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Many systems of scientific interest can be conceptualized as multipartite networks. Examples include the
spread of sexually transmitted infections, scientific collaborations, human friendships, product recommendation
systems, and metabolic networks. In practice, these systems are often studied after projection onto a single class
of nodes, losing crucial information. Here, we address a significant knowledge gap by comparing transmission
dynamics on temporal multipartite networks and on their time-aggregated unipartite projections to determine the
impact of the lost information on our ability to predict the systems’ dynamics. We show that the dynamics of
transmission models can be dramatically dissimilar on multipartite networks and on their projections at three
levels: final outcome, the magnitude of the variability from realization to realization, and overall shape of
the temporal trajectory. We find that the ratio of the number of nodes to the number of active edges over the
time-aggregation scale determines the ability of projected networks to capture the dynamics on the multipartite
network. Finally, we explore which properties of a multipartite network are crucial in generating synthetic
networks that better reproduce the dynamical behavior observed in real multipartite networks.
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I. INTRODUCTION

The theoretical study of transmission processes, whether
infectious diseases, innovations, or mores, has typically fol-
lowed one of two approaches: compartment models [1] and
network models [2–4]. In compartment models, individuals
belong to a small number of compartments, and they transit
in and out of compartments according to specific rates. Com-
partment models are mean-field models in which all members
of a compartment are equally likely to interact with members
of another compartment. In network models, individuals in-
teract pairwise according to the connections defined in the
underlying social network. Both approaches have produced
significant advances both separately and when integrated as
can be seen from the studies and forecasting of the current
SARS-CoV-2 pandemic and of other recent pandemics [5,6].

Research published in the past two decades has demon-
strated that network representations provide a fruitful abstrac-
tion of many complex systems [7,8]. Despite the remarkable
advances, the task of determining the simplest network rep-
resentation able to fully capture the characteristics of the
system remains more of an art than a science. Indeed,
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although limitations in data collection procedures and less
developed theoretical frameworks lead many scholars to set-
tle for static, unipartite, unweighted, and undirected network
representations, recent research has demonstrated that such
representations may be inadequate [9–12].

For example, in the context of human mobility or interna-
tional trade, one cannot disregard the weights (i.e., number of
passengers in transportation networks, or exchange volume in
international trade flows) of the connections between system
components [13,14]. In cases such as these, the system is
more accurately conceptualized through weighted networks
[9]. Similarly, in the context, for example, of the spread
of information within social systems, one cannot ignore the
multiple media—email, Twitter, WhatsApp, and so on—that
are used by individuals to communicate. In cases such as
these, the system is more accurately conceptualized through
multilayer networks [11]. As a result, in recent years there has
been an important and thriving research stream focused on
multiplexed systems [12,15].

Another significant characteristic of many nonequilibrium
complex systems is that interactions among components are
not immutable [16–19]. For example, direct flight connections
to a city can be added or dropped over time; friendships flour-
ish and wane; trophic relations in an ecosystem change with
the seasons. In cases such as these, the system is more accu-
rately conceptualized through temporal networks [11,20]. The
temporal aggregation of evolving networks can significantly
affect processes, such as transmission phenomena [20,21].
As a result, a significant research thrust has focused on the
study of temporal networks and its implications to dynamical
processes [22–33].
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FIG. 1. Temporal multipartite network, unipartite projections, and time-aggregated networks. (a) Temporal multipartite network (left)
composed of a class of agents nodes (larger blue circles) and a class of event nodes (pink circles) and its temporal agent projection (right).
Event nodes have specific creation times and finite temporal duration (such as a day or a week). (b) Time-aggregated unipartite projection over
the agent nodes shows simpler structures and dynamics. When the network is projected onto the agent network, nodes with temporal properties
can be aggregated over different periods (a week, a month, and so on), losing crucial information on the ordering of events.

