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Collective firing patterns of neuronal networks with short-term synaptic plasticity

Chong-Yang Wang ,1 Ji-Qiang Zhang ,2,3 Zhi-Xi Wu,1,* and Jian-Yue Guan1

1Lanzhou Center for Theoretical Physics and Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University,
Lanzhou, Gansu 730000, China

2Beijing Advanced Innovation Center for Big Data and Brain Computing, Beihang University, Beijing 100191, China
3School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China

(Received 3 January 2020; revised 9 December 2020; accepted 28 January 2021; published 17 February 2021)

We investigate the occurrence of synchronous population activities in a neuronal network composed of both
excitatory and inhibitory neurons and equipped with short-term synaptic plasticity. The collective firing patterns
with different macroscopic properties emerge visually with the change of system parameters, and most long-time
collective evolution also shows periodic-like characteristics. We systematically discuss the pattern-formation
dynamics on a microscopic level and find a lot of hidden features of the population activities. The bursty
phase with power-law distributed avalanches is observed in which the population activity can be either entire
or local periodic-like. In the purely spike-to-spike synchronous regime, the periodic-like phase emerges from the
synchronous chaos after the backward period-doubling transition. The local periodic-like population activity and
the synchronous chaotic activity show substantial trial-to-trial variability, which is unfavorable for neural code,
while they are contrary to the stable periodic-like phases. We also show that the inhibitory neurons can promote
the generation of cluster firing behavior and strong bursty collective firing activity by depressing the activities of
postsynaptic neurons partially or wholly.
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I. INTRODUCTION

A vast variety of cortical activities with remarkable fea-
tures are ubiquitously observed in vitro and in vivo, such
as irregular activity [1,2], neuronal avalanches [3–5], and
synchronous oscillations [6–8]. Irregular spiking patterns are
found to be related to an approximate balance between ex-
citatory and inhibitory inputs, and it is an emergent network
property that does not necessarily depend on intricate cellu-
lar mechanisms [9,10]. Neuronal avalanches are shown by
the power-law forms with exponents −3/2 and −2 of the
avalanche size and duration distributions by measuring the
spontaneous activity on slices of neuronal cultures [3,11].
Such scale-invariant neuronal dynamics can be reached by
neuronal activities closely near a critical point (which is re-
lated to self-organized criticality) [12–14], or in an extended
critical-like region (the Griffiths phase) [15]. Moreover, the
power-law neuronal avalanches have been demonstrated to
optimize the computational capabilities [16], the transmission
and storage of information [17,18], the dynamical response
range, and the sensitivity to sensory stimuli [19–21]. The
criticality of cortical networks is still a conundrum and has
attracted a lot of attention [22–24].

Studies of synchronous oscillation have been an active area
in a lot of research domains, including physics, mathematics,
biology, ecology, etc. [25,26]. The occurrence of synchronous
oscillations emerges from various mechanisms, which have
received a great deal of attention in diverse subjects. In
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the field of neuroscience, synchronous oscillations reveal the
essential mechanism of the temporal coordination of neuronal
activities, which have been considered to be crucial for several
cognitive capacities [27]. For example, the theta oscillations
(4–8 Hz) play a role in the formation and retrieval of episodic
memory [28], the beta oscillations (15–30 Hz) are associated
with behavioral stopping in the motor system [29], and the
gamma oscillations (30–80 Hz) subserve a fundamental pro-
cess in cortical computation [30]. What is more, synchronous
oscillations are also integrated with pathophysiology, where
abnormal strong or weak synchronous oscillatory activities
of neurons may indicate some diseases, such as epileptic
seizures, schizophrenia, and Alzheimer’s disease [31–33]. It
is now broadly accepted that some of the disease-related al-
terations of neurotransmitter systems interfere directly with
the mechanisms that support different degrees of synchronous
oscillations [33]. Consequently, the in-depth study of neuronal
synchronization of the joint activity of multiple neurons plays
a significant role in the understanding of neural information
processing and the effective diagnosis and therapy of brain
diseases.

Nowadays, neuroscientists have identified that a chemical
synapse is crucial in signal transmission for most neurons.
It acts through the diffusion of a neurotransmitter as soon
as an action potential (or spike) from a presynaptic neuron
arrives at it. Briefly, chemical synaptic transmission occurs
by translating the action potential from presynaptic neurons
into the chemical signal at the synapses, and further into
an electrical response at the postsynaptic side [34,35]. Such
activity-dependent synaptic transmission is successfully mim-
icked by the Tsodyks-Uziel-Markram (TUM) model [36–38],
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and it has been invoked to explain a large number of syn-
chronous oscillations in cortical networks [39–43]. Most of
the previous research provides an effective analysis method
to reproduce synchronous patterns in experiments [36,44].
However, the complicated interaction between excitatory and
inhibitory neurons underlying synchronous neuronal activities
is always an immensely complex task, and there are still
several problems that need to be fully explored. In this paper,
we focus on the neuronal networks composed of adaptive
exponential integrate-and-fire excitatory neurons and stan-
dard leaky integrate-and-fire inhibitory neurons, interacting
via synaptic currents regulated by the short-term synaptic
plasticity. We try to give a comprehensive perspective of
the collective firing population activities with diverse macro-
scopic or microscopic properties, and we provide a clear
explanation of the pattern-formation dynamics, including how
the short-term synaptic plasticity promotes the occurrence of
synchronous oscillations and how synaptic inhibition from
inhibitory neurons influences the population activity of a large
population of neurons.

The paper is organized as follows. In Sec. II, we describe
the neuronal models of both excitatory and inhibitory neurons,
the synaptic currents with short-term depression, and facilita-
tion of synaptic transmission. We also present the details of
the simulations and the statistical indicators used in our paper.
In Sec. III, we show the collective firing patterns with different
macroscopic properties, and we systematically explore the
pattern-formation dynamics with the change of the system
parameters on a microscopic level. Finally, we give a brief
summary and discussion of our main results in Sec. IV.

