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Zero forcing number of graphs with a power law degree distribution
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The zero forcing number is the minimum number of black vertices that can turn a white graph black following
a single neighbor color forcing rule. The zero forcing number provides topological information about linear
algebra on graphs, with applications to the controllability of quantum dynamical systems. Here, I investigate the
zero forcing number of undirected graphs with a power law degree distribution pk ∼ k−γ by means of numerical
simulations. For graphs generated by the preferential attachment model, with a diameter scaling logarithmically
with the graph size, the zero forcing number approaches the graph size when γ → 2. In contrast, for graphs
generated by the deactivation model, with a diameter scaling linearly with the graph size, the zero forcing number
is smaller than the graph size independently of γ . Therefore the scaling of the graph diameter with the graph
size is another factor determining the controllability of dynamical systems. These results have implications for
the controllability of quantum dynamics on energy landscapes, often characterized by a complex network of
couplings between energy basins.
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I. INTRODUCTION

A zero forcing set of an undirected graph, denoted by S,
is defined as a subset of vertices that can change a graph
colored white to black according to the following dynamical
rules [1]. Start with a set of vertices colored black and all other
vertices white. At each step, all black vertices with exactly one
white neighbor color that neighbor black. If the process ends
coloring the whole graph black then the starting set of black
vertices is a zero forcing set. The zero forcing number of a
graph G, denoted by Z (G), is defined as the size of the zero
forcing set with minimum size.

The zero forcing number has been studied extensively in
the context of linear algebra to calculate bounds on the mini-
mum rank of a graph [1–3]. The minimum rank of a graph G,
denoted by mr(G), is defined as the minimum rank of all real
matrices with nonzero elements on the graph edges [1]. It has
been mathematically proved that [2]

mr(G) � N − Z, (1)

where the equality holds when G is an undirected or directed
tree. Equation (1) holds true for graphs without loops (simple),
with loops, undirected and directed, after small changes in the
forcing rule [2].

More recently, the zero forcing set has found applications
in the controllability of quantum dynamical systems [4]. The
linear control theory of quantum systems is based on time-
dependent Hamiltonians of the form

H (t ) = HI +
∑

k

uk (t )C(k) (2)
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operating on a n-dimensional Hilbert space Hn. Here HI and
C(k) are n × n Hermitian matrices encoding the interactions
between internal states and the action of external perturba-
tions, respectively. The Hamiltonian is fully controllable if
for every unitary operation U ∈ SU(n) there is a control pro-
file u(t ) such that U = T exp [−i

∫ t
0 H (τ )dτ ], where T is

the time ordering operator [5]. A sufficient condition for the
controllability of the quantum system (2) is that HI , C(k), and
their nested commutators generate the Lie algebra of SU(n)
[5,6]. Burgarth et al, [4] have identified a class of fully con-
trollable quantum systems where the C(k) are associated with
the dominating set. The quantum system (2) has an associated
backbone graph G(HI ), where vertices represent the degrees
of freedom and edges represent the couplings between them,
the nonzero off-diagonal elements of HI . If S = {v1, . . . , vm}
is a dominating set of G(HI ) then the quantum system (2) with

C(k)
i j = δivk δ jvk (3)

is fully controllable [4]. Obviously, within this class of quan-
tum systems, the minimum number of external inputs needed
to fully control the system is the zero forcing number Z (G).

Finding the zero forcing set of undirected graphs is an NP-
hard problem [3]. Yet, there can be classes of graphs where
heuristic algorithms can find a nearly optimal solution in poly-
nomial time. This is the case for the minimum vertex cover
on graphs with a power law degree distribution pk ∼ k−γ .
A vertex cover is a set of colored vertices in a graph such
that every edge is incident to a colored vertex. The minimum
vertex cover is the vertex cover (or covers) of minimum size.
Finding the minimum vertex cover is NP-hard as well. Yet, we
can use a leaf-removal algorithm to find the minimum vertex
cover of graphs with a power law degree distribution [7].
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FIG. 1. Illustration of the leaf removal rules to construct the zero
forcing set.