In contrast to the deserved attention provided by these
important and flourishing research streams to weighted, mul-
tilayer, and temporal networks, multipartite networks remain
overlooked (see Ref. [34] for exceptions and Refs. [35–39] for
epidemics on bipartite networks). However, many important
biological and social systems are most naturally conceptu-
alized as multipartite networks. Examples include cellular
metabolism [40], ecosystems [41], collaborations [42], het-
erosexual romantic relationships [3,43,44], research collab-
orations [45], or product recommendation systems [46–48].
These systems comprise multiple classes of components—for
example, movies, actors, directors, producers, agents, studios,
and so on in movie-production networks—and edges can only
connect nodes of different types—producers connect through
movies or through studios.

Despite the diversity of ways complex systems can be
represented and projected onto complex networks, our un-
derstanding of how modeling choices affect the dynamical
process remains limited. Presumably because of the difficulty
in obtaining detailed data, or for simplicity of analysis [49].
In particular, multipartite networks are typically studied after
projection onto a single type of node considered to be the
most important, such as actors in movie-production networks.
However, by construction, the unipartite projection of a mul-
tipartite network is dramatically less information rich than the
real network. For this reason, there is growing interest and
effort in the community to collect open-access, large-scale,
and information-rich datasets on different network projections
with time dependence to better understand real networks (see,
for instance, Ref. [50]).

A particularly important aspect of some multipartite net-
works is the presence of strong temporal discontinuities for,

at least, one type of node. These nodes present discrete
timestamps and confined temporal existence: Movies have
production schedules, and romantic relationships span finite
periods [Fig. 1(a)]. For this reason, these temporal multipar-
tite networks have a stronger and more complex temporal
structure than the typical temporal network, and detailed tem-
poral information is frequently unavailable [Fig. 1(b)]. Thus,
it remains unclear whether the approach of temporal fine-
graining used in the context of temporal networks to obtain
static snapshots [51] would be sufficient to generate an ac-
curate conceptualization of multipartite networks that include
a class of nodes with heterogeneous and discontinuous event
dynamics.

To address this question, we investigate the extent to which
unipartite projections of a multipartite network can be used
to accurately describe and predict transmission dynamics
[12,52–55] taking place within multipartite networks in which
one class of nodes has discontinuous dynamics. As we men-
tioned earlier, we focus on transmission dynamics because
they have been used to model a broad class of important
phenomena, such as epidemic outbreaks, opinion formation,
and the spread of innovations [33,56,57]. Because of the broad
range of applications of interest, we will consider model pre-
dictions for the full range of infectability values from the low
infection rate of viruses, such as HIV [44] to the high infection
rate of “unavoidable” memes [58].

We organize our analysis around two systems with very
different sizes and characteristics—but for which we have
high-quality data—and that have been studied in the context
of the adoption of innovations among small teams of highly
trained professions [59] and in the context of the assembly of
creative teams [60]. We simulate transmission dynamics on
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these networks and on synthetic networks derived from them
using two well-known transmission models—susceptible in-
fectious (SI) and general contagion (GC) [61–63].

Significantly, we find under real-world conditions that the
time-aggregated unipartite projections are broadly unable to
predict the dynamics observed on the full temporal multi-
partite networks. Using model networks, we show that when
the ratio of number of agents to the number of events/teams
is less than one, unipartite projections will fail to reproduce
the final number of infected agents, the magnitude of the
variability from different realizations, and the overall shape of
the temporal trajectories observed on multipartite networks.
Furthermore, to address the cases in which unipartite pro-
jections are inadequate, we investigate the minimal amount
of information that must be retained from a multipartite net-
work in order to generate synthetic multipartite networks
that properly reproduce the dynamics observed in the real
networks.

II. EMPIRICAL MULTIPARTITE NETWORKS
AND THEIR PROJECTIONS

A multipartite network is a network whose nodes are parti-
tioned into K distinct nonoverlapping sets. The nodes in each
set have edges can connect only to nodes in the other K − 1
sets [Fig. 1(a)]. We consider two contexts where connectivity
is well described by multipartite networks, physician coverage
teams in a hospital, and movie-producing teams.

