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Transition to multitype mixing in d-dimensional spreading dynamics
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The spreading dynamics of infectious diseases is determined by the interplay between geography and popu-
lation mixing. There is homogeneous mixing at the local level and human mobility between distant populations.
Here I model spatial location as a type and the population mixing by intra- and intertype mixing patterns. Using
the theory of multitype branching process, I calculate the expected number of new infections as a function of
time. In one dimension the analysis is reduced to the eigenvalue problem of a tridiagonal Teoplitz matrix. In
d dimensions I take advantage of the graph cartesian product to construct the eigenvalues and eigenvectors
from the eigenvalue problem in 1 one dimension. Using numerical simulations I uncover a transition from
linear to multitype mixing exponential growth with increasing the population size. Given that most countries
are characterized by a network of cities with more than 100 000 habitants, I conclude that the multitype mixing
approximation should be the prevailing scenario.
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I. INTRODUCTION

Homogeneous mixing is a cornerstone in the mathemati-
cal analysis of infectious disease outbreaks [1,2]. In a fully
mixed population we define the basic reproductive number
R0 = β/γ , where β is the average rate of disease transmission
from infected to susceptible individuals and γ is the recovery
rate from the disease. When R0 < 1 the epidemic outbreak
dies out, but it grows exponentially in time when R0 > 1.

Human populations are not fully mixed, calling into ques-
tion the value of R0. There are different mixing patterns
according to age, immunization status, and the adherence to
government recommendations. Nevertheless, these heteroge-
neous mixing patterns can be treated under a generalized
mixing approximation. If we stratified individuals into multi-
ple types, then we can model the infectious disease spread as
a multitype spreading process [3–5]. In multitype spreading
processes R0 is replaced by the largest eigenvalue ρ of the
mixing matrix. When ρ < 1 the infectious disease outbreak
dies out, but it grows exponentially in time when ρ > 1.

Geographical heterogeneity seems to challenge the mixing
hypothesis [6–8]. When simulated agents are constrained to
a ring with nearest-neighbor transmissions, the total number
of infected cases grows linearly in time [6]. Subexponential
infectious dynamics has been reported for agent based sim-
ulations in urban settings as well [7]. There are two caveats
though. First, the observation of nonexponential dynamics is
not sufficient evidence to rule out the mixing hypothesis. I
have shown that a combination of a high reproductive number
with a truncation of the disease transmission chain yields a
power law growth in the number of new infections [9]. The
prelockdown phase of the COVID-19 outbreak is consistent
with this power low growth in the number of new infections
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[10–12]. Second, there is no proof that geography cannot be
harnessed under some mixing approximation.

Here I demonstrate that geographical heterogeneity can
be modeled as a type. Focusing on large cities, countries
like Cuba look like a string of cities, with an effective
one-dimensional topology [Fig. 1(a)]. Other countries, like
Germany, are better represented by a two-dimensional mesh,
with an effective two-dimensional topology [Fig. 1(b)]. At
this level of description, we can model the network of cities
as a multitype network, where each city is represented by a
type and the mixing pattern between cities accounts for the
human mobility between them. In the following I introduce
the multitype mixing approximation for type networks with
a d-dimensional topology, derive analytical results, and test
them with numerical simulations.

II. MULTITYPE SIR MODEL

I investigate the susceptible, infected, and removed (SIR)
model on the multi-type network of cities. In the SIR model
each individual is in one of three states: susceptible, infected,
and removed. Infected individuals transmit the disease to
susceptible individuals, the latter becoming infected. Infected
individuals recover or die from the disease, at which point they
are removed from the disease transmission chain, the removed
state.