II. MODEL AND METHOD

We consider a neuronal network composed of NE = 8000
excitatory neurons and NI = 2000 inhibitory neurons so that
the fraction of inhibitory neurons is equal to 0.2 in accordance
with the experimental observation [46,47]. The presynaptic
neurons of a postsynaptic neuron are kE = 400 excitatory
neurons and kI = 100 inhibitory neurons randomly selected
from excitatory and inhibitory neurons, respectively. Thus
each neuron has k = kE + kI = 500 presynaptic neurons, as
sketched in Fig. 1(a). The dynamics of the membrane po-
tentials of excitatory and inhibitory neurons and the synaptic
currents from presynaptic neurons to postsynaptic neurons are
expatiated below.

A. Membrane potential dynamics

The membrane potentials of excitatory neurons are mod-
eled by the adaptive exponential integrate-and-fire model
extracted from experimental data, which are described by the
following differential equation [48–50]:
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dt
= − 1
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[
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where τm is the membrane time constant, V E
rest is the resting

potential of the excitatory neuron, C is the membrane ca-
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FIG. 1. (a) Schematic representation of a neuronal network con-
sisting of both excitatory (Exc) and inhibitory (Inh) neurons. The
neurons are coupled by excitatory [blue (dark gray) lines] and in-
hibitory [orange (gray) lines] synaptic connections. The solid points
at the ends of the lines indicate the synapses. The brown dashed
lines with arrows represent the external drives. (b) Time series of
membrane potentials V α

i , available neurotransmitters xi, and active
neurotransmitters yi of a randomly selected excitatory neuron (top,
α = E ) and an inhibitory neuron (bottom, α = I). The membrane
potentials have been cut off at the firing threshold in each spike. (c),
(d) Gain functions of (c) a free-running excitatory neuron and (d) a
free-running inhibitory neuron. The red dashed line in (d) is the the-
oretical result given by Eq. (S7) in the Supplemental Material [45].
The red point is the critical point II,ext = 150 pA, which separates the
resting states and the active states.

pacitance, IE ,ext
i is an external input current to the excitatory

neuron i, Isyn
i is the total synaptic current received by neuron i,

�T is the spike slope factor, and the neuronal threshold V E
T,i(t )

evolves according to

dV E
T,i(t )
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= 1

τT

[
Vth − V E

T,i(t )
]
, (2)

where τT is the adaptive threshold timescale, and Vth is the
threshold potential. Whenever neuron i fires, its neuronal
threshold V E

T,i(t ) is set to Vth + AT . The spike-triggered adap-
tation current wi(t ) is given by

dwi(t )

dt
= 1

τw

{
aw

[
V E
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] − wi(t )
} + bwSi(t ), (3)

where τw is a time constant, aw is the level of subthreshold
adaptation, Si(t ) = ∑

f δ(t − t f
i ) is the spike train of neuron

i, t f
i is the firing time of neuron i, and f is the label of the

spike. When a neuron fires, its adaptation current is increased
by an amount bw.

Here, we model the inhibitory neurons as the standard
leaky integrate-and-fire neurons, whose dynamics of the
membrane potentials are given by [50,51]
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where V I
rest is the resting potential of the inhibitory neuron, and

II,ext
i an external input current to the inhibitory neuron i.

Each postsynaptic excitatory (inhibitory) neuron integrates
the synaptic currents from all its presynaptic neurons and the
external input current IE ,ext

i (II,ext
i ). The external input current

represents the background response in the brain, inputs from
other brain regions, the external stimuli, etc. For the sake of
convenience, the external input current is regarded as constant
in our work, Iα,ext

i = Iα,ext, as illustrated in Fig. 1(a). When
the membrane potential of an excitatory (inhibitory) neuron
reaches the firing threshold θE (θ I ), the neuron emits a spike
and its potential is reset to the reset potential Vr and remains
unchanged until passing through an absolute refractory period
τref. Notice that the membrane potential of each excitatory
neuron has a rapid upswing to infinity in an incredibly short
time, but that of the inhibitory neuron shows slow growth.
Thus the response of an excitatory neuron is more immediate
than an inhibitory one when they are near the firing threshold
[see Fig. 1(b)].

B. Synaptic current

Following the TUM model [36–38], the effective synaptic
strength from presynaptic neuron to postsynaptic neuron is
determined by the faction of active synaptic resources on
each synapse. In our paper, we consider a simplified version
in which the neurotransmitter resources in each neuron are
equally shared by all the postsynaptic neurons [39,52]. In de-
tail, the neurotransmitter resources of neuron i are divided into
three states: available with fraction xi(t ), active with fraction
yi(t ), and inactive with fraction zi(t ), xi(t ) + yi(t ) + zi(t ) = 1.
The dynamics of these neurotransmitters are described as
follows:

dxi(t )

dt
= zi(t )

τr
− ui(t )xi(t )Si(t ), (5a)

dyi(t )

dt
= −yi(t )

τin
+ ui(t )xi(t )Si(t ), (5b)

dzi(t )

dt
= yi(t )

τin
− zi(t )

τr
, (5c)

where τin is the characteristic decay time of the active neu-
rotransmitter, and τr is the recovery time of the available
neurotransmitter from the inactive neurotransmitter. These
equations describe the short-term depression of the synaptic
plasticity. When neuron i fires, its active neurotransmitter yi(t )
increases to a large value abruptly, and concurrently it delivers
synaptic currents to its postsynaptic neurons [see Fig. 1(b)].

The short-term facilitation of both excitatory and in-
hibitory neurons is also introduced by the changeable release
fraction ui(t ) of available neurotransmitter resources, which
depends on the intracellular calcium concentration in physiol-
ogy [53,54],

dui(t )

dt
= U − ui(t )

τfac
+ U [1 − ui(t )]Si(t ), (6)

where U is the release fraction at rest, and τfac is the charac-
teristic time.

