity network.
The first factor in square brackets in Eq. (1) gives the prob-
ability that following a random connectivity link, the node
encountered has at least one outgoing connectivity link to the
GWDC. The second factor gives the probability that following
a random connectivity link, the node encountered has either
no dependency neighbors, or has at least one dependency
neighbor in the GWDC. These two factors must be multiplied
by p, the probability that the link on which we arrived is
active. The equation for y is simpler,

y =
[

1 −
∞∑

k=0

Pc(k)(1 − x)k

]
. (2)

Note that the right-hand side of Eq. (2) does not depend on
y, i.e., x is the only independent variable in this problem. We
can solve Eqs. (1) and (2) numerically by iteration. Once the
solutions x and y are found, we can express the relative size of
the GWDC,

S =
[

1 −
∞∑

k=0

Pc(k)(1 − x)k

][
1 −

∞∑
k=1

Pd (k)(1 − y)k

]
.

The self-consistency equations (1) and (2) can be written
in more compact form using probability generating functions.
Let us introduce the generating function for the connectivity
degree distribution, the dependency degree distribution, and
the connectivity “excess degree” distribution, respectively,

Gc(x) =
∞∑

k=0

Pc(k)xk, (3)

Gd (x) =
∞∑

k=0

Pd (k)xk, (4)

Hc(x) =
∞∑

k=0

(k + 1)Pc(k + 1)

zc
xk . (5)
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Using these generating functions, Eqs. (1) and (2) can be
written as

x = p[1 − Hc(1 − x)][1 − Gd (1 − y) + Pd (0)], (6)

y = [1 − Gc(1 − x)]. (7)

Substituting Eq. (7) into Eq. (6) we arrive at one single self-
consistency equation for x,

x = p[1 − Hc(1 − x)][1 + Pd (0) − Gd (Gc(1 − x))]

≡ p�(x). (8)

The relative size of the GWDC may be expressed as

S = [1 − Gc(1 − x)][1 + Pd (0) − Gd (Gc(1 − x))]. (9)

Figure 3(a) shows numerical solutions for S obtained using
Eqs. (8) and (9), compared with simulations. Both the connec-
tivity and dependency networks are Erdős-Rényi, with mean
connectivity degree zc and mean dependency degree zd . For
high enough zc [zc = 2 in Fig. 3(a)] we see that the GWDC
exists in the entire range of zd values, although its size exhibits
a minimum for an intermediate value of zd . With decreasing
zc, below the point zc ≈ 1.848, the S(zd ) curve breaks up into
two separate regions that correspond to a low and high density
of dependencies. The region in the middle is not able to
support a GWDC. It can also be seen that, with increasing zd ,
the GWDC disappears and reappears in a discontinuous tran-
sition [zc = 1.6 in Fig. 3(a)]. At the point zc ≈ 1.422 the first
transition changes to continuous. All four numerical curves
show very good agreement with simulations except close to
the critical regions, where large fluctuations are expected. To
further demonstrate the different types of transitions, Fig. 3(b)
shows a phase diagram of the same network class, with S
overlaid as a color map.

For the sake of completeness we present here also the
exact self-consistency equations necessary to solve the strong
variant of the model, in the same settings. Let the probabilities
x and y have the same meaning as above (except for replacing
the word “GWDC” with “GSDC” in the definition). The two
equations for the strong model are

x = p

[
1 −

∞∑
k=1

kPc(k)

zc
(1 − x)k−1

][ ∞∑
k=0

Pd (k)yk

]
,

y =
[

1 −
∞∑

k=0

Pc(k)(1 − x)k

][ ∞∑
k=1

kPd (k)

zd
yk−1

]
,

and the relative size of the GSDC is expressed as

S =
[

1 −
∞∑

k=0

Pc(k)(1 − x)k

][ ∞∑
k=0

Pd (k)yk

]
.

IV. CRITICAL BEHAVIOR

We explore the various types of critical behavior that occur
in the weak dependency model, associated with the appear-
ance of the GWDC. To study the behavior of Eq. (8) it will be
useful to introduce the function f (x) = �(x)/x. (We should
remember that apart from x, f depends on the distributions Pc
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FIG. 3. (a) Relative size S of the GWDC as a function of mean
dependency degree zd , where both the connectivity and dependency
networks are Erdős-Rényi networks. Curves are shown for four
different values of the mean connectivity degree zc. Open circles
represent simulation results, and solid lines correspond to the nu-
merical solution of Eqs. (8) and (9). (The number of nodes was
N = 106 in all cases and results were averaged over 100 realizations.)
(b) Phase diagram of the same network class, with S overlaid as a
color map. Solid and dashed black lines correspond to continuous
and discontinuous transitions, respectively. The tricritical point and
cusp point (see Secs. IV A and IV B) are marked by a solid red circle
and solid blue square, respectively.

and Pd .) Equation (8) now reads

p f (x) = 1. (10)

Note that Eq. (10) is equivalent to Eq. (8) only for x > 0.
x = 0 is always a solution of Eq. (8). Apart from this trivial
solution, all other solutions can be found using Eq. (10). The
first nonzero solution x∗ occurs when the maximum of curve
p f (x) first becomes 1. If the maximum of f in the range
]0, 1] is denoted by fmax, then the value of p at which this
happens is given by pc = 1/ fmax. We now discuss the various
possible situations that correspond to different types of phase
transitions with different critical singularities.
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FIG. 4. (a) Function f (x) (scaled to be at the critical threshold)
for different values of the mean dependency degree zd . (b) Relative
size S of the GWDC as a function of connectivity link activation
probability p, for different values of zd . The three curves on each
panel correspond to a continuous transition (zd = 0.2), the tricritical
point (zd = 0.3517), and a discontinuous transition (zd = 0.5). The
mean connectivity degree is zc = 3 in all cases. Both the connectivity
and the dependency network is Erdős-Rényi.

A. Continuous transitions, discontinuous transitions,
and tricritical point

Let us first consider the situation where f (x) is monoton-
ically decreasing, i.e., f ′(x) < 0 for all x > 0 [solid red line
in Fig. 4(a)]. In this case fmax = limx→0 f (x), which corre-
sponds to a continuous transition. [Remember that f (0) is not
defined.]