A. One-type branching process

When all individuals are of one type we have a fully mixed
population. We need to make a distinction though, between
patient zero and any other case. In more detail, each individual
contact other individuals at some rate ζ . Each contact results
in disease transmission with probability p, resulting in the ef-
fective disease transmission rate β = ζ p. Finally, the infected
individuals are removed, due to recovery, isolation or death, at
a rate γ . Patient zero is selected at random and its typical dis-
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FIG. 1. Geographical maps highlighting cities with more than
100 000 habitants and the road network connecting them. (a) Cuba.
(b) Germany.

ease transmission rate is 〈β〉, where 〈· · · 〉 denotes the average
over the variability of β across individuals. Therefore, patient
zero has the average reproductive number

R0 = 〈β〉
γ

, (1)

where R0 is called the basic reproductive number.
For infected cases other than patient zero we take into

account the disease transmission bias towards individuals with
a higher contact rate. Any case other than patient zero is found
with a probability proportional to its contact rate: β/N〈β〉,
where N is the population size. Once infected, the individual
found by contact will engage in new contacts at a rate β.
Therefore, the average reproductive number for patients other
than patient zero is

R = 〈β2〉
〈β〉γ . (2)

R0 gives the average number of infectious at the first gener-
ation, those generated by patient zero. R0R gives the average
number of infections at the second generation and R0Rk−1

gives the average number of infections at the k generation. The
actual time when an infected case at generation k becomes
infected equals the sum of d generation times

td =
d∑

k=1

�tk, (3)

where �tk are the generation intervals, the time interval from
the infection of a primary case to infection of a secondary case
in the transmission chain from patient zero. If the generation
intervals have the probability density function g(t ), then td has
the probability density function g�d (t ), where the symbol �

denotes convolution (g�d = ∫ t
0 g�(d−1)(τ )g(t − τ )dτ ). Putting

the number of descendants and the timing together, we obtain
the average number of new infected individuals at time t

İ (t ) = I0R0

∞∑
k=1

Rk−1g�k (t ), (4)

where I0 is the of number of patient zeros.
For the standard SIR model the distribution of generat-

ing intervals is the distribution of recovery times. Given that
recovery takes place at a constant rate, the distribution of
generation intervals is exponential

g(τ ) = γ e−γ τ . (5)

In this case, Eq. (4) becomes

İ = I0R0

∞∑
k=1

(Rγ t )k−1

(k − 1)!
e−γ t . (6)

Noting that the series in Eq. (6) is the Taylor series expansion
of the exponential, we obtain

İ = I0R0e(R−1)γ t , (7)

When R < 1 the disease dies out, but it grows exponentially
when R > 1. R replaces the basic reproductive number R0 in
the context of contact heterogeneity (〈β2〉 > 〈β〉2).

B. Multitype branching process

The multitype formalism replaces the average reproductive
number, a scalar, by a matrix of reproductive numbers. Let n
be the number of types, representing cities or subpopulations.
To patient zero we assign the reproductive number matrix
R0n,n. The matrix element R0a,b represents the average number
of cases of type b generated by a patient zero of type a. To any
other case we assign the reproductive number matrix Rn,n. The
matrix element Ra,b represents the average number of cases
of type b generated by a case of type a that is not a patient
zero. I have previously calculated the expected number of
infected individuals of epidemic outbreaks in heterogeneous
populations with a multitype structure [4]. Although the cal-
culation is more involved it yields an expression with the same
structure as the one-type case

İ = γ IT
0 R0

∞∑
k=1

(Rγ t )k−1

(k − 1)!
e−γ t Jn,1, (8)

where I0 is a column vector representing the number of patient
zeros by type and Jn,1 is a column vector of ones. Or, making
use of the exponential of a matrix,

İ = γ IT
0 R0e(R−I )γ t Jn,1 (9)

where I is the identity matrix.

C. Diagonalizable R

When R is diagonalizable we obtain results that resemble
the exponential dynamics of the single-type case. Let P be the
transformation matrix diagonalizing R,

R = PDP−1 = P

⎡
⎣λ1 0

. . .

0 λn

⎤
⎦P−1, (10)

where λ1, . . . , λn are the eigenvalues of R. Note that some λn

may be equal if some eigenvalues have multiplicity larger than
1.

I assume that R0 has the same form of R

R0 = rR, (11)

where the factor

r = 〈β〉2

〈β2〉 (12)

is the ratio between Eqs. (1) and (2).
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Finally, I will use the standard notation for functions of
diagonal matrices

f (D) =
⎡
⎣ f (λ1) 0

. . .