For the former, we consider the multipartite networks
formed by the physicians providing high-intensity critical care
coverage in the medical intensive care unit (MICU) of a
Chicago hospital that we studied previously [59]. Specifically,
we obtained the MICU coverage schedules of 76 physicians
from July 2012 to August 2016. Each team is composed
of one attending and one fellow and has confined temporal
existence (see the Supplemental Material [64] and Ref. [59]
for details). We construct a temporal multipartite network for
each academic year composed of three sets of nodes: cover-
age teams, attendings, and fellows. Attendings and fellows
are only connected to team nodes. Edges between nodes are
created when a fellow and an attending are together in the
same team. Since the team has finite temporal existence, the
edges exist only while the teams are active, typically a week.

For the latter, we construct a network of producer collab-
orations on U.S. movies, that we obtained by crawling the
Internet Movie Database [65]. We focus here on production
teams for the 2009 U.S.-produced movies released in the
period 1990–2000. We identify 5758 active producers during
the considered period. Unlike the physician teams, we lack
information on the exact production period for each movie.

Because the temporal aggregation timescale is known to
affect static network structure [20,21,30], we compare the
temporal multipartite physician network with different uni-
partite projected networks aggregated over different periods
of time, spanning from 7 days to 12 months. In the uni-
partite projected networks, the edges are static during the
respective time period and, therefore, lose information about
the temporal ordering of interactions [47]. In addition to the
unweighted unipartite network projection, we consider two
weighting approaches for defining edge weight: the number

of shared teams and the number of days in shared teams. For
the movie producers, we aggregate time over four timescales
1, 2, 5, and 10 yrs. We model the edges as unweighted for
the producer projected network because the vast majority of
producers participate in only one movie per year.

III. TRANSMISSION DYNAMICS

Here, we focus on transmission dynamics and use the lan-
guage of infectious diseases to investigate the limitations of
time-aggregated unipartite projected networks for capturing
the dynamics of temporal multipartite networks. The physi-
cians’ network is a tripartite network composed of two classes
of agent nodes (attendings and fellows) and one class of event
nodes (teams). At time zero, two agent nodes are randomly
chosen to become infectious (for the multipartite network, we
chose the two nodes that are connected to the first event node),
whereas all other nodes are deemed susceptible and to have
no prior exposure (see Methods for details). We then track the
number of infectious individuals over time.

Figure 2(a) shows the mean number of infectious agents
over time for two different parameter values for the SI model
on multipartite and projected networks. It is visually apparent
that the dynamics on the projected networks yield different
dynamics from those observed on the multipartite network
[Fig. 2(a)].

We further investigate the dynamic differences using the
GC model to compare the temporal trajectories of the four
multipartite networks. Our benchmark multipartite networks
(i.e., the networks for the different academic years) show
similar temporal trajectories for a wide range of parameters,
0.1 < d < 1 and 0.1 < p < 1; Fig. S1 of the Supplemental
Material [64]. In contrast, we can observe that the dynamics
of time-aggregated unipartite projected networks compared
with our benchmark multipartite network can overestimate
the number of infectious agents over the course of time for
a wide range of parameters for asynchronous dynamics sim-
ulations (see Figs. S2–S4 in the Supplemental Material [64]),
and it can overestimate or underestimate the number of in-
fected agents depending on the time-aggregation interval and
parameter range for synchronous dynamics simulations (see
Figs. S5–S7 in the Supplemental Material [64] for syn-
chronous dynamics). We will provide a quantification of these
differences in the following sections.

Transmission dynamics on projected networks also
lack the trajectory “diversity” displayed by the dynam-
ics on real networks [compare 95% confidence inter-
vals in Fig. 2(a)], pointing at deep differences of the
dynamics.