This limit can be evaluated using L’Hospital’s rule,

lim
x→0

f (x) = lim
x→0

�(x)

x
= lim

x→0

� ′(x)

x′ = � ′(0).

Using Eqs. (3)–(5) and (8), and the basic properties of
probability generating functions, we obtain

� ′(0) = Pd (0)
〈k(k − 1)〉c

〈k〉c
,

resulting in the threshold for a continuous phase transition,

pc = 〈k〉c

Pd (0)〈k(k − 1)〉c
. (11)

We see that only Pd (0) plays a role, i.e., the shape of the de-
pendency degree distribution is irrelevant and only the fraction
of nodes with no dependencies matters. For the case where
both the connectivity and dependency networks are Erdős-
Rényi (with mean degrees zc and zd , respectively) and pc = 1,
the condition (11) can be written simply as

zc = ezd .

The corresponding curve is plotted in Fig. 3(b) as a solid
black line. Using the probability p as a control parameter, the
behavior of S near the transition is given by S ∝ (p − pc)1

[see the solid red line in Fig. 4(b)]. This can be shown by
expanding Eq. (8) about the point (x = 0, p = pc) and using
Eq. (10) (see the Appendix for details).

As noted above, a continuous transition can only happen
if fmax = limx→0 f (x). If limx→0 f ′(x) > 0, then this is not
the case and fmax = f (x∗) for some x∗ > 0, meaning that
the nontrivial solution emerges with a jump [see the dashed
green line in Figs. 4(a) and 4(b)]. The condition for this to
happen is f ′(x∗) = 0, and the corresponding threshold for the

discontinuous transition is

pc = 1

f (x∗)
.

The behavior of S near such a transition is given by S − Sc ∝
(p − pc)1/2. This type of phase transition is also frequently
referred to as a hybrid transition, involving a discontinuity and
a critical singularity. The critical behavior can be derived by
expanding Eq. (8) about the point (x = x∗, p = pc) and using
the condition f ′(x∗) = 0 (see the Appendix for details).

Assuming for now that f has only one maximum in the
interval ]0, 1], we saw that limx→0 f ′(x) < 0 results in a
continuous transition, while limx→0 f ′(x) > 0 produces a dis-
continuous hybrid transition. The two types of transitions
meet at a tricritical point where limx→0 f ′(x) = 0 [see the
dotted blue line in Figs. 4(a) and 4(b)]. Using L’Hospital’s
rule we find

lim
x→0

f ′(x) = lim
x→0

(
�(x)

x

)′
= lim

x→0

x� ′(x) − �(x)

x2

= lim
x→0

[x� ′(x) − �(x)]′

(x2)′
= � ′′(0)

2
.

Using the properties of generating functions, � ′′(0) can be
expressed as

� ′′(0) = 2〈k(k − 1)〉c〈k〉d − Pd (0)
〈k(k − 1)(k − 2)〉c

〈k〉c
,

resulting in the condition for a tricritical point,

Pd (0)

2〈k〉d
= 〈k(k − 1)〉c〈k〉c

〈k(k − 1)(k − 2)〉c
. (12)

For Erdős-Rényi networks, and setting pc = 1, Eqs. (12) and
(11) are equivalent to

zc = e1/(2zc ),

zd = 1/(2ezd ),

which have the solution ztc
c ≈ 1.4215 and ztc

d ≈ 0.3517. This
tricritical point is shown as a solid red circle on Fig. 3(b).
Using the probability p as a control parameter, the behavior
of S near such a transition is given by S ∝ (p − pc)1/2. Thus
the tricritical point has the same type of critical singularity
as hybrid transitions, only here the jump size is zero. The
critical behavior can be derived by expanding Eq. (8) about the
point (x = 0, p = pc) and using the condition limx→0 f ′(x) =
0 (see the Appendix for details). Equation (12) also means
that infinite scale-free connectivity networks with a degree
distribution exponent γ < 4 (and no finite degree cutoff) can-
not have a tricritical point for any finite value of the mean
dependency degree [as long as Pd (0) > 0].

B. “Cusp” point

Assuming an Erdős-Rényi dependency network, let us now
set p = 1 and take zd , the mean dependency degree, to be our
control parameter. As can be seen in Fig. 3, for Erdős-Rényi
connectivity networks, for small enough values of zc there
are two percolation transitions, when varying zd . The GWDC
first disappears, and then reappears for large enough zd . When
zc < ztc

c , the first transition of the two is continuous and for
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FIG. 5. (a) The maximum (with respect to x) of the function
f (x, zd ), as a function of zd , for three different values of zc. (b) The
relative size S of the GWDC as a function of zd for the same three
values of zc as in (a). The three curves in each panel correspond
to a case with two discontinuous transitions with S = 0 in between
(zc = 1.847), the cusp point (zc = 1.848), and a situation with no
transitions (zc = 1.849). Both the connectivity and the dependency
network are Erdős-Rényi.

zc > ztc
c it is discontinuous (ztc

c denoting the value of zc at
the tricritical point). An interesting consequence of the weak
dependency model is that for large enough zc, percolation
transitions disappear altogether, i.e., a GWDC always exists,
for any zd . For the particular value of zc where this happens,
the S(zd ) curve has a unique “cusp” shape. To find the values
of zc and zd where this cusp point occurs, let us consider also
the zd dependence of the function f : f = f (x, zd ). It is easy
to see that the cusp point is a saddle point of the function
f (x, zd ): At this point f is maximal with respect to x and
minimal with respect to zd [see Fig. 5(a)]. The cusp point,
therefore, has the following conditions,

∂ f

∂x

∣∣∣∣
xcp,zcp

d

= ∂ f

∂zd

∣∣∣∣
xcp,zcp

d

= 0,

f
(
xcp, zcp

d

) = 1. (13)

These are three equations for the three unknowns xcp, zcp
d ,

and zcp
c . For Erdős-Rényi networks the cusp point occurs at

zcp
c ≈ 1.848 and zcp

d ≈ 1.371. Using zd as a control parameter
the behavior of S near the cusp point is given by S − Scp ∝
|zd − zcp

d |1 (for zc = zcp
c ), i.e., the critical exponent changes

from 1/2 to 1 at this point. Note also that S − Scp is pro-
portional to the distance from zcp

d on both sides of the cusp
point [see Fig. 5(b)]. This critical behavior can be derived
by expanding Eq. (8) about the point (x = xcp, zd = zcp

d ) and
using the conditions (13) (see the Appendix for details).