Here I investigate the zero forcing number of graphs with
a power law degree distribution pk ∼ k−γ with 2 < γ < ∞.
I introduce a leaf-removal algorithm to identify suboptimal
zero forcing sets. Using graphs generating by preferential
attachment and the leaf-removal algorithm, I demonstrate nu-
merically that Z (G) → N when γ → 2. In contrast, the size of
the minimum vertex cover is of order N (γ − 2) when γ → 2.

II. LEAF-REMOVAL ALGORITHM

Leaf-removal algorithms can tackle NP-hard problems on
graphs with a power law degree distribution [7,8]. A leaf is
defined as a vertex with degree 1. The leaf removal takes
advantage of scenarios where the optimal choice is evident.
Optimal choice will depend on the specific optimization prob-
lem, as shown in Fig. 1 for zero forcing. If a leaf is at the end
of a chain and the leaf at the other end is white [Fig. 1(a)],
one optimal choice is to color the leaf black and add the
leaf to the forcing set. If a leaf is black and the neighbor is
white [Fig. 1(b)], then the neighbor is forced to black and
the leaf is removed. If the neighbor becomes a leaf then the
procedure can be continue recursively. Yet another scenario
is a vertex with L leaves [Fig. 1(c)]. Here we have no other
choice but coloring black L − 1 leaves and adding them to
the zero forcing set. In some instances the leaf removal rules
do not create new leaves and the algorithm cannot proceed
further. To restart the process I will remove the vertex with
the largest degree and add it to the zero forcing set. Putting all
together, the algorithm proceeds as follows.

(1) Start with all vertices colored white and an empty zero
forcing set.

(2) Create a list of all leaves in the current graph.
(3) For each leaf in the list carry on the following rules

sequentially.
(1) If the leaf is white and it is at the end of an isolated

chain with a white leaf at the other end, then color the leaf
black and add it to the zero forcing set.

(2) If the leaf is black, remove the leaf and color the
neighbor black. In the event that the neighbor becomes
itself a leaf, proceed recursively until no new leaf is created
[Fig. 1(a)].

(3) Otherwise, find all leaves at distance 2 from the
current leaf, color them black, remove them, and add them
to the zero forcing set. If no leaf is found at distance 2 no
action is taken.
(4) If the graph is not empty, find a vertex with the current

largest degree, color the vertex black, remove the vertex, add
the vertex to the zero forcing set, and move all neighbor
vertices that become a leaf to the leaf list.

(5) Remove all isolated vertices, those that are white color
them black and add them to the zero forcing set.

(6) If the graph is empty stop, otherwise go back to step 2.
The size of the resulting zero forcing set will be denoted

by ZLM (G), where LM stands for leaf and maximum degree
removal. Since the maximum degree removal, step 4, is not
necessarily optimal, this algorithm overestimates the zero
forcing number,

ZLM � Z. (4)

As a comparison, I will also calculate the minimum vertex
covering using an adaptation of the vertex covering leaf re-
moval algorithm [7]. The algorithm proceeds as follows. Start
with all vertices uncovered and a list of leaves in the graph. If
the leaf list is nonempty, extract a leaf, remove the leaf, add
the leaf neighbor to the vertex covering set, and remove the
leaf neighbor. Otherwise, find a vertex with the current largest
degree, add it to the vertex covering set, and remove it. Con-
tinue until the graph is empty. The minimum vertex covering
will be denoted by V (G). The vertex cover size estimated by
the leaf-maximum degree removal will be denoted by VLM (G).
Once again, because of the maximum degree removal rule,
this algorithm overestimates the minimum vertex covering,

VLM � V (5)

III. PREFERENTIAL-ATTACHMENT GRAPHS

First, I will consider graphs generated by the preferential
attachment model with initial attractiveness [9] (GPA). The
graph is started with a fully connected graph of m + 1 vertices.
Then add new vertices one by one until the targeted graph size
is reached. Each time a new vertex is added it is connected
to m existing and nonoverlapping vertices, each selected with
probability