The producers’ network is a bipartite network where there
are one class of agent nodes (producers) and one class of event
nodes (movies). Using the SI model to simulate the transmis-
sion process on temporal multipartite networks and compare
with their projections, we find that the movie producers’
network exhibit less variable temporal trajectories than the
physicians’ networks [Fig. 2(b)]. Nonetheless, it is visually
apparent that the dynamics on the projected movie-producers’
networks yield different dynamics from those observed on the
multipartite network. Transmission dynamics taking place on
projected networks consistently overestimate the number of
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FIG. 2. Spreading dynamics on temporal multipartite networks and on their time-aggregated unipartite projections. (a) Mean fractions of
infectious agents (full lines) and 95% confidence interval for the dynamics (shaded regions) on the physicians’ multipartite networks and
unweighted unipartite projected networks using 7 days and 1 month temporal aggregation (initial infectious agents: 2). The results for the
projected network are obtained for the asynchronous status update. (b) Mean fractions of infectious agents (full lines) and 95% confidence
interval for the dynamics (shaded regions) on the producers’ multipartite networks and unweighted unipartite projected networks using 2 and
5 year temporal aggregation (initial infectious agents: 5% of producers appearing in the first year). The results for projected networks are
obtained for the asynchronous status update. The right side of each panel shows the distributions of the final fraction of infectious agents for
each set of parameters and conditions.

infected agents over the course of time. These results are less
striking than those obtained for the physicians’ network but
still consistent.

A. Factors controlling stability of unipartite projections

The movie producers’ network and physicians’ network
differ significantly in terms of the number of agents, the team
sizes, the aggregation timescale, and the number of teams
per aggregation cycle. Thus, we investigate which of these
factors can explain the ability of projected networks to make
better predictions. Additionally, we study a simple bipartite
network model with community structure [66,67] in order to
account for the possibility of modular structure in real-world
multipartite networks (see Methods).

We find that, as the degree of temporal fine graining in-
creases, the transmission dynamics of unipartite projected
networks become more similar to those of temporal bipartite
networks (Fig. 3). This is to be expected because the smaller
the temporal graining is, the more the projected networks
become an accurate snapshot of the bipartite networks.

We also find that the number of agent N increases whereas
the number of teams per aggregation cycle Tc remain fixed
and the difference between the transmission dynamics of the
bipartite networks and their projected networks also increases
(Fig. 3).

Our analysis, thus, reveals that the determining factor is
the ratio of the number of agents to the number of teams per
aggregation cycle. It is important to note, however, that the
trajectory of the transmission dynamics for the projected and
the bipartite networks have distinct functional forms. Thus,
even the temporal fine-grained networks used in the context
of temporal networks to obtain static snapshots [51] would
not be sufficient to generate an accurate conceptualization of
temporal multipartite networks that include a class of nodes
with discontinuous dynamics.

IV. BUILDING REALISTIC MULTIPARTITE NETWORKS

Since simulation on unipartite projections cannot, for many
conditions, replicate the transmission dynamics observed on
multipartite networks, we ask whether there are suitable null
models such that the dynamics on the generated networks
better replicate the dynamics on real temporal multipartite net-
works. Specifically, we aim to identify the crucial information
needed for creating adequate synthetic multipartite networks,
and we focus here on the physicians’ networks because they
show the largest dynamical differences between projected and
multipartite networks.

In building our multipartite network models, we focus on
three types of aggregate information: the number of agents in
each agent class of nodes; distribution of the number of teams
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FIG. 3. Transmission dynamics on bipartite networks and their unipartite projections. Average and spread of transmission dynamics for
the GC model using infection probabilities p = 0.1 (left column) and p = 0.5 (right column) and dose d = 0.5. Note that as the ratio agents

and teams (i.e., r ≡ N
Tc

) increases, the difference in the dynamics becomes less pronounced.

that an agent participates in; and distribution of gap durations
between consecutive participations in a team by an agent.
We construct three null models by using increasing amounts
of information about the real network [Fig. 4(a)]. The first
generative model, denoted N, makes use only of the number of
agents N in the system. The second model, denoted NT, adds
also information on the distribution of the number of teams T
in which agents participate [Fig. 4(b) top]. The third model,
denoted NTG, adds information on the distribution of gap G
durations between participation in consecutive teams as well
[Fig. 4(b) bottom].