C. Critical point and double transitions

Up to now we have assumed that the function f has one
maximum in the interval ]0, 1]. This is true for Erdős-Rényi
connectivity networks, but not necessarily so for broader
degree distributions. We consider scale-free connectivity net-
works with degree distributions of the form

Pc(k) = A(k + B)−γ , (14)

with finite lower and upper degree cutoffs kmin and kmax. The
parameter A is a normalization constant and B is adjusted
in order to achieve a given mean connectivity degree zc.
Figure 6(a) shows the phase diagram of a network with a
connectivity degree distribution of the form (14) with zc = 3,
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FIG. 6. (a) Phase diagram for a scale-free connectivity network
(zc = 3, γ = 3, kmin = 1, kmax = 1000) and the Erdős-Rényi depen-
dency network. The solid line represents continuous transitions, and
the dashed line corresponds to discontinuous transitions. The shaded
green region indicates double percolation transitions. (b) Function
f (x) (scaled to be at the critical threshold) for different values of the
mean dependency degree zd . (c) Relative size S of the GWDC as a
function of connectivity link activation probability p, for different
values of zd . The four curves on (b) and (c) correspond to the critical
point (zd = 1.896), a double transition (zd = 1.95), the point where
continuous transitions disappear (zd = 2.155), and a discontinuous
transition (zd = 2.25).

γ = 3, kmin = 1, and kmax = 1000. The diagram was obtained
by a numerical solution of Eq. (8). (The dependency degree
distribution is Erdős-Rényi with mean dependency degree zd ,
as before.) The transition is continuous for low values and
discontinuous for high values of zd , similar to the case of
Erdős-Rényi connectivity networks. However, here there is
no smooth switch between the two types of transitions and
the discontinuous line ends in a critical point. Also, in this
case there is a region [shaded green in Fig. 6(a)] where double
percolation transitions occur.

For low values of zd the function f has only one max-
imum (at x → 0), corresponding to a continuous transition
as discussed already in Sec. IV A. With increasing zd the
function f develops a second local maximum at some point
x∗ > 0 [see the solid red line in Fig. 6(b)], corresponding to a
singularity on the S(p) curve [the solid red line in Fig. 6(c)].
The conditions for this point (a critical point) are

f ′(x∗) = f ′′(x∗) = 0. (15)

Expanding Eq. (8) about the point (x = x∗, p = pc) [with
pc = 1/ f (x∗)] and using the conditions (15) we find the be-
havior S − Sc ∝ (p − pc)1/3 close to the critical point (see
the Appendix for details). This type of singularity has been
shown to appear in heterogeneous threshold models (see, e.g.,
Refs. [16,17]).

Increasing zd beyond the critical point we find that f has
two maxima, one at x → 0 and one at some x∗ > 0. The
first maximum corresponds to a continuous transition, and the
second corresponds to a subsequent discontinuous transition
[see the dotted blue line in Figs. 6(b) and 6(c)]. The second,
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discontinuous transition has the critical singularity S − Sc ∝
(p − pc)1/2 already described in Sec. IV A. The double tran-
sition exists in the region where f has two local maxima and
limx→0 f (x) > f (x∗), where x∗ is the position of the second
maximum. This region is shown shaded green in Fig. 6(a).
The thresholds of the two transitions become equal when
limx→0 f (x) = f (x∗) [the dashed green line in Figs. 6(b) and
6(c)], and above this point only discontinuous transitions can
happen [the dotted maroon line in Figs. 6(b) and 6(c)], as the
local maximum at x → 0 now corresponds to a nonphysical
solution.

Similar double transitions were also found in a mixed
contagion model of a simple and complex contagion [17].
The situation is similar in our case: The continuous transition
signifies an ordinary percolation phase, determined by the
fraction of nodes without dependencies. The second, discon-
tinuous transition corresponds to a “complex” phase, where
at a certain point enough nodes have enough redundant de-
pendencies to participate in a larger giant weakly dependent
component.

D. Emergence of the critical point

For scale-free connectivity networks—i.e., ones with a
degree distribution of the form (14)—we find that a criti-
cal point, and corresponding double transitions, only exist
in a certain range [γ (low), γ (high)] of the degree distribu-
tion exponent. For zc = 3, kmin = 1, and kmax = 1000 we
find numerically that γ (low) ≈ 2.146 and γ (high) ≈ 6.33 (to
a precision of 0.001). Starting at high values of γ (com-
ing from narrower connectivity degree distributions) the first
point at which a critical point appears is (γ = γ (high), zd =
z(high)

d , pc = p(high)
c ) for some z(high)

d and p(high)
c . It can be shown

that at this point S has the critical behavior S ∝ (p − p(high)
c )1/3

(see the Appendix for the derivation). At the other extreme,
however, at the point (γ = γ (low), zd = z(low)

d , pc = p(low)
c )

we find

S − S(low)
c ∝ (

p − p(low)
c

)1/4
.

This unusual critical behavior is explained in Sec. V.

V. RESULTS FOR SCALE-FREE NETWORKS

As we saw in Sec. IV A, Erdős-Rényi connectivity net-
works exhibit a tricritical point where continuous transitions
switch smoothly to discontinuous ones. For scale-free con-
nectivity networks this switch may be nonsmooth for certain
values of γ , due to the existence of a critical point. A critical
point and corresponding double percolation transitions occur
because the function f (x) has two maxima (with respect to x)
in a certain range of zd and γ values. Figure 7(a) shows phase
diagrams for scale-free connectivity networks with different
values of γ . For relatively small and relatively large γ values
the switch between continuous and discontinuous transitions
is smooth, as for Erdős-Rényi connectivity networks. A criti-
cal point exists only for intermediate γ values.