πi = (a − 1)m + ki∑
j [(a − 1)m + k j]

, (6)

where the indexes run over vertices in the current graph and ki

denotes the degree of vertex i. The parameter a > 0 represents
a vertex independent attractiveness named initial attractive-
ness [9]. This model generates graphs with a power law degree
distribution pk ∼ k−γ with exponent [9]

γ = 2 + a. (7)

By tuning the initial attractiveness a we can obtain exponents
in the range 2 < γ < ∞. The case a = 1 (γ = 3) corresponds
to the original Barabási-Albert model [10].

Using the LM algorithms, I have estimated the zero forcing
number and minimal vertex covering of graphs generated by
the preferential attachment model (Fig. 2). The zero forc-
ing number and the minimum vertex covering behave quite
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FIG. 2. Zero forcing fraction z = ZLM/N and minimum vertex
cover fraction v = VLM/N of preferential attachment graphs, with
N = 10 000 and averaged over 100 graphs.

differently as γ → 2. The zero forcing number approaches
the graph size while the minimum vertex covering approaches
zero. Around γ = 2 we observe the scalings (Fig. 3)

N − ZLM (GPA) ≈ czN (γ − 2), (8)

VLM (GPA) ≈ cvN (γ − 2). (9)

Substituting the scaling (8) into the minimum rank lower
bound (1) we obtain

mr(GPA) � czN (γ − 2). (10)

When γ ≈ 2 we cannot exclude that the minimum rank is 0.
Since the LM algorithm yields upper bounds it is worth

asking how tight are those bounds, especially for γ ≈ 2. To
address this question I have calculated the number of vertices
that were forced using the maximum degree step, denoted by
�Z (G) and �V (G) for the zero forcing and vertex covering
algorithms, respectively. We observe that �V (GPA)/N ≈ 0 for
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FIG. 3. Scaling of the zero forcing fraction z = ZLM/N) and min-
imum vertex cover fraction v = VLM/N of preferential attachment
graphs, with N = 10 000 and averaged over 100 graphs.

all values of γ explored [Fig. 4(b)]. Therefore

VLM (GPA) ≈ V (GPA). (11)

In contrast, �ZLM (GPA) > 0 for most values of γ and we
cannot tell how good are the zero forcing number estimates.
Nevertheless, for γ → 2 we have �ZLM (GPA)/N → 0. In the
vicinity of γ = 2 the LM algorithm provides good estimates
of the zero forcing number, i.e.,

ZLM (GPA) ≈ Z (GPA) (12)

for γ ≈ 2. This allows us to conclude that the zero forc-
ing number of preferential-attachment graphs approaches the
graph size when γ → 2.

IV. STAR AND DEACTIVATION GRAPHS

It is straightforward to show that γ → 2 is not a suffi-
cient condition to obtain Z (G) ≈ N (G). To this end, consider
graphs made by isolated starts with a degree distribution pk ,
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FIG. 4. Contribution of the maximum degree step to the size
of the zero forcing and vertex covering sets estimated by the LM
algorithm, for preferential attachment graphs with N = 10 000 and
averaged over 100 graphs.

k = 1, . . . [G0�, Fig. 5(a)]. In this case the degree distribution
satisfies the constraint

∑

k>1

pkk = p1. (13)

For each isolated star all but one leaf need to be included in
the zero forcing set, resulting in

Z (G0�)

N
=

∑

k>1

pk (k − 1) = 2p1 − 1 < 1. (14)

A similar result is obtained for graphs made by a string
of stars [G−�, Fig. 5(b)]. In this case the degree distribution
satisfy the constraint

∑

k>1

pk (k − 2) = p1. (15)

(b)

(a)

FIG. 5. Star graphs. (a) Isolated stars. (b) String of stars. Solid
circles are vertices in the zero forcing set.