Figure 4(c) shows the level of information that is used in
each model and the steps for generating a synthetic multipar-
tite network. We show the distributions of the number of teams
and gap durations for the three types of synthetic networks and
the real networks in Fig. S8 of the Supplemental Material [64].

A. Quantification of the similarity of two ensembles
of dynamical trajectories

Next, we address how to quantify the differences in the
outcomes between the transmission dynamics on the synthetic
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FIG. 4. Generation of synthetic multipartite networks. (a) One year schedule for attendings and fellows in the MICU. Each row displays
the entire year schedule for a given physician. Each square represents 1 week, and filled squares indicate participation in a coverage team by a
given physician. Consecutive white squares show gap durations between participation in coverage teams for each physician. (b) Distribution of
the number of coverage teams a physician is part of during a year and distribution of the duration of gaps between participation in consecutive
coverage teams. We first note that whereas coverage teams are reportedly assigned randomly by the hospital based on the number of teams
that each physician has to be assigned to, we find that the distribution of the number of teams in which physicians participate does not obey
a Poisson distribution [68]. Therefore, physicians’ team assignments cannot be purely random. The distributions of gap durations are also not
exponential, which is the expected distribution for interevent times that occur at a constant rate [69]. These two findings suggest that there are
other constraints that govern how physicians are assigned to teams. (c) Algorithm for generating synthetic multipartite networks according to
levels of information incorporated. We create N physician nodes as in the multipartite network we are trying to replicate (the N model). We
can then either draw the number of coverage teams assigned to a physician from a Poisson distribution or from the distribution of the number
of teams in the multipartite network without replacement (the NT model). Note that the total number of a team must be equal to the number
in the multipartite network. We assign physicians’ team participation at random. If we are including information about the distribution of gap
durations, then we calculate the gap duration distribution for the synthetic network and compare it to that of the multipartite network. The
teams are adjusted to match the gap duration distribution until the difference between the synthetic network and the multipartite network is not
statistically significant (the NTG model).
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networks and that on the real networks. To this end, we de-
fine a new metric, the dynamic overlap of two ensembles of
dynamical trajectories, which we denote as �. We focus on
the GC model since the SI model is recovered for D = d . We
compare both the final number of infectious nodes as well as
the similarity of their trajectories when using the same param-
eters on either synthetic or empirical networks. Quantifying
such a comparison is not trivial, and different methods have
been introduced to compare the outcomes of transmission dy-
namics in networks [70], however, there has been less focus on
comparing the transmission trajectories over the entire period.
Inspired by the weak Fréchet distance [71], we first define the
distance between two dynamic trajectories as the area between
the curves for an observation period T ,

Ai
j (N1,N2) ≡

∫ T

0
| fi(t |N1) − f j (t |N2)|dt, (1)

where fi(t |N1) is the ith realization of the dynamics on net-
work N1. We control for the potentially different number of
agents in each network by scaling the trajectories by the num-
ber of agents in the network. We demonstrate how individual
realizations of the dynamics on the same network can yield
quite distinct trajectories in the top panel of Fig. 5(a). Thus,
our aim must be to quantify whether a particular trajectory
on a network falls within the expected range for trajectories
obtained for simulations of the dynamics on a set of refer-
ence networks, R = {R1,R2, . . .}. To this end, we define the
distance of trajectory i to the mean trajectory R on a set of
reference networks as

Ai
R(Nk,R) ≡

∫ T

0
| fi(t |Nk ) − fR(t |R)|dt , (2)

where fR(t |R) represents an average over realizations of the
simulations and over the set of networks in R [middle panel,
Fig. 5(a)]. By calculating Ai

R(Nk,R) for the ith trajectory,
we can estimate the percentiles for the distances to the mean
trajectory, P2.5{Ai

R(Nk,R)} and P97.5{Ai
R(Nk,R)}, that en-

compass 95% of the dynamical trajectories generated on the
set of reference networks [bottom panel, Fig. 5(a)]. We define
the dynamic overlap ω for a given network Nk as