It is important to note that the networks considered
here have a finite degree cutoff, therefore all moments of the
degree distribution are finite. We are, therefore, not discussing
the effect of asymptotically power-law degree distributions.
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FIG. 7. (a) Phase diagrams for scale-free connectivity networks
(zc = 3, kmin = 1, kmax = 1000) for different values of the degree
distribution exponent γ . Continuous transitions are represented by
solid lines and discontinuous ones by dashed lines. A critical point
and double transitions appear for intermediate values of γ , while
there is a smooth switch (at a tricritical point) between continuous
and discontinuous transitions for low and high γ values. (b), (c) Parts
of two phase diagrams zoomed in from (a): (b) γ = 4.5 and (c)
γ = 2.2. In (b) and (c) nonphysical solutions of Eqs. (8) and (9) are
also shown.

We are using bounded power-law degree distributions to study
the effect of broad distributions, that may also occur in real-
world networks, where, of course, a finite cutoff always exists.

To understand how the critical point emerges it is useful
to first look at zoomed-in versions of the phase diagrams for
γ = 4.5 [Fig. 7(b)] and γ = 2.2 [Fig. 7(c)]. (In these figures
the transition lines corresponding to the initial maximum are
continued as long as this initial maximum exists, however they
do not represent physical solutions after the intersection with
the second transition line.) Figure 7(c) shows that for γ = 2.2
a tricritical point actually exists and the critical point occurs
in the discontinuous range, corresponding to discontinuous-
discontinuous double transitions. Considering that the jump
size in discontinuous transitions goes to zero at the critical
point, we know that close to the point where the critical
point emerges the two local maxima—of f (x)—must be close
together. In other words, the second local maximum, and the
corresponding critical point, is a result of the initial maximum
splitting into two local maxima. Figures 7(b) and 7(c) suggest
that the critical point emerges differently for high and low γ .

According to numerical analysis of the function f (x), the
highest γ value for which f (x) has two maxima for some
zd , i.e., a critical point exists, is γ (high) ≈ 6.33. The lowest
such γ value is γ (low) ≈ 2.146. (These values apply to degree
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FIG. 8. Appearance of the second maximum of the function
f (x) for scale-free networks (zc = 3, kmin = 1, kmax = 1000). (a) and
(c) show the appearance of the second maximum at x = 0 [γ = 6.1,
zd = 0.888, and zd = 0.889 for (a) and (c), respectively]. (b) and
(d) show the appearance of the second maximum at some x > 0
[γ = 2.15, zd = 3.357, and zd = 3.359 for (b) and (d), respectively].

cutoffs kmin = 1, kmax = 1000.) We find that the emergence of
the second maximum at γ (high) corresponds to the tricritical
point “breaking up,” i.e., happens at x∗ = 0. At γ (low) the
second maximum is a result of the initial maximum (at some
x∗ > 0) splitting into two. These two different ways in which
the second maximum can emerge are explained graphically in
Fig. 8.

The fact that at γ (low) the second maximum emerges at
some x∗ > 0 means that the following conditions must all
hold,

f ′(x∗) = f ′′(x∗) = f ′′′(x∗) = 0, (16)

unlike at γ (high), where the emergence of the second maximum
only has the conditions

f ′(0) = f ′′(0) = 0.

Having a zero condition also for the third derivative of f
results in an unusual critical behavior at γ (low). Expanding
Eq. (8) about the point (x = x∗, p = pc) and using the con-
ditions (16) leads to

S − Sc ∝ (p − pc)1/4 (17)

(see the Appendix for details). This type of transition, in our
current setup, has little practical significance, however, as the
emergence of the second maximum at γ (low) happens at an
x∗, which, although clearly positive, is still quite close to
zero. Also, the maximum of f is very sharp, and f ′′′(x∗) ≈ 0
holds only in a very close vicinity of x∗, making the type of
singularity difficult to observe. It is nevertheless an interesting
phenomenon and its analysis sheds light on the necessary
ingredients for this unique critical behavior to occur. Here, we
considered a scale-free connectivity degree distribution with
a finite upper cutoff, therefore the double transitions and the
unique critical exponent are not a consequence of power-law
asymptotics, and would probably also occur for different types
of broad degree distributions in this weak dependency model.
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FIG. 9. Map of the different types of phase transitions occur-
ring in a model of random scale-free connectivity network coupled
with an Erdős-Rényi dependency network. The scale-free connec-
tivity network had a degree distribution of the form of Eq. (14),
the parameter B always adjusted to achieve a mean connectivity
degree of zc = 3. The green (blue) region corresponds to a single
continuous (discontinuous) transition. The yellow (red) region corre-
sponds to a double transition of the type “continuous–discontinuous”
(“discontinuous–discontinuous”). The point marked with a green
triangle corresponds to the conditions (16) and the critical behavior
(17). The right panel is a zoomed-in version of the framed rectangular
area of the left panel.

Investigating the effect of “truly” scale-free networks, with no
degree cutoff in the infinite network size limit, is left for future
work.

Figure 9 presents a map of the complex landscape of var-
ious types of transitions that are possible in the scale-free
networks considered here. The boundary curves were deter-
mined numerically.