The total synaptic current received by the neuron i in
Eqs. (1) and (4) is the summation of the currents from both

excitatory and inhibitory presynaptic neurons,

Isyn
i =

NE∑
p=1

Aεipyp(t ) − g
NI∑

q=1

Aεiqyq(t ), (7)

where A is the strength of synaptic efficacy, modeled as the
maximum postsynaptic current which can be generated by
activating all neurotransmitter resources, and g is the relative
inhibitory efficacy. εi j is the connectivity matrix, whose entry
is equal to 1 if there is a connection from the presynaptic
neuron j to the postsynaptic neuron i, and 0 otherwise.

C. Details of the simulations and the statistical indicators

The gain functions of single excitatory and inhibitory neu-
ron in Figs. 1(c) and 1(d) show the firing rate of a free-running
neuron versus the constant external input current in the ab-
sence of synaptic current. Clearly, a neuron never becomes
active with low external input current until passing through
a critical point, and then it fires periodically with a fixed
firing rate due to the summation process of the external input
current and the reset process of the membrane potential. In this
paper, we will study a neuronal network where the excitatory
neurons are suprathreshold (with external drive greater than
the critical point), while the inhibitory ones are exactly at the
critical point [see Fig. 1(d)]. The system thereby can be con-
sidered as a master-slave system. The excitatory neurons fire
spontaneously and drive the evolution of the whole system.
Meanwhile, the activities of inhibitory neurons will depress
the postsynaptic neurons.

The parameters for neuronal membrane dynamics and
synaptic current used in our simulations can be found in
Appendix A (Tables I and II). The dynamics of the neurons
are integrated numerically by using the Euler method with a
fixed time step of �t = 0.1 ms. In our simulations, we let the
system evolve for 40 s and then measure the quantities in the
next 60 s.

To characterize the population activity of the neurons, we
measure the average membrane potential at time t ,

V̄α (t ) = 1

Nα

Nα∑
i=1

V α
i (t ), (8)

the average synaptic fields [39]

Yα (t ) = 1

Nα

Nα∑
i

yi(t ), Zα (t ) = 1

Nα

Nα∑
i

zi(t ), (9)

the average firing rate rα , and the instantaneous population
spike rate (IPSR) Rα (t ) of both excitatory (α = E ) and in-
hibitory (α = I ) neurons. The IPSR Rα (t ) is conventionally
used to visualize the synchronous oscillations, which are es-
timated by convoluting the spike train Si(t ) with a kernel
ψh(s) [55–57],

Rα (t ) = 1

Nα

Nα∑
i

∫
Si(t − s)ψh(s)ds, (10)
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and the kernel used here is the Gaussian density function with
bandwidth h,

ψh(s) = 1√
2πh

exp

(
− s2

2h2

)
, −∞ < s < ∞. (11)

It is worth pointing out that an oscillating curve of the IPSR
can be obtained in the synchronous case with collective firing
activity, whose temporal patterns display stripe property [57].

The regularity of individual spikes can be characterized by
the coefficients of variation (CV) of the interspike interval
(ISI) distribution,

CVi = σ i
ISI

/〈
ISI f

i

〉i
f , (12)

where 〈ISI f
i 〉i

f and σ i
ISI are the mean and the standard deviation

of ISIs of neuron i. For the total neuronal network, we use the
average CV to measure the regularity of individual activities
throughout the population in each group, CVα = 〈CVi〉α [8].
The individual activities are regular with CVα close to 0,
irregular with CVα near 1, and bursting with CVα much larger
than 1.

In addition, we use the synchronization index Sα to quan-
tify the synchronization of the population activity [58]

Sα = 〈V̄α (t )2〉t − 〈V̄α (t )〉2
t∑Nα

i=1

[〈Vi(t )2〉t − 〈Vi(t )〉2
t

]
/Nα

, (13)

where 〈·〉t denotes the time average. The synchronous popula-
tion activity is related to a finite value of Sα , and the larger the
value of Sα is, the more synchronous are the neurons.

Since information is encoded in the spike train rather
than in the form of an action potential, we also use the
Kuramoto parameter to characterize the spike-to-spike syn-
chronization, which just concerns the uniformity of the phase
of spikes [39,59],

Kα =
〈∣∣∣∣∣ 1

Nα

Nα∑
i

e jη f
i

∣∣∣∣∣
〉

t

, η
f
i (t ) = 2π

t − t f
i

t f +1
i − t f

i

, (14)

where j is the imaginary unit and η
f
i (t ) is the phase of neuron

i at time t ∈ [t f
i , t f +1

i ]. Kα = 1 indicates that the firing events
are perfectly synchronous, and the synchronization is progres-
sively lost with the decrease of Kα .

III. RESULTS

The population activities are characterized by the statistical
indicators in the parameter space of synaptic efficacy A and
relative inhibitory efficacy g [see Appendix B (Fig. 9)]. The
neurons fire intensively in the regions with either small g or
small A, and they are suppressed in the region with large
g and large A. The statistical indicators oscillate with the
change of the parameters, which indicates the switch process
of various population activities. To investigate the temporal
behavior of population activities systematically, we fix the
relative inhibitory efficacy g = 0.5, and we study the firing
patterns by tuning the synaptic efficacy A (see Fig. S2 in the
Supplemental Material [45]) [60]. Figures 2(a)–2(c) show that
the average firing rates rα , the synchronization indexes Sα , and

FIG. 2. (a) Average firing rates rα , (b) synchronization indexes Sα , (c) Kuramoto parameters Kα , and (d) average coefficients of variation
CVα of the interspike interval (ISI) distribution of excitatory (Exc, α = E ) and inhibitory (Inh, α = I) neurons with relative inhibitory efficacy
g = 0.5. Ac1 , Ac2 , Ac3 , and Aα

c4
are the transition points which separate the parametric regions with similar pattern-formation dynamics.