0 f (λn)

⎤
⎦. (13)

Using Eqs. (10) and (11) we can rewrite Eq. (9) as

İ = γ rIT
0 PDe(D−I )γ t P−1Jn,1. (14)

Whether the number of new cases grows or decays is deter-
mined by the largest eigenvalue

ρ = max
n

λn. (15)

When ρ < 1 the disease dies out, but it grows exponentially
when ρ > 1. ρ replaces the basic reproductive number in the
context of multitype mixing.

The predictive value of ρ can be extended beyond diago-
nalizable R. In most realistic scenarios there is a bi-directional
path between every pair of cities in the network. In the
language of graph theory, the network of cities is strongly
connected. In such a case R is irreducible in addition to be
non-negative. Using the Perron-Frobenious theorem for irre-
ducible matrices [13], one can demonstrate that when ρ < 1
the disease dies out, but it grows exponentially when ρ > 1
[3,4].

The diagonalization procedure is extended to any gen-
eration interval distribution. Restarting from equation (4),
without specifying the form of g(t ), we obtain

İ = rIT
0 PD f (D, t )P−1Jn,1, (16)

where

f (x, t ) =
∞∑

k=1

xk−1g�k (t ). (17)

For the SIR model we have g(t ) = γ e−γ t , f (x, t ) = γ e(x−1)γ t

and we recover Eq. (14). I have calculated f (x, t ) in terms
of analytical functions for the γ distributions of generation
intervals [14]. Here I restrict the analysis to the SIR model.
The extensions to other generation interval distributions is
obtained after plugging in the specific function f (x, t ).

III. ONE DIMENSION

Now I analyze one-dimensional topologies. Countries like
Cuba have a one-dimensional typology [Fig. 1(a)]. In this case
the reproductive number is given by

R1 =

⎡
⎢⎢⎣

R11 R12 0
R21 R22 R23

. . .
. . . Rn−1n

0 Rnn−1 Rnn

⎤
⎥⎥⎦, (18)

where Rii, Ri−1i and Rii+1 are the intra- and intercity repro-
ductive numbers. To obtain analytical results, I will work
with homogeneous cities and left-right symmetric exchanges:
Rii = a and Ri−1i = Rii+1 = b. In this case R is a symmetric

tridiagonal Toeplitz matrix.

R1(a, b) =

⎡
⎢⎢⎢⎣

a b 0

b . . .
. . .

. . .
. . . b

0 b a

⎤
⎥⎥⎥⎦. (19)

The eigenvalue problem of a tridiagonal Toeplitz matrix is
solved exactly [15]. The eigenvalues are

λ1k = a + 2b cos
πk

n + 1
, (20)

where k = 1, . . . , n. From the latter equation we obtain the
largest eigenvalue

ρ1 = a + 2b cos
π

n + 1
. (21)

The intracity reproductive number a plus two times the in-
tercity reproductive number b. The cos π

n+1 is a boundary
correction. The type at the far left has no left neighbor and
the type at the far right has no right neighbor. Since cos π

n+1 =
1 + O(n−2) the boundary correction is irrelevant when n � 1.
The value of ρ1 can be used to determine whether the infec-
tious disease dies out (ρ1 < 1) or grows (ρ1 > 1).

To account for all eigenvalues I go back to Eq. (14). The
diagonalization matrix for the tridiagonal Toeplitz matrix (19)
is given by [15]

P1i j =
√

2

n + 1
sin

i jπ

n + 1
. (22)

Since R1(a, b) in Eq. (19) is symmetric then P−1 = PT . In this
case Eq. (14) is simplified to

İ = rIT
0 P1De(D−I )γ t PT

1 Jn,1. (23)

We can work directly with this equation. We can arrive to a
more explicit expression as well. Substituting the form of P1

Eq. (22) and expanding the matrix sums we obtain

İ = 2r

n + 1

n∑
i, j,k=1

I0i sin
ikπ

n + 1
sin

jkπ

n + 1
λke(λk−1)γ t . (24)