ω(Nk ) ≡
∫ P97.5

P2.5

AR p(AR|Nk )dAR, (3)

where p(AR|Nk ) is the probability of observing a specific
value of Ai

R(Nk,R). The dynamic overlap for a set of mul-
tipartite networks is � ≡ P50{ω(Nk )}, which takes values in
[0,1]. In practice, we define R for multipartite networks as
the set of networks for 2012, 2013, and 2015 and use the real
network for 2014 as a control for estimating the similarity of
the trajectories for different parameter values. We chose R2014

as the control because its number of physicians takes a value
close to the mean for the four networks. We then compare
the trajectories of the GC model for the control network with
results obtained for synthetic multipartite network generated
using information from R2014 [Fig. 5(b)].

We show � for the control multipartite network R2014—
multipartite network from the hospital for the year 2014
in Fig. 5(c). Similar results are obtained for � when
using R2012, R2013, and R2015 as control networks (see

Figs. S9–S11 in the Supplemental Material [64]). Even though
R2014 is not structurally different from the networks in R,
we still found that � is close to zero when p is large. This
is due to the fact that the stochasticity of the transmission
dynamics becomes negligible when almost all interactions
lead to successful transmission. Under these conditions, even
small differences in the network lead to statistically significant
differences in the dynamics (Fig. S1 in the Supplemental
Material [64]).

In contrast, for the projected networks, � is generally close
to zero for nearly all regions of parameter space [Fig. 5(c),
and Figs. S12–S15 in the Supplemental Material [64]). The
exceptions are those parameter values for which the variance
in the trajectories for the multipartite networks is very large.
Because the trajectory diversity for the dynamics on the pro-
jected networks are usually small (Fig. 2), it enables all the
trajectories on the projected networks to fall within the 95%
confidence interval of the dynamics on the multipartite net-
works (see the case of p = 0.1 in Fig. 2 and Figs. S1–S6 in the
Supplemental Material [64]). This interpretation is supported
by the fact that when we take the time-aggregated unipartite
networks as the reference set and the multipartite networks as
the ones being compared, then � drops to zero (Figs. S16 and
S17 in the Supplemental Material [64]). If the transmission
dynamics were truly similar, � would take similar values even
when R and {Nk} are switched so that {Nk} are used as refer-
ence networks as indeed is the case for synthetic multipartite
networks (Fig. S18 in the Supplemental Material [64]).

Thus, we find that as we increase the real-world informa-
tion built into the null models, the more closely the infection
trajectories tend to mirror those observed for the control net-
work [Fig. 6(a)]. In fact, calculating the overlap � of the
transmission dynamics in synthetic multipartite networks with
the reference set of network R for different values of the pa-
rameter of the GC model, there is a strong agreement between
the transmission trajectories and the control network for a
wide range of parameters (Fig. 6(b), and Figs. S9–S11 in the
Supplemental Material [64] for comparisons using other years
than 2014 as control network). Thus, even simplistic synthetic
networks can produce � values that are quite similar to the
values obtained for the control network and can capture real
dynamic much better than the projected networks (Fig. S19 in
the Supplemental Material [64]).

Furthermore, to verify that this model is generalizable to
other cases, we generate synthetic multipartite networks using
the characteristics of the producers’ network. We randomly
selected 5% of the producers active in the first year as initial
infectious agents. We found that the transmission dynamics
on even the simplest synthetic network are much more simi-
lar to the transmission dynamics on the original multipartite
network than on projected networks which is consistent with
the results from the physicians’ network. However, we ob-
served that the infection rates are not as similar to the real
multipartite network compared to the physicians’ case, al-
though the overall shape of the infection curves is quite similar
(Fig. S20 of the Supplemental Material [64]). This difference
may be due to the fact that unlike for the physicians’ networks,
producer networks are more heterogeneous. An alternative
or even complementary explanation is that physician and
producer teams have different formation mechanisms. In the
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(b)