(e1)–(e10) Raster plots for different synaptic efficacy A [the red points in (a)–(d) and the parameters A in (e1)–(e7) correspond to the maxima
of the curve SI ] with fixed g = 0.5. Neurons 7800–8000 are excitatory and neurons 8001–8050 are inhibitory. The red lines denote the average
membrane potential V̄α (t ). The blue shaded regions around the average membrane potential are the standard deviations. The constant external
input currents of excitatory and inhibitory neurons are IE ,ext = 314 pA and II,ext = 150 pA, respectively.
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the Kuramoto parameters Kα do not change monotonically
with A. The oscillation shows lots of sharp jumps (indicated
by the positions of Ac1 , Ac2 , Ac3 , and Aα

c4
) with the increase

of A for excitatory and inhibitory neurons, either separately
or jointly, and they separate the regions with similar pattern-
formation dynamics [see Figs. 2(a)–2(d) and the analysis in
Appendix C (Fig. 10)]. Specifically, the curves of Sα and Kα

show that the population activities are synchronous with both
membrane potentials and spikes in the region A � Ac3 . The
following results in Sec. III B shown below indicate that the
avalanche distributions of the cascading activities between the
collective firing activities in the bursty regime are power-law
with an exponential cutoff when Ac1 < A � Ac2 and are of
perfect power-law form when Ac2 < A � Ac3 . Moreover, in
the region Ac3 < A � Aα

c4
, where Sα tends to zero while Kα

has a finite value, the neurons only synchronize with spikes,
and such a phenomenon is termed pure spike-to-spike synchro-
nization in this paper.

The time series of spikes in Figs. 2(e1)–2(e10) indicate
that various oscillatory firing patterns can be realized with
different synaptic efficacy A. The collective firing activity
displays an obvious stripe. Every maximum of Sα or Kα

corresponds to a relatively clear synchronous pattern with
a different number of stripes, and the number of stripes in
a firing pattern increases with the enhancement of neuronal
activity. The patterns between them display relatively weak
synchronization with sparse and smeared stripes. Moreover,
those patterns with multiple stripes imply the emergence of
(regular or irregular) synchronous oscillations that are mixed
with both low and high firing frequencies.

In most population activities, the long-term series of spikes
show that the population activities are periodic-like. Accord-
ing to previous studies [39], the periodic characteristic of
collective motion can be confirmed by the perfect closed
trajectories of average synaptic fields [Yα (t ) versus Zα (t ),
termed global attractors of the population activities]. In our
work, the temporal fluctuation of the cascading activities in
the region A > Ac1 leads to a finite fluctuation around the lines
of the global attractors (see Fig. S3 in the Supplemental Ma-
terial [45]). This phenomenon demonstrates that microscopic
chaos exists in the population activity, which successfully de-
picts the variability of neuronal activity in experiments [2,61].
The macroscopic population activity still has a periodic-like
characteristic under the small fluctuation in most situations.

In the following, we probe the pattern-formation dynam-
ics and the switch processes of the different firing patterns
with the increase of A on a microscopic level. Interestingly,
several microscopic features of the population activities can
be observed, including two different types of cluster firing
behaviors; the bursty population activity featuring power-law-
distributed neuronal avalanches of the cascading activity; the
pure spike-to-spike synchronous population activities, which
are synchronous chaotic or periodic-like with period 4, 2, 1;
etc.

A. Periodic collective firing activity and cluster firing behavior
under the weak-coupling condition

Under the weak-coupling condition (A � Ac1 ), the synaptic
interactions among neurons are not too strong to significantly

FIG. 3. (a) Illustration for the calculation of the delay time �τ

between the collective firing stripes of inhibitory and excitatory
neurons at the beginning of each firing pattern by the maximum of
the IPSR Rα (t ) with A = 1.0. (b) Delay time �τ vs synaptic efficacy
A with three different cases: (I) the firing patterns of both excitatory
and inhibitory neurons have only one stripe; (II) the firing patterns
of excitatory neurons have two stripes, while those of inhibitory
neurons have only one stripe; (III) the firing patterns of both exci-
tatory and inhibitory neurons have two stripes. (c) Interspike-interval
(ISI) return map of excitatory neurons, and (d) the ISIs of inhibitory
neurons with A = 3.6. Inset: ISI distributions with A = 3.6 [solid
lines in (c) and (d)] and A = 7.6 [dotted line in (d)]. ISI f

i is the ISI
between the f th and ( f + 1)th spikes of neuron i.

influence the neuronal activities of postsynaptic neurons. The
perfectly periodic collective firing activities arise due to the
slow adaption process of the input currents and the reset
processes of the membrane potentials, which effectively re-
duces the phase difference between postsynaptic neurons. As
A increases, the population activities switch from the firing
patterns with only one stripe to those with two stripes [see
Figs. 2(e1)–2(e2) and the illustrations in Fig. 3(b)]. In these
population activities, there is always a long inactive period
between two continuous collective firing stripes. The active
neurotransmitters decay to the lowest levels gradually in these
periods. Then some excitatory neurons will fire ahead due
to the external drive. After that, the inhibitory neurons will
fire collectively in a rapid manner, since they are subthresh-
old with the intrinsic dynamical property and are sensitive
to synaptic excitation. Thus the collective firing activity of
inhibitory neurons is slightly ahead of the activity of excita-
tory ones, which is indicated by the delay time �τ between
the collective firing stripe of inhibitory neurons and that of
excitatory neurons [calculated by the interval between the
maxima of IPSRs RI (t ) and RE (t ); see Figs. 3(a) and 3(b)].
Moreover, the delay time �τ shortens with the enhance-
ment of the synchronization of either excitatory or inhibitory
neurons.