Using the trigonometric identity (AD 361.1 in Ref. [16])
n∑

j=1

sin jx = sin
(n + 1)x

2

sin nx
2

sin x
2

, (25)

we can calculate the sum over the j index

n∑
j=1

sin
jkπ

n + 1
= sin

kπ

2

sin nkπ
2(n+1)

sin kπ
2(n+1)

. (26)

Substituting Eq. (26) into Eq. (24) and assuming a single
patient zero at position i0 (I0i = δi,i0 ) we obtain

İ = 2r

n + 1

n∑
k=1

sin
kπ

2
sin

i0kπ

n + 1

sin nkπ
2(n+1)

sin kπ
2(n+1)

λke(λk−1)γ t . (27)

Figure 2 displays the analytical solution for a specific set
of a and b values, together with the contribution of the largest
eigenvalue alone. For γ t > 10 the largest eigenvalue is a very
good approximation to the full analytical solution. Of note,
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FIG. 2. Multitype dynamics in one dimension for the parameter
set r = 1, a = 1.1/2, b = 1.1/4, and n = 6. The lines were generated
with Eq. (24) using the contribution of all eigenvalues (dashed) or
only the largest eigenvalue (solid).

I have double checked numerically that both Eqs. (23) and
(27) give the same result.

IV. TWO DIMENSIONS

In two dimensions I take advantage of the Cartesian graph
product and the one-dimensional solution to calculate the
eigenvalues. First, I introduce the definition of Cartesian prod-
uct of weighted graphs.

A. Cartesian product of graphs

Cartesian product of graphs: Let G and F be a weighted
graph with loops, adjacency-weighted matrices A and B and
vertex count n and m, respectively. The Cartesian product of
G and F , denoted by G�F , is the graph with adjacency matrix

A ⊕ B = Im ⊗ A + B ⊗ In, (28)

where In is the identity matrix of size n2, ⊕ denotes the
Kronecker sum and ⊗ denotes the Kronecker product. The
Kronecker product is defined as [17]

A ⊗ B =
⎡
⎣a11B a12B · · ·

a21B a22B · · ·
...

...
. . .

⎤
⎦. (29)

Example: An edge represents a complete simple graph with
two nodes, denoted by K2. K2 has the adjacency matrix A =
[0 1
1 0]. The Cartesian product K2�K2 has the adjacency ma-

trix A ⊕ A = I2 ⊗ A + A ⊗ I2

=
[

1 0
0 1

]
⊗

[
0 1
1 0

]
+

[
0 1
1 0

]
⊗

[
1 0
0 01

]

=

⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦ +

⎡
⎢⎣

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎤
⎥⎦

=

FIG. 3. The cartesian product � between a string with loops and
a string without loops yields a two-dimensional grid with loops.

=

⎡
⎢⎣

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

⎤
⎥⎦. (30)

The latter is the adjacency matrix of a graph with vertices in
a square. That is why the Cartesian product is denoted by the
symbol �.

Eigenvalues: The eigenvalues of the Kronecker sum equal
the sum of the eigenvalues of the summed matrices [17]. If
αk and βl are the eigenvalues of A and B, with associated
eigenvectors u(k) and v(l ) and transformation matrices P and
Q, then

λ2n(k−1)+l = αk + βl (31)

are the eigenvalues of A ⊕ B,

w(n(k−1)+l ) = u(k) ⊗ v(l ) (32)

are the associated eigenvectors, and

S = P ⊗ Q (33)

is the transformation matrix diagonalizing A ⊕ B.

B. Two-dimensional grid decomposition

We can decompose a two-dimensional grid as the Cartesian
graph product between a one-dimensional graph G1(a, b) with
loops and another one-dimensional graph G1(0, b) without
loops (Fig. 3),

G2(a, b) = G1(a, b)�G1(0, b). (34)

The adjacency matrix of G2(a, b) is

R2(a, b) = R1(a, b) ⊕ R1(0, b). (35)

Substituting Eq. (20) into Eq. (31) we obtain the eigenvalues
of R2(a, b),

λn(k−1)+l = a + 2b

(
cos

πk

n + 1
+ cos

π l

n + 1

)
, (36)

where k = 1, . . . , n and l = 1, . . . , n. From the latter equation
we obtain the largest eigenvalue