(c)

Multipartite network Reference networks Synthetic networks (NTG)

(a)

FIG. 5. Systematic quantification of the similarity of transmission dynamics on different networks. (a) The top panel shows the simulation
of 1000 independent stochastic realizations of the GC model dynamics for each network: the 2014 control temporal multipartite network (red),
the reference set of multipartite networks for 2012, 2013, and 2015 (blue), and 25 synthetic networks (green). The middle panel shows the
areas between the mean of realizations from the reference networks (reference curve, i.e., thick black line in the top panel) and each realization
from the reference networks. The bottom panel shows the area distribution p(AR|Nk ) where we identify the 95% confidence boundaries for
the observed overlapping. The percentages indicate the overlapping between the areas from the simulations compared with those from the
reference set. (b) The panel shows the box plot of the area overlapping for the control multipartite network, the reference set, and the synthetic
network for a specific set of parameters as indicated in the figure. We calculate ω(Nk ) for each set of networks in multipartite networks and
synthetic networks. Because there are 25 synthetic networks, we define � as the median of ω(Nk ) for the 25 networks. (c) The heat maps show
the dynamic range overlap � for the entire parameter space for different networks. Each cell shows the � value of the GC model dynamics
compared with those obtained on the reference set R for the multipartite network (left), for projected networks using synchronous (middle),
and asynchronous (right) update.
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FIG. 6. Model dynamics on multipartite networks and on their synthetic networks. (a) Mean fraction of infectious agents over time (lines)
and 95% confidence interval for the dynamics (shaded regions) on the multipartite and synthetic multipartite networks using SI model with
infection probabilities p = 0.1 and p = 0.5. The histograms show the final fraction of infectious agents for each network. (b) The heat maps
show the dynamic range overlap � for the entire parameter space for different networks. Each cell shows the � value of the GC model
dynamics compared with those obtained on the reference set R for the multipartite network (top left) and the three synthetic multipartite
model networks.

physicians’ networks, one attending and one fellow form a
team, whereas teams vary in size and composition for the
producers’ network (Figs. S21 and S22 in the Supplemental
Material [64]).

V. DISCUSSIONS

Transmission dynamics on systems best described by tem-
poral multipartite networks show much greater variability

across realization than one is led to believe from simulating
dynamics on time-aggregated unipartite projection networks.
This difference means that studies conducted on projected
networks are inadequate both for obtaining estimates of ex-
pected outcomes and deciding whether an observed outcome
is consistent with a given model. We show that the ratio of
the number of agents to the number of teams per aggregation
cycle has a significant impact on the resulting differences
of simulating the transmission dynamics on multipartite
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networks versus their unipartite projections. This means that
there is the need to accomplish a trade-off between decreasing
the number of teams per aggregation cycle whereas maintain-
ing a small ratio of the number of agents to the number of
teams per aggregation cycle.

Additionally, we show that simulations on very simplis-
tic multipartite synthetic networks can capture real dynamics
much better than simulations on projected networks. Our re-
sults inform about the types of information to focus on when
there are limited resources for collecting data on complex
multipartite networks.

Finally, because of the growing body of information-rich
networks datasets [50], our results open new venues to explore
a variety of systems that can be represented as temporal multi-
partite networks, including very large networks with different
topological heterogeneity that could result in new behaviors
that cannot be unveiled by simple time-aggregated unipartite
projected networks.

VI. METHODS

A. Transmission models

We study the transmission dynamics as a contagion process
diffusing either on the actual temporal multipartite network,
or on different projections obtained for different levels of
temporal aggregation, or on synthetic multipartite networks.
We consider two contagion models: the SI model and the GC
model.

SI model. This model agents can be in one of two states,
susceptible (S) and infectious (I), which we represent as 0 and
1, respectively. At each event or time step t � 1, a susceptible
node in contact with an infectious node becomes infected with
probability p.

GC model. This model interpolates between two classes of
transmission mechanisms: threshold [72] and infection [61].
When a susceptible agent is exposed to infectious agents, they
receive an infection dose d with probability p. Susceptible
agents keep in memory the infection doses received over the
previous τ time steps. Susceptible agents become infected
when their cumulative remembered infection doses exceed a
threshold, D (see algorithm 1 in the Supplemental Material
[64]). For simplicity, we restrict our attention to the case
where τ = ∞. For both transmission models, each simulation
is stochastic and starts with two infectious nodes chosen ran-
domly from a fully susceptible population. Note that the SI
model is captured by the case where d = D in the GC model.

B. Simulation of dynamics

We systematically study the transmission dynamics for
p ∈ {0.1, . . . , 1.0} (SI) and for 100 pairs of values p ∈
{0.1, . . . , 1.0}d ∈ {0.1, . . . , 1.0} (GC) and for four different
timescales of aggregation in the unipartite projection. For each
set of parameter values and each network, we simulate 1000
independent realizations.

Unipartite network dynamics. In order to assure the ro-
bustness of our results for unipartite projected networks, we
consider two methods to update the state of the agents—
asynchronous update using a random walk procedure [73,74]
and synchronous update [52,72,75,76].

In the asynchronous update, at the start of transmission,
t = 0, we randomly select two nodes as initially infected
nodes n1, n2. At each time step, a node n1 is selected and
one of its neighbors is randomly choose to calculate the trans-
mission dynamic. Then we repeat the previous step t times
according to the time interval the network was projected and
the number edges in the network. The probability of choosing
the neighbor and the size of the influence two active nodes
have on each other is proportional to the edge weights. At
each step only the chosen nodes interact (see algorithm 2 in
the Supplemental Material [64]). When one node is in the
susceptible state and the other is in the infected state, the
susceptible node receives a dose d with probability p for the
GC model or is infected with probability p for the SI model
(see algorithm 1 in the Supplemental Material [64]). If both
nodes are susceptible or infected (when nodes are in the same
state), no exchange occurs. Asynchronous update behaves as
if it has temporal properties because the edges are selectively
active for a certain duration.

In the synchronous update, at time step t , the transmission
of infection can happen across all connected nodes, and all
nodes update their state simultaneously (see algorithm 3 in
the Supplemental Material [64]). This updating strategy is
inspired by a modified linear threshold model where a sus-
ceptible node is influenced by all of its infected neighbors
at each time step [52,72,75,76]. The influence a node exerts
on another depends on the edge weights. In the synchronous
update, it is assumed that edges always existed during the
interval of the simulation, therefore, in a network of finite
size and nonzero transmission rate, all nodes will eventually
become infected [77].

Multipartite network dynamics. For the multipartite net-
works, the transmission can progress through the active
members of the coverage team; physicians who are part of
a team at each time point interact and influence each other.
When one node is in the susceptible state and the other is in the
infected state in an active team, the susceptible node receives a
dose d with probability p for the GC model or is infected with
probability p for the SI model. However, because a certain
team can be active during different periods, for each day, the
infection process is repeated until the team is no longer active
(see algorithm 4 in the Supplemental Material [64]).

For the producers’ multipartite network because we do not
have data on exact production periods, we randomized the
order of the movie production during each year to simulate
the transmission dynamics. The number of movies produced
per year stays approximately constant (Fig. S22 in the Sup-
plemental Material [64]), therefore, we can assume the gap
between produced movies remains approximately constant.

C. Generating the synthetic bipartite network
with a modular structure

We use the generative model for bipartite networks intro-
duced by Guimerá et al. [66], because it yields an ensemble
of random bipartite networks with a prescribed modular struc-
ture. To create a network instance, we first dived N agents
equally into five groups. We then sequentially create NT

teams. Each time, we first select at random a primary group.
Then, with probability pp (team homogeneity) we select an
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agent at random from the primary group. With probability
1 − pp, we select an agent at random from one of the four non-
primary groups. Thus, we use the generated bipartite networks
to systematically investigate the properties of the bipartite
networks that affect the dynamics of the projected networks.
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