With the further increase of A, excitatory neurons that are
far away from the firing threshold will be depressed by the
synaptic inhibition and fire collectively themselves in a sep-
arate stripe. Then in the next firing pattern these neurons fire
early and form the first stripe, because they do not respond to
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the inhibitory currents when they are in the absolute refractory
periods. Thus the excitatory neurons fire with a long ISI and a
short ISI alternately, and they are divided into clusters [see
the ISI return map in Fig. 3(c)]. Their population activity
displays the feature of cluster firing (two-cluster states), which
shows that the neurons split into groups, and in each group
they fire collectively, whereas a nonzero phase shift exists
between different groups [62]. Briefly, such a switch process
from the firing pattern with one stripe to that with two stripes
of excitatory neurons is caused by the synaptic inhibition from
presynaptic inhibitory neurons. Noticeably, the switch pro-
cess of inhibitory neurons shows different behavior. After the
collective firing of all excitatory neurons, synaptic excitation
increases to a large value quickly. When A is large enough,
some inhibitory neurons will fire again in a short time due to
the slow decay of active neurotransmitter and the persistent
external drive. And such a small group of inhibitory neurons
is not fixed but can be any inhibitory neuron [see Fig. 3(d)],
which is caused by the temporal fluctuations of membrane
potentials and synaptic currents. With the increase of A, the
small group of inhibitory neurons grows until all inhibitory
neurons fire again [see the ISI distribution P(ISI) of the in-
hibitory neurons with two maxima in the inset of Fig. 3(d)]
and the population activity reaches a strong synchronous state.

B. Bursty population activity with power-law distributed
neuronal avalanches

In the region Ac1 < A � Ac2 , the number of firing excita-
tory neurons (which fire ahead in the inactive periods to drive
the neuronal cascades; these neurons will be called pioneers
hereafter as in the work by Touboul [63]) increases and the
inhibitory neurons will fire more intensively. The rest of the
excitatory neurons are depressed by the synaptic inhibition
within a long time interval, and then they fire in a cascading
way as a result of the temporal fluctuations of membrane
potentials and synaptic inputs [see Fig. 2(e3)]. The excitatory
neurons in these population activities can be divided into two
categories: one is the small group of pioneers, and the other
is the remaining neurons depressed by the synaptic inhibition
(which can be classified by the ISIs). This population activity
also shows the feature of cluster firing, but the microscopic
properties are different from those in the case of the weak-
coupling condition [64]. Moreover, the population spikes over
time are divided into groups that are separated by inactive
periods [these groups are defined as spike avalanches; see
Figs. 2(e3) and 2(e4)]. It is noticeable that the events with
large avalanche sizes and long avalanche durations happen
with large probabilities, which correspond to the collective
firing activities. By removing these avalanche events, the
avalanche size distributions P(Lα ) and the avalanche duration
distributions P(Dα ) can be approximated by the following
expressions:

P(Lα ) ∼ L−γLα
α e−λLα Lα , (15)

P(Dα ) ∼ D−γDα
α e−λDα Dα , (16)

which are the power-law distributions with an exponential
cutoff [12]. As shown in Fig. 4, the fitting results obtained
by the least-squares-fitting method agree well with the simu-

FIG. 4. Probability distributions of avalanche size P(Lα ) and
avalanche duration P(Dα ) of excitatory and inhibitory neurons with
A = 11.3, 30.0. Results are averaged over 100 independent realiza-
tions. The black dot-dashed lines: the fitting results by doing the
least-squares fitting with the power-law forms with an exponential
cutoff [Eqs. (15) and (16)]. The red dashed lines: the fitting results by
doing the maximum likelihood estimator with the power-law forms
[Eq. (17)]. The Kolmogorov-Smirnov distances are DLE = 0.015 59,
DLI = 0.007 40, DDE = 0.008 10, and DDI = 0.003 63.

lation results. The results in the Supplemental Material also
show that the exponents λL, λD decrease with the increase of
A, which implies that the distributions will get close to the
power-law forms gradually (see Fig. S5 and Table SI in the
Supplemental Material [45]).

For Ac2 < A � Ac3 , the population activities show the fir-
ing patterns with multiple stripes [see Figs. 2(e5)–2(e7)].
The individual spikes are bursting with CVα keeping a finite
value larger than 1 [see Fig. 2(d)]. Since the continuous fir-
ing activities will result in the fast consumption of available
neurotransmitters, the collective firing activity cannot emerge
when the available neurotransmitters remain at extremely low
levels as a result of the small recovery time. But the release
fractions ui(t ) of the available neurotransmitters remain high
under intensive neuronal activities. The tradeoff between these
processes results in the collective firing population activities
with multiple stripes. Meanwhile, the synaptic inhibition can
effectively reduce the phase difference between postsynaptic
neurons by counteracting the synaptic excitation. Thus it is
more likely to generate the strong bursty population activity
after a brief accumulation of the available neurotransmitters
[see Fig. 2(e7)]. We also find that the population activity in
this bursty regime shows substantial trial-to-trial variability,
and the periodic-like behavior can exist in short time series
(see Figs. S7 and S8 in the Supplemental Material [45]).
In this situation, the population activity is sensitivity to
perturbations, similar to the previous findings from both
experimental [2] and theoretical investigations [65]. A per-
turbation consisting of several extra spikes in the inactive
period will lead to a phase advance of the collective firing
activity of inhibitory neurons and a phase delay of excitatory
ones. The aperiodic activity is more likely to emerge after
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the cascading activities with large avalanche sizes, especially
when the synaptic excitation from the pioneers is larger than a
critical value [63]. Moreover, the avalanche size distributions
P(Lα ) and the avalanche duration distributions P(Dα ) of the
spike avalanches between the collective firing activities in this
bursty regime (which are either entire or local periodic-like)
display approximately the power-law forms

P(Lα ) ∼ L−γLα
α , P(Dα ) ∼ D−γDα

α , (17)

as shown in Fig. 4, where the exponents γLα
, γDα

are esti-
mated by doing the maximum likelihood estimator [66,67].
The Kolmogorov-Smirnov distances DLα

and DDα
between

the data and the fit are small enough to ensure the reliability of
the fitting. The exponents vary slightly with A because of the
different synchronization degrees of the population activities,
but they do not depend on the network size (see Fig. S6 and
Table SII in the Supplemental Material [45]).