VI. EFFECT OF CORRELATION BETWEEN
CONNECTIVITY AND DEPENDENCY DEGREE

Degree-degree correlations are a common feature among
many real-world networks, both natural and artificial. In
single-layer networks, without dependencies, positive (assor-
tative) correlations between nearest-neighbor degrees increase
the robustness of networks [18], i.e., decrease the percolation
threshold in random percolation (in terms of the fraction of ac-
tive links). Similar results were found for multiplex networks
[19–21]: Positive correlations between degrees of nodes on
different layers made networks more robust against random
damage. Here, we investigate the effect of positive correla-
tions between the connectivity and dependency degrees of
nodes on the weakly dependent percolation threshold. There
are various ways in which such a correlated network model
could be built. As before we want to start with an uncor-
related random connectivity network with arbitrary degree
distribution Pc(k). We also fix the mean dependency degree
zd , which may be different from zc. To allow for simple, exact,
self-consistency equations (in the infinite network size limit)
we assume that the distribution of dependency degrees for a
node of given connectivity degree is given by

P(kd = k′|kc = k) = (1 − f )
zk′

d e−zd

k′!
+ f

(
k zd

zc

)k′
e−(k

zd
zc

)

k′!
,

(18)

where f is a tuning parameter: It allows us to interpolate
between an Erdős-Rényi dependency network which has no
correlation with the connectivity network ( f = 0), and a
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network in which a node’s dependency degree is Poisson
distributed, with the node’s rescaled connectivity degree as
the mean (maximal correlation, f = 1). This kind of network
construction resembles the “hidden variable” model of Chung
and Lu [22,23], where a unique degree distribution is pre-
scribed for each node, parametrized by the expected degree,
a hidden variable of the given node. It is easy to check that
the mean degree of the dependency network, using Eq. (18),
is indeed equal to zd , for any f . (Note that f = 1 in this model
still does not mean complete positive correlation in, e.g., the
Pearson correlation coefficient sense, as the connectivity and
dependency degrees will not match exactly. An exact match
would not be attainable if we want to maintain the possibility
of zc �= zd .)

To write exact self-consistency equations for the weakly
dependent percolation model, we start by writing the degree
distribution of the dependency network,

Pd (k′) =
∞∑

k=0

Pc(k)

[
(1 − f )

zk′
d e−zd

k′!
+ f

(
k zd

zc

)k′
e−(k

zd
zc

)

k′!

]
.

(19)

Since the connectivity network is uncorrelated, the de-
pendency network is also uncorrelated, with the degree
distribution given by Eq. (19), and correlations only exist
between the connectivity and dependency degrees of nodes.
Let P(k, k′) denote the probability that the connectivity degree
of a randomly chosen node is k and its dependency degree is
k′. This can be expressed in two equivalent ways,

P(k, k′) = Pc(k)P(kd = k′|kc = k)

= Pd (k′)P(kc = k|kd = k′). (20)

Using Eqs. (18) and (20) we can write the following,

P(kc = k|kd = k′)

= Pc(k)

Pd (k′)

[
(1 − f )

zk′
d e−zd

k′!
+ f

(
k zd

zc

)k′
e−(k

zd
zc

)

k′!

]
.

To proceed it will be useful to express Pc(k, k′), the probability
that a node arrived at by a random connectivity link, has
connectivity degree k and dependency degree k′:

Pc(k, k′) = kPc(k)

〈k〉c
P(kd = k′|kc = k)

= kPc(k)

〈k〉c

[
(1 − f )

zk′
d e−zd

k′!
+ f

(
k zd

zc

)k′
e−(k

zd
zc

)

k′!

]
.

Similarly, let Pd (k, k′) be the probability that a node arrived at
by a random dependency link, has connectivity degree k and
dependency degree k′:

Pd (k, k′) = k′Pd (k′)
〈k〉d

P(kc = k|kd = k′)

= k′Pd (k′)
〈k〉d

Pc(k)

Pd (k′)

[
(1− f )

zk′
d e−zd

k′!
+ f

(
k zd

zc

)k′
e−(k

zd
zc

)

k′!

]

= k′Pc(k)

〈k〉d

[
(1 − f )

zk′
d e−zd

k′!
+ f

(
k zd

zc

)k′
e−(k

zd
zc

)

k′!

]
.

Finally, let us express the probability Pd→c(k) that a node
arrived at by a random dependency link, has connectivity
degree k,

Pd→c(k) =
∞∑

k′=1

Pd (k, k′)

=
∞∑

k′=1

k′Pc(k)

〈k〉d

[
(1− f )

zk′
d e−zd

k′!
+ f

(
k zd

zc

)k′
e−(k

zd
zc

)

k′!

]
.

With these quantities we can now set up exact self-consistency
equations for this correlated model. The probabilities x and y
have the same meaning as before:

x = p
∞∑

k=1

∞∑
k′=0

{Pc(k, k′)[1 − (1 − x)k−1]

× [δk′,0 + 1 − (1 − y)k′
]}, (21)

y =
∞∑

k=0

Pd→c(k)[1 − (1 − x)k]. (22)

The probability that a random node belongs to the GWDC is
now given as

S =
∞∑

k=0

∞∑
k′=0

P(k, k′)[1 − (1 − x)k][δk′,0 + 1 − (1 − y)k′
].

Plugging Eq. (22) into Eq. (21) results in a single self-
consistency equation, and allows for the same kind of analysis
as for the uncorrelated model in Secs. III and IV.

We considered the above model for different connectivity
networks and different degrees of positive correlation be-
tween connectivity and dependency degrees. To assess the
robustness of these networks, from Eqs. (21) and (22) we
numerically identified pc, the lowest link activation probabil-
ity that provides a nonzero value of S. This threshold may
correspond to a continuous or a discontinuous transition, but
here we are only interested in the value pc where the tran-
sition occurs. Figure 10 shows pc as a function of the mean
dependency degree zd , for different values of the correlation
parameter f . As expected, in Erdős-Rényi connectivity net-
works [Fig. 10(a)], correlations only have a moderate effect,
since the connectivity and dependency degrees in this case
cannot be too different, irrespective of the degree of corre-
lation. It is clear, however, that increasing positive correlation
increases robustness (i.e., decreases pc) for a relatively dense
dependency network. (Note that the opposite must be true
for the strong dependency model of Ref. [6].) This can be
easily understood qualitatively: Higher degree nodes, which
are more important for percolation, have more dependency
links, i.e., have a higher probability of surviving. Interestingly,
the opposite is true for low-density dependency networks (zd

smaller than ≈0.5): Here, higher positive correlation means
that high degree nodes have a higher probability of actually
having at least one dependency link, as most dependency
degrees are now 0 or 1. The same dual phenomenon is seen
amplified for random scale-free networks: Positive correla-
tion dramatically increases robustness for a higher density
of dependency links, while it decreases robustness for low
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FIG. 10. Phase diagrams for the model of correlated connectivity
and dependency degrees defined by the distribution (18). The perco-
lation threshold values pc were determined by numerical analysis
of Eqs. (21) and (22). The mean connectivity degree was zc = 3
for all networks. For scale-free connectivity networks the degree
distribution (14) was used, with degree cutoff values kmin = 1 and
kmax = 1000. [For the dependency degree distributions the cutoff
values were changed to kmin = 0 and kmax = 1200, because in the
model described by Eq. (18) a dependency degree equal to zero is
possible and also the biggest dependency degree may be slightly
greater than the biggest connectivity degree.]