ρ2 = a + 4b cos
π

n + 1
. (37)

Noting that R1(a, b) and R2(0, b) are both diagonalized by
P1, we substitute P = Q = P1 in Eq. (33) to obtain the
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FIG. 4. Average number of new infections for the SIR model in
two-dimensional grids with 100×100 cities, each with H habitants.
The model parameters are r = 1, a = 2, b = 1/4. The average was
calculated from 100 realizations. (a) Y axis in linear scale. (b) Y axis
in log scale.

transformation matrix in two dimensions

P2 = P1 ⊗ P1 = P⊗2
1 . (38)

Substituting Eq. (38) into Eq. (14) and bearing in mind that
P−1

2 = PT
2 we obtain

İ = rIT
0 P⊗2

1 De(D−I )γ t
(
P⊗2

1

)T
Jn,1. (39)

This equation is the multitype mixing approximation for the
average number of new infections in a two-dimensional topol-
ogy.

V. d DIMENSIONS

We can iterate the Cartesian graph product to generate d-
dimensional grids

Gd (a, b) = G1(a, b)�[G1(0, b)]�(d−1). (40)

The average number of new infections in these d-dimensional
grids is given by

İ = rIT
0 P⊗d

1 De(D−I )γ t
(
P⊗d

1

)T
Jn,1 (41)

with eigenvalues

λnd−1(k1−1)+nd−2(k2−1)+···kd
= a + 2b

d∑
i=1

cos
πki

n + 1
, (42)

where ki = 1, . . . , n and i = 1, . . . , d , and largest eigenvalue

ρd = a + 2db cos
π

n + 1
. (43)

Applications for the three-dimensional case include the
spreading of prion protein aggregates in the human brain.

VI. NUMERICAL SIMULATIONS

The basic reproductive number and its multitype extension
are defined in a context where the number of infected indi-
viduals is much smaller than the population size. In a finite
population the number of infected individuals may reach a
significant percent of the population size. In that case the
starting equation (4) is no longer valid. To investigate the
validity of the analytical results and the population size ef-
fects, I will perform numerical simulations of the SIR model
in two-dimensional grids.

The cities are assumed of equal population size H . The
number of susceptible individuals at city (i, j) is stored in
the variable Si j . A list L is created with elements storing the
coordinates of all infected individuals. The size of L is the
number of individuals in the infected state, I = |L|. γ = 1 and
time is measured in units of 1/γ .

Initial conditions: At t = 0 all individuals are in the sus-
ceptible state except from one individual at city (1, 1). L is
initiated with the coordinates (1, 1) and Si j = H for all (i, j)
except for S1,1 = H − 1.

Dynamics: The Gillespie algorithm is used to update the
system. At a total rate μ = (a + 4b + γ )I a new event hap-
pens. The time interval �t to this new event is extracted
from the exponential probability density function μeμ�t . A
coordinate is selected at random from L and stored in (i, j).
With probability γ /μ the selected coordinate is removed from
L. Otherwise, the disease transmission rule is applied as spec-
ified below. The time is updated t → t + �t .

Disease transmission: With probability a/(a + 4b) we set
(i′, j′) = (i, j), otherwise we set (i′, j′) equal to one of the
four neighbors (i + 1, j), (i, j + 1), (i, j − 1) and (i − 1, j)
with equal probability. With probability Si′, j′/H a suscepti-
ble individual in (i′, j′) gets infected, the coordinates (i′, j′)
are added to L and the updates Si′, j′ → Si′, j′ − 1 and I →
I + 1 are performed. The empty boundary condition Si,−1 =
Sn+1, j = Si,n+1 = S−1, j = 0 are used.

Statistics: The number of new infections is recorded in
time bins of size 1 and the average is calculated over multiple
realizations.

A. Subpopulation size effects

First I illustrate the transition to the multitype branching
approximation with increasing the cities population size. To

022309-5



ALEXEI VAZQUEZ PHYSICAL REVIEW E 103, 022309 (2021)

0 10 20 30 40 50 60 70

γt
10

-2

10
-1

10
0

I.