C. Pure spike-to-spike synchronization

When the synaptic efficacy A increases further and passes
through Ac3 , the population activity experiences a tremen-
dous change [see Fig. 2(a)]. The average firing rates rα grow
linearly with A, and the synchronization indexes Sα always
remain at low levels in the interval Ac3 < A � Aα

c4
(α = E , I),

which indicates that the membrane potentials of neurons are
usually in either a weakly synchronous or an asynchronous
state. However, the Kuramoto parameter Kα of excitatory neu-
rons decreases from a moderate value to zero, while that of
the inhibitory neurons keeps a finite value. Clearly, these pop-
ulation activities only have the collective firing characteristic
of pure spike-to-spike synchronization. In these patterns, the
neurons fire intensively, and there exist firing neurons all the
time, which rules out the presence of inactive periods under
the temporal resolution of the dynamics [see Figs. 2(e8) and
2(e9)]. The average membrane potential oscillates with small
amplitude, and the membrane potentials over neurons have
large fluctuations all the time, finally resulting in the small
Sα .

Raster plots in Figs. 2(e8) and 2(e9) show that it is difficult
to extract information from the term series of spikes visually,
hence it is necessary to analyze the population activity on a
microscopic level. Figures 5(a) and 5(b) depict the bifurca-
tion diagram of the time interval τα between two continuous
collective firing stripes of excitatory and inhibitory neurons
as a function of the synaptic efficacy A. The population ac-
tivity displays a backward period-doubling transition from
synchronous chaos to the periodic-like phase with period 4,
2, 1, with the increase of A. There is a narrow range in the
chaotic region in which the attracting orbit is periodic-like
(with period 4; see Fig. S9 in the Supplemental Material [45]).
We discuss them separately below.

Irregular synchronous chaotic population activity. The
strange global attractors in Fig. 5(c1) correspond to the
macroscopic population activities that have the characteristic
of synchronous chaos [68]. Both excitatory and inhibitory
neurons fire collectively with low and high frequencies
alternately, and the time intervals between two continuous col-
lective firing stripes vary irregularly [see Figs. 5(a) and 5(b)].
The ISIs of each neuron vary greatly and distribute in a broad

FIG. 5. (a), (b) Bifurcation diagram of the time interval τα be-
tween two continuous collective firing stripes of (a) excitatory and
(b) inhibitory neurons as a function of the synaptic efficacy A.
(c1)–(c4) Global attractors of excitatory (bottom) and inhibitory (top)
neurons with A = (c1) 38.6, (c2) 40.0, (c3) 40.6, and (c4) 42.5,
corresponding to the red dashed lines in (a),(b). The red numbers
in (c2) correspond to the collective firing activities marked by the
same numbers in Fig. 6(b).

range without explicit characteristic ISIs [see Fig. 6(c)]. The
firing patterns replotted by reordering the neurons according
to their firing time in Fig. 6(a) show that the neurons fire
gradually until all neurons have fired (because the synap-
tic currents of postsynaptic neurons are equal on average).
Meanwhile, the firing orders of each neuron vary along the
time with a small fluctuation among the neurons with rela-
tively small differences of the firing times. The correlation
between one ISI and the previous one of each neuron is small
(see Fig. S10(a) in the Supplemental Material [45]).

Periodic-like population activities with period 4, 2, 1. For
A = 40.0, the global attractors in Fig. 5(b) clarify the stable
periodic-like population activities with period 4. After the
most intensive collective firing of the excitatory and inhibitory
neurons [as the highest maxima of the IPSRs RE (t ) and RI (t )
in Fig. 6(b)], synaptic excitation and inhibition from individ-
ual spikes of presynaptic neurons result in a large fluctuation
of the membrane potentials. Then the neurons will fire in a
cascading way until a collective firing activity occurs, and the
second stripe is formed. Although the available neurotrans-
mitters will fall to low levels after the bursty activities, the
release fractions ui(t ) of the available neurotransmitters give
rise to high levels. The third collective firing occurs, and it is
lower than the first one due to the consumption of available
neurotransmitters, and higher than the second one due to the
increase of the release fractions ui(t ) and the decrease of
the fluctuation of membrane potentials [see Fig. 6(b)]. Sim-
ilarly, the fourth collective firing activity is higher than the
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FIG. 6. (a), (b) Time series of the instantaneous population
spike rate (IPSR) (top), raster plots (middle and bottom) for A =
(a) 38.6 and (b) 40.0. Neurons in the bottom ones are arranged
vertically in order of firing time in the red rectangular areas. (c)–
(f) Interspike-interval (ISI) distributions P(ISI) of excitatory and
inhibitory neurons with A = (c) 38.6, (d) 40.0, (e) 40.6, and (f) 42.5.

second one due to the accumulation of active neurotransmit-
ters. These processes can be shown by the evolution of the
closed orbits of average synaptic fields with different radius
in Fig. 5(c2). With the increase of A, the third collective
firing activity is enhanced until it reaches the same degree
as the first one, finally leading to the periodic-like population
activity with period two [see Fig. 5(c3)]. The switch process of
the periodic-like behavior with period one from that with pe-
riod two occurs with the similar pattern-formation dynamics
[see Fig. 5(c4)].

Since the firing orders of each neuron vary along the time
with a small fluctuation regardless of whether it is in the
collective firing stripes or not (see Fig. 6(b)], the ISIs of the
neurons in the firing patterns with period 4,2,1 are strongly
correlated. Hence, the ISIs distribute in a broad range, and the
ISI distributions display multimodal shapes, which is caused
by the periodic-like population activity with characteristic
ISIs of the neurons [see Figs. 6(b) and 6(d)–6(f)]. The exis-
tence of characteristic ISIs and the correlation between ISIs
make sense to explain the closed curves of the ISI return map
(see Figs. S10(b)– S10(d) in the Supplemental Material [45]).