dependency density [Figs. 10(b)–10(d)]. The effect becomes
greater for smaller values of the degree distribution expo-
nent γ . The low dependency density regime also becomes
narrower with decreasing γ . For maximal positive correla-
tion ( f = 1) and γ = 2, the value of pc is practically the
same as the percolation threshold for ordinary percolation
(without any dependencies), irrespective of the density of
dependency links. This suggests that networks, in this model
setting, can be efficiently protected from random damage by
strong enough positive correlation between connectivity and
dependency degrees. The scale-free networks considered here
had a finite degree cutoff, so pc always remains nonzero,
i.e., there is no true “hyper-resilience,” which is a hallmark
of a true, asymptotically power-law degree distribution. It
is an interesting problem for future work to check if the
percolation threshold can indeed go to zero for the maxi-
mally correlated case, for any value of zd , when considering
a power-law connectivity degree distribution without a degree
cutoff.

VII. DISCUSSION AND CONCLUSIONS

We have investigated the percolation properties of random
networks where nodes can have dependency neighbors, but
only require that at least one of them be in the same compo-
nent. Assuming also a random network of dependency links,
we have demonstrated that networks in this model are con-
siderably more robust than in the strong dependency model
of Ref. [6], due to the redundancy of dependency links for
dense enough dependency networks. Our weak dependency
model predicts a nonmonotonic behavior of the size of the

GWDC as a function of the mean dependency degree: Both
low and high density of dependency links allows for robust
structures, with more fragile structures in between. This also
gives a natural scale for “maximum fragility” in terms of the
mean dependency degree.

Studying Erdős-Rényi and scale-free connectivity net-
works we have revealed a wide variety of percolation critical
phenomena. Varying the mean dependency degree, contin-
uous and discontinuous hybrid transitions were found for
Erdős-Rényi connectivity networks, separated by a tricritical
point. We have derived expressions for the different threshold
conditions in terms of the moments of the connectivity and
dependency degree distributions. We found standard mean-
field critical behavior for continuous transitions, and the same
type of critical behavior for the discontinuous transitions as
already seen in k-cores and multiplex networks, with an order
parameter exponent 1/2. We have identified a special “cusp”
point, above which the system is always stable, irrespective
of the density of dependency links. At this point the order
parameter exponent of discontinuous transitions was found to
change from 1/2 to 1.

We have found continuous and discontinuous hybrid transi-
tions also for scale-free connectivity networks, in the low and
high dependency regimes, respectively. For a certain range
of the degree distribution exponent γ the switch between the
two types of transitions was found to be nonsmooth, corre-
sponding to the existence of a critical point marking the end
of the line of discontinuous transitions. In this range double
percolation transitions were observed. The order parameter
exponent at the critical point was found to be 1/3, as seen also
in a heterogeneous k-core, and bootstrap percolation. For the
smallest γ value where a critical point first appears, we found
the exponent to change from 1/3 to 1/4 at the (emergent) crit-
ical point. The power-law degree distribution used here had a
finite cutoff, and hence did not represent a “truly” scale-free
network. The critical point, double transitions, and the unique
1/4 exponent would likely also appear in other forms of broad
degree distributions, not necessarily power law. These effects
can be attributed mainly to the structure of the weak depen-
dency model. Studying the effect of asymptotically power-law
degree distributions is an interesting problem for future
work.

We have investigated the effect of correlation between
connectivity and dependency degrees, and found that pos-
itive correlation enhances robustness, except for networks
with a low density of dependency links. The robustness
enhancing effect is amplified for scale-free connectivity net-
works. For a low enough value of γ , strong enough positive
correlation between connectivity and dependency degree ap-
pears to completely negate the effect of dependencies: The
percolation threshold is practically the same as for the net-
work without any dependencies. The study of asymptotically
power-law connectivity degree distributions is left for future
work.

In addition to degree-degree correlations, network models
with a certain fraction of connectivity and dependency links
overlapping, may provide a more realistic representation of
many real-world systems. Our weak dependency model may
also be combined with the strong variant: Certain nodes may
follow the former rule, and others may follow the latter. Such

022321-10



ENHANCED ROBUSTNESS OF SINGLE-LAYER NETWORKS … PHYSICAL REVIEW E 103, 022321 (2021)

generalizations may be interesting avenues to consider for
future research.
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APPENDIX: DERIVATION OF ORDER PARAMETER
EXPONENTS

Here, we derive the order parameter exponent for the dif-
ferent types of phase transitions that are discussed in the main
text. Our starting point is the self-consistency equation

x = p[1− Hc(1− x)][1+ Pd (0) − Gd (Gc(1 − x))] ≡ p�(x).
(A1)

In the main text we defined the function f (x) = �(x)/x and
discussed the various threshold conditions in terms of the
derivatives of f . To derive the order parameter exponents it
is more convenient to consider the function

g(x, p) = p�(x) − x.

The conditions in terms of the derivatives of f can be easily
transformed into conditions in terms of the derivatives of g.
Equation (A1) can be written as

g(x, p) = 0.

Note that �(0) = 0, which implies that the “unmixed” partial
derivatives of g with respect to p are all zero at x = 0. We will
use this fact extensively.