L=3
L=4
L=5
L=6

0 100 200 300

γt
10

-2

10
-1

10
0

10
1

I.
L=3
L=4
L=5
L=6

0 50 100 150 200

γt
10

-2

10
-1

10
0

I.

L=3
L=4
L=5
L=6

0 20 40 60 80 100

γt
10

-2

10
-1

10
0

I.

L=3
L=4
L=5
L=6

(d)    H=100,000

000,1=H    (b)001=H    (a)

(c)    H=1,000

FIG. 5. Average number of new infections for the SIR model in two-dimensional grids with n×n cities, each with H habitants. The model
parameters are r = 1, a = 1.1/2, b = 1.1/8, and n = L. The average was calculated from 1 000 000 realizations.

this end I use the parameter set r = 1, a = 2 and b = 1/4. For
H = 100 there is an evident linear increase of İ as a function
of time (Fig. 4, circles). Furthermore, the numerical results
are quite far from the multitype mixing approximation (Fig. 4,
line). For H = 1000 the numerical solution gets closer to the
multitype mixing approximation but it follows a linear growth
(Fig. 4, squares). Yet, the linear range keeps reducing for H =
10 000 and it is almost absent for H = 100 000.

As H increases we observe an increase in the region char-
acterized by an exponential growth. Within the exponential
growth regime the numerical solution coincides with the mul-
titype mixing approximation (Fig. 4, line).

B. Lattice size effects

Second I report a lattice size effect. Based on Eq. (37),
for a + 4b � 1 we can find scenarios where the reproduc-
tive number is smaller than 1 for L < Lc and larger than
1 otherwise. Lc is obtained by solving Eq. (37) for L

with ρ = 1,

Lc = π

arccos 1−a
4b

− 1. (44)

For example, for a = 1.1/2 and b = 1.1/4 the multitype cal-
culation predicts a transition from decay for L < 4.13 to
growth for L > 4.13. Figure 5 reports the average number of
new infections as a function of time for different values of
cities size H = 100, 1000, 10 000 and 100 000 and grid linear
size L = 3, 4, 5, and 6. For H = 10 000 and 100 000 there is
confirmation of the multitype mixing prediction. İ decays for
L = 3, 4 (L < 4.13) while İ growths for L = 5, 6 (L > 4.13).

Here again there are city/subpopulation size effects. We do
not observe the expected İ growth for L = 5 when H = 100
or 1000. This example teach us that some diseases may not
generate outbreaks when the network of cities is small, but as
they city network grows they generate outbreaks.

For the largest city sizes H = 10 000 and 100 000, I have
plotted the analytical solution calculated from Eq. (41). At the
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early times the points from the numerical simulations fall in
the multitype mixing line. For longer times there is a deviation
from the analytical results due to the finite population size.

VII. CONCLUSIONS

I have demonstrated the use of the multitype network ap-
proach and the Cartesian product of graphs to calculate the
epidemic threshold of spreading dynamics in d-dimensional
grids. These calculations can be deployed to estimate the epi-
demic threshold at the country level aggregating cities/regions
of the order of 100 000 habitants or larger. The largest eigen-
value of the reproductive number matrix will provide a good
estimate of the epidemic threshold. The analytical formula for
the average number of new infections will provide a good
approximation to the initial dynamics of the outbreak.

The numerical simulations in two-dimensional grids un-
covered a gradual transition from linear to exponential growth
with increasing the cities/subpopulation size. The same is true
for epidemic spreading in fully mixed populations. Depending
on the magnitude of R and the implementation of lockdowns
we can expect both exponential or power law growth [9].
Today countries are characterized by a network of cities with
more than 100 000 habitants. In this context the numerical
simulations reported here indicate an exponential growth of
the number of new infections in time. Based on this obser-
vation I find unlikely that geography is the dominant factor
behind the observation of power law growth. In contrast,
the power law growth reported for COVID-19 is consistent
with the time scales of the lockdown implementations [12].
However, I cannot exclude that there is a combination of both
the lockdown truncation of the disease transmission chain and
geographical location.
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