D. Regular synchronous chaotic population activity

In the region AI
c4

< A � AE
c4

, the population activity of
excitatory neurons shows pure spike-to-spike synchroniza-
tion and periodic-like behavior with period 1, and the degree
of synchronization decreases with the increase of A [see

FIG. 7. Global attractors of inhibitory neurons with A = (a) 45.0,
(b) 46.0, (c) 48.0, (d) 53.0, and (e) 55.0. The red lines are the
trajectories in the time window 85 < t � 90 s. The color points are
two consecutive evolutionary trajectories. Color encodes the time
according to the color bar.

Figs. 2(b) and 2(c)]. However, the inhibitory neurons fire in
a very complicated way. The fluctuations of global attractors
of inhibitory neurons increase with A, and the trajectories are
nonoverlapping but with certain regularity. The population ac-
tivity evolves alternately with two different modes, as shown
in Fig. 7. The difference between these two modes is the
different number of collective firing activities whose average
synaptic field YI (t ) decreases to the minimum (the left bound-
ary of the global attractor). This interesting phenomenon
implies the presence of the regular synchronous chaotic pop-
ulation activity. With the increase of A, the maxima of YI (t )
converge to the same value gradually, which indicates that
the synchronization of collective firing stripes has the same
intensity, but those of ZI (t ) are different due to the slower
recovery of available neurotransmitters [see Fig. 7(d)]. Fur-
thermore, the difference between two such different modes
decreases until reaching the periodic-like phase with regular
spikes [see Fig. 7(e)].

E. Regular and asynchronous individual spikes

In the region A > AE
c4

, both excitatory and inhibitory neu-
rons fire with large firing rates as a result of the large
synaptic efficacy (when excitation dominates inhibition with
a small g). The ISIs of each neuron are so short that the
available neurotransmitters xi(t ) cannot recover from the in-
active neurotransmitters zi(t ) to large levels, and the active
neurotransmitters yi(t ) remain at low levels all the time.
The presynaptic currents act as constant input with the large
synaptic efficacy and have the same impact on the firings
of excitatory neurons, which finally causes the asynchronous
and regular firing activities of the excitatory neurons [see
Fig. 2(e10)]. Meanwhile, since the inhibitory neurons are
sensitive to synaptic excitation, the individual spikes of the
excitatory neurons in an extremely brief period can lead to
collective firing activities of inhibitory neurons, finally result-
ing in the synchronous and regular firing activities. In such a
situation, the ISIs of both excitatory and inhibitory neurons
are distributed according to Gaussian distributions with small
variances [see Figs. 8(a) and 8(b)].
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FIG. 8. Interspike-interval (ISI) distributions P(ISI) of (a) exci-
tatory and (b) inhibitory neurons with A = 55.0, 60.0, 65.0, 70.0, and
75.0. The red dashed lines are Gaussian fits.

IV. SUMMARY AND DISCUSSION

In this paper, we have systematically investigated the pop-
ulation activity in the neuronal network composed of both
excitatory and inhibitory neurons, which are equipped with
short-term synaptic plasticity. Various collective firing pat-
terns with different macroscopic properties emerge by varying
the synaptic efficacy. The pattern-formation dynamics of these
population activities are comprehensively discussed on a mi-
croscopic level.

The emergence of a mixed oscillatory pattern in the pop-
ulation activity displaying multiple stripes implies that both
low and high oscillation frequencies are presented [58]. The
low firing frequency of the whole mixed oscillatory pattern
is caused by the large timescale of external drive and the
short-term depression of synaptic plasticity after neuronal
firing activities, while the high firing frequency of the fast
oscillations in the firing patterns is due to the small timescale
of synaptic interactions between neurons and the short-term
facilitation of the synaptic plasticity.

Since the synaptic excitation is sufficient to induce the
collective firing activities, we found that the inhibitory neu-
rons can promote the generation of cluster firing behavior
and strong bursty collective firing activity by depressing the
activities of postsynaptic neurons partially or wholly, which
increases the diversity of the population activity. The role of
the inhibitory neurons in information processing is varied and
complex and is actively being researched.

The bursty population activity features characteristic
power-law distributed neuronal avalanches, and the neurons
can fire collectively in either entire or local periodic-like ways.
It is similar to the chaotic and bursty population activity with
power-law scaling of activity events observed in the neuronal
network of purely excitatory neurons [41]. We also found the
neuronal avalanches in the power-law form with exponential
cutoff in the irregular (excitatory neurons) and bursty (in-
hibitory neurons) regimes. The distributions get close to the
power-law forms gradually with the increase of the synaptic
efficacy. However, the exponents are variable in different sit-
uations, and there are still many puzzles waiting for further
investigations [69]. The power-law avalanches provide deep
insight to the studies of criticality, where the power law is a
necessary but not sufficient condition of critical behavior.

In addition, the pure spike-to-spike synchronous popula-
tion activities are found in a specific range, where the neurons
fire with large firing rates, and there are firing neurons all the

time, which rules out the presence of inactive periods. The
collective firing activity cannot emerge when the available
neurotransmitters stay at extremely low levels under inten-
sive neuronal activities, where the system will transition from
the bursty regime to the asynchronous regime. However, the
bifurcation diagram of the time interval τα between two con-
tinuous collective firing stripes shows that the periodic-like
phase emerges from the synchronous chaos after the backward
period-doubling transition. The stable periodic-like phases of
the population activities, both weakly and intensively, are
robust to the perturbations consisting of several extra spikes at
any time and any individual, which are helpful for neural code.
However, the local periodic-like and (regular or irregular)
synchronous chaotic phases display substantial trial-to-trial
variability, which will have the opposite effect.

We have also investigated the case of strong external drives
in the Supplemental Material (Sec. SIII) [45]. Since the activ-
ities of excitatory neurons are enhanced with strong external
drive, synaptic excitation increases and promotes the popu-
lation activities by canceling out the synaptic inhibition, and
the regions where inhibition dominates excitation reduce or
disappear. For strong enough external drive, the available
neurotransmitters are so low under intensive neuronal activ-
ities that the firing patterns (displaying pure spike-to-spike
synchronization) are impossible to generate. Moreover, the
parametric regions with similar pattern-formation dynamics
separate obviously when we increase the spontaneous ac-
tivities of excitatory neurons. The asynchronous population
activities emerge and the synchronous population activities
can only be found within some limited parameter ranges.