1. Continuous transitions

A continuous transition happens at x = 0, p = pc, so we
expand g(x, p) about the point (0, pc):

g(0 + δx, pc + δp)

= g(0, pc) + ∂g

∂x

∣∣∣∣
0,pc

δx + ∂g

∂ p

∣∣∣∣
0,pc

δp + 1

2

∂2g

∂x2

∣∣∣∣
0,pc

(δx)2

+ 1

2

∂2g

∂ p2

∣∣∣∣
0,pc

(δp)2 + ∂2g

∂x∂ p

∣∣∣∣
0,pc

(δx)(δp) + · · · . (A2)

We know that g(0, pc) = 0. Requiring also that g(0 +
δx, pc + δp) = 0 (i.e., we are expanding along the solution
curve) we have that the expansion terms of equal powers on
the right-hand side of Eq. (A2) must cancel out. The unmixed
partial derivatives of g with respect to p are all 0 at x = 0. The
condition for a continuous transition, as expressed in terms of
the function f , is

pc

[
lim
x→0

f (x)

]
= 1.

This condition is equivalent to

g(0, pc) = ∂g

∂x

∣∣∣∣
0,pc

= 0.

With the above conditions, the leading terms of Eq. (A2) are

1

2

∂2g

∂x2

∣∣∣∣
0,pc

(δx)2 + ∂2g

∂x∂ p

∣∣∣∣
0,pc

(δx)(δp) = 0,

which results in

δx ∝ δp.

2. Discontinuous transitions

A discontinuous transition happens at some x = x∗, p =
pc, so we expand g(x, p) about the point (x∗, pc):

g(x∗ + δx, pc + δp)

= g(x∗, pc) + ∂g

∂x

∣∣∣∣
x∗,pc

δx + ∂g

∂ p

∣∣∣∣
x∗,pc

δp+ 1

2

∂2g

∂x2

∣∣∣∣
x∗,pc

(δx)2

+ 1

2

∂2g

∂ p2

∣∣∣∣
x∗,pc

(δp)2 + ∂2g

∂x∂ p

∣∣∣∣
x∗,pc

(δx)(δp) + · · · .

(A3)

In this case, since x∗ > 0, the unmixed derivatives of g with
respect to p are nonzero. The conditions for a discontinuous
transition, as expressed in terms of the function f , are

pc f (x∗) = 1,

f ′(x∗) = 0.

These conditions are equivalent to

g(x∗, pc) = ∂g

∂x

∣∣∣∣
x∗,pc

= 0.

With the above conditions, the leading terms in Eq. (A3) are

∂g

∂ p

∣∣∣∣
x∗,pc

δp + 1

2

∂2g

∂x2

∣∣∣∣
x∗,pc

(δx)2 = 0,

which results in

δx ∝ (δp)1/2.

3. Tricritical point

A tricritical point occurs at x = 0, p = pc, so we expand
g(x, p) about the point (0, pc):

g(0 + δx, pc + δp)

= g(0, pc) + ∂g

∂x

∣∣∣∣
0,pc

δx + ∂g

∂ p

∣∣∣∣
0,pc

δp + 1

2

∂2g

∂x2

∣∣∣∣
0,pc

(δx)2

+ 1

2

∂2g

∂ p2

∣∣∣∣
0,pc

(δp)2 + ∂2g

∂x∂ p

∣∣∣∣
0,pc

(δx)(δp)

+ 1

6

∂3g

∂x3

∣∣∣∣
0,pc

(δx)3 + 1

6

∂3g

∂ p3

∣∣∣∣
0,pc

(δp)3

+1

2

∂3g

∂x2∂ p

∣∣∣∣
0,pc

(δx)2(δp) + 1

2

∂3g

∂x∂ p2

∣∣∣∣
0,pc

(δx)(δp)2 + · · ·.
(A4)

As before, for continuous transitions, the unmixed derivatives
of g with respect to p are all 0. The conditions for a tricritical
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point, as expressed in terms of the function f , are

pc

[
lim
x→0

f (x)

]
= 1,

lim
x→0

f ′(x) = 0.

These conditions are equivalent to

g(0, pc) = ∂g

∂x

∣∣∣∣
0,pc

= ∂2g

∂x2

∣∣∣∣
0,pc

= 0.

With the above conditions, the leading terms in Eq. (A4) are

∂2g

∂x∂ p

∣∣∣∣
0,pc

(δx)(δp) + 1

6

∂3g

∂x3

∣∣∣∣
0,pc

(δx)3 = 0,

which results in

δx ∝ (δp)1/2.

4. Cusp point

To describe this point, as discussed in the main text, we
assume p = 1 and we consider f to be a function of x and zd

(the mean dependency degree). The function g is now also as-
sumed to be a function of x and zd : g(x, zd ) = �(x, zd ) − x =
x f (x, zd ) − x. The cusp point occurs at some x = xcp, zd =
zcp

d , so we expand g(x, zd ) about the point (xcp, zcp
d ):

g
(
xcp + δx, zcp

d + δzd
)

= g
(
xcp, zcp

d

) + ∂g

∂x

∣∣∣∣
xcp,zcp

d

δx + ∂g

∂zd

∣∣∣∣
xcp,zcp

d

δzd

+ 1

2

∂2g

∂x2

∣∣∣∣
xcp,zcp

d

(δx)2 + 1

2

∂2g

∂z2
d

∣∣∣∣
xcp,zcp

d

(δzd )2

+ ∂2g

∂x∂zd

∣∣∣∣
xcp,zcp

d

(δx)(δzd ) + · · · . (A5)

The conditions for the cusp point, as expressed in terms of the
function f , are

f
(
xcp, zcp

d

) = 1,

∂ f

∂x

∣∣∣∣
xcp,zcp

d

= 0,

∂ f

∂zd

∣∣∣∣
xcp,zcp

d

= 0.

These conditions are equivalent to

g
(
xcp, zcp

d

) = ∂g

∂x

∣∣∣∣
xcp,zcp

d

= ∂g

∂zd

∣∣∣∣
xcp,zcp

d

= 0.

With the above conditions, the leading terms in Eq. (A5) are

1

2

∂2g

∂x2

∣∣∣∣
xcp,zcp

d

(δx)2 + 1

2

∂2g

∂z2
d

∣∣∣∣
xcp,zcp

d

(δzd )2

+ ∂2g

∂x∂zd

∣∣∣∣
xcp,zcp

d

(δx)(δzd ) = 0,

which results in

δx ∝ δzd .

5. Critical point

A critical point occurs at some x = x∗, p = pc, so we ex-
pand g(x, p) about the point (x∗, pc):

g(x∗ + δx, pc + δp)

= g(x∗, pc) + ∂g

∂x

∣∣∣∣
x∗,pc

δx + ∂g

∂ p

∣∣∣∣
x∗,pc

δp

+ 1

2

∂2g

∂x2

∣∣∣∣
x∗,pc

(δx)2 + 1

2

∂2g

∂ p2

∣∣∣∣
x∗,pc

(δp)2

+ ∂2g

∂x∂ p

∣∣∣∣
x∗,pc

(δx)(δp) + 1

6

∂3g

∂x3

∣∣∣∣
x∗,pc

(δx)3

+ 1

6

∂3g

∂ p3

∣∣∣∣
x∗,pc

(δp)3 + 1

2

∂3g

∂x2∂ p

∣∣∣∣
x∗,pc

(δx)2(δp)

+ 1

2

∂3g

∂x∂ p2

∣∣∣∣
x∗,pc

(δx)(δp)2 + · · · . (A6)

Here, as in the case of discontinuous transitions, the unmixed
derivatives of g with respect to p are nonzero. The conditions
for a critical point, as expressed in terms of the function f , are

pc f (x∗) = 1,

f ′(x∗) = 0,

f ′′(x∗) = 0.

These conditions are equivalent to

g(x∗, pc) = ∂g

∂x

∣∣∣∣
x∗,pc

= ∂2g

∂x2

∣∣∣∣
x∗,pc

= 0.

With the above conditions, the leading terms in Eq. (A6) are

∂g

∂ p

∣∣∣∣
x∗,pc

δp + 1

6

∂3g

∂x3

∣∣∣∣
x∗,pc

(δx)3 = 0,

which results in

δx ∝ (δp)1/3.

6. Birth point of critical point (at γ (high))

The critical point at γ (high) emerges from a tricritical point,
which always occurs at x = 0, p = pc, so we expand g(x, p)
about the point (0, pc):

g(0 + δx, pc + δp)

= g(0, pc) + ∂g

∂x

∣∣∣∣
0,pc

δx + ∂g

∂ p

∣∣∣∣
0,pc

δp + 1

2

∂2g

∂x2

∣∣∣∣
0,pc

(δx)2

+ 1

2

∂2g

∂ p2

∣∣∣∣
0,pc

(δp)2 + ∂2g

∂x∂ p

∣∣∣∣
0,pc

(δx)(δp)

+ 1

6

∂3g

∂x3

∣∣∣∣
0,pc

(δx)3 + 1

6

∂3g

∂ p3

∣∣∣∣
0,pc

(δp)3

+ 1

2

∂3g

∂x2∂ p

∣∣∣∣
0,pc

(δx)2(δp) + 1

2

∂3g

∂x∂ p2

∣∣∣∣
0,pc

(δx)(δp)2 + · · ·.
(A7)
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The unmixed derivatives of g with respect to p are 0. The
conditions for the birth point of the tricritical point at x = 0,
as expressed in terms of the function f , are

pc

[
lim
x→0

f (x)

]
= 1,

lim
x→0

f ′(x) = 0,

lim
x→0

f ′′(x) = 0.

These conditions are equivalent to

g(0, pc) = ∂g

∂x

∣∣∣∣
0,pc

= ∂2g

∂x2

∣∣∣∣
0,pc

= ∂3g

∂x3

∣∣∣∣
0,pc

= 0.

With the above conditions, the leading terms in Eq. (A7) are

∂2g

∂x∂ p

∣∣∣∣
0,pc

(δx)(δp) + 1

24

∂4g

∂x4

∣∣∣∣
0,pc

(δx)4 = 0,

which results in

δx ∝ (δp)1/3.

7. Birth point of critical point (at γ (low))

The critical point, at γ (low), emerges at some x = x∗, p =
pc, so we expand g(x, p) about the point (x∗, pc):

g(x∗ + δx, pc + δp)

= g(x∗, pc) + ∂g

∂x

∣∣∣∣
x∗,pc

δx + ∂g

∂ p

∣∣∣∣
x∗,pc

δp

+ 1

2

∂2g

∂x2

∣∣∣∣
x∗,pc

(δx)2 +1

2

∂2g

∂ p2

∣∣∣∣
x∗,pc

(δp)2

+ ∂2g

∂x∂ p

∣∣∣∣
x∗,pc

(δx)(δp) + 1

6

∂3g

∂x3

∣∣∣∣
x∗,pc

(δx)3

+ 1

6

∂3g

∂ p3

∣∣∣∣
x∗,pc

(δp)3 + 1

2

∂3g

∂x2∂ p

∣∣∣∣
x∗,pc

(δx)2(δp)

+ 1

2

∂3g

∂x∂ p2

∣∣∣∣
x∗,pc

(δx)(δp)2 + · · ·. (A8)

The unmixed derivatives of g with respect to p are nonzero.
The conditions for the birth point of the critical point, as
expressed in terms of the function f , are

pc f (x∗) = 1,

f ′(x∗) = 0,

f ′′(x∗) = 0,

f ′′′(x∗) = 0.

These conditions are equivalent to

g(x∗, pc) = ∂g

∂x

∣∣∣∣
x∗,pc

= ∂2g

∂x2

∣∣∣∣
x∗,pc

= ∂3g

∂x3

∣∣∣∣
x∗,pc

= 0.

With the above conditions, the leading terms in Eq. (A8)
are

∂g

∂ p

∣∣∣∣
x∗,pc

δp + 1

24

∂4g

∂x4

∣∣∣∣
x∗,pc

(δx)4 = 0,

which results in

δx ∝ (δp)1/4.
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