The synchronous oscillations have been heavily studied
by a lot of different models to explore the pattern formation
from experimental studies [39], the brain ability to perform
cognitive functions [65], the pathological mechanism and ef-
fective treatment of brain diseases [63], etc. In the field of
neuroscience, the recent advent of measuring techniques such
as electroencephalogram, electrocorticogram, magnetoen-
cephalography, high-density multielectrode recording, and

TABLE I. Parameters for neuronal membrane dynamics of adap-
tive exponential integrate-and-fire excitatory neurons and standard
leaky integrate-and-fire inhibitory neurons [50].

Symbol Description Value

τm Membrane time constant 20 ms
V E

rest Excitatory neuron resting potential −70 mV
V I

rest Inhibitory neuron resting potential −62 mV
�T Spike slope factor 2 mV
C Membrane capacitance 300 pF
τT Adaptive threshold timescale 30 ms
Vth Threshold potential −52 mV
AT Post spike threshold potential increase 10 mV
τw Spike-triggered adaptation timescale 150 ms
aw Level of subthreshold adaptation 4 nS
bw Spike-triggered adaptation 0.805 pA
θE Excitatory neuron firing threshold 20 mV
θ I Inhibitory neuron firing threshold −52 mV
Vr Reset potential −60 mV
τref Refractory period 2 ms
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TABLE II. Parameters for the short-term synaptic plasticity governed by the Tsodyks-Uziel-Markram model [39,53].

Symbol Description Value

τin Characteristic decay time of active neurotransmitter 6 ms
τr Recovery time of available neurotransmitter from inactive neurotransmitter 798 ms
τfac Characteristic time for the calcium channel gates to transit from the open state to the closed state 1000 ms
U Release fraction at rest 0.1

two-photon imaging has made it easier to measure neuronal
activity, promoting the development of neuroscience [70,71].
If any similar firing patterns are found experimentally, we
may be able to explore the intrinsic mechanism by adjusting
parameters in our neuronal network. The undiscovered phe-
nomena that have not been studied completely can also be
predicted. We hope that our presented results can improve the
understanding of the diverse features and the neuronal mech-
anisms of the various collective firing population activities
and eventually open up a promising avenue for therapeutics
of brain diseases.
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FIG. 9. (a) Average firing rates rα , (b) synchronization indexes
Sα , and (c) Kuramoto parameter Kα of excitatory (α = E ) and in-
hibitory (α = I) neurons in the parameter space of synaptic efficacy
A and relative inhibitory efficacy g. The constant external input
currents of excitatory and inhibitory neurons are IE ,ext = 314 pA
and II,ext = 150 pA, respectively. The red dashed lines correspond
to g = 0.5.

APPENDIX A: PARAMETERS

Parameter values for the neuronal membrane dynamics
and the synaptic current used in our simulations are listed in
Tables I and II, respectively.

APPENDIX B: MACROSCOPIC POPULATION ACTIVITY
IN THE PARAMETER SPACE OF A AND g

Figure 9 shows the average firing rates rα , the synchro-
nization indexes Sα , and the Kuramoto parameters Kα of
both excitatory (α = E ) and inhibitory (α = I) neurons in a
neuronal network with IE ,ext = 314 pA and II,ext = 150 pA.
The neurons fire more intensively in the region with small
g or small A (which is exhibited by relatively large rα), and
they are suppressed in the region with large g and large
A. The statistical indicators oscillate with the change of the
parameters. The average firing rate of inhibitory neurons is
higher than that of excitatory neurons in most of the parameter

FIG. 10. (a), (b) Synchronization indexes Sα , and (c) Kuramoto
parameter Kα of excitatory (left) and inhibitory (right) neurons near
the transition points Ac1 , Ac2 , and Ac3 with different network size N .
Results for N = 5000 and 10 000 are averaged over 100 independent
realizations; others are averaged over 50 independent realizations.
The shaded regions are the standard deviations. The insets are the
standard deviations for N = 10 000.
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space, which means that the population activity of inhibitory
neurons is more intensive than excitatory neurons. Moreover,
the average firing rate of inhibitory neurons is always positive
proportional to that of the excitatory neurons, which implies
that the activities of the inhibitory neurons and the excitatory
neurons are correlated.

Since the synaptic inhibition from inhibitory neurons
grows with the increase of g, the generation of other stripes
following the front one becomes more difficult, finally
resulting in the gradual disappearance of some stripes. In this
case, the average firing rates decrease with the increase of
g. The total presynaptic current even becomes negative with
large g (when inhibition dominates excitation), and depresses
the population activity into a weak one [see Fig. 9(a)]. It is
strange and counterintuitive to observe that the firing rate and
synchronous behavior for large g weakens as A increases. The
inhibitory neurons are more sensitive than excitatory neurons
to the synaptic excitation, which is confirmed by the response
to the input currents with the small intensity (data not shown).
The effect of synaptic inhibition grows with the increase of

A due to the larger firing rates of inhibitory neurons. Then,
such a negative effect from inhibitory neurons counteracts the
external drive and the synaptic excitation, and then depresses
the whole system remarkably.

APPENDIX C: THE TRANSITION POINTS

The curves of statistical indicators (rα , Sα , and Kα) in Fig. 2
show that there are lots of transition points for excitatory
and inhibitory neurons, either separately or jointly, and they
separate the regions with similar pattern-formation dynamics.
We only list some of the transition points that are convenient
for analyzing and discussing the pattern-formation dynamics.
Results show that rα , Sα , and Kα near the transition points
Ac1 , Ac2 , Ac3 are dependent on the network size N (with the
finite-size effects), and they will converge to the stationary one
in the limit N → ∞. Meanwhile, the fluctuations at transition
points are maximum. We only display some results in Fig. 10
as a demonstration; all other results can be found in Fig. S1 in
the Supplemental Material [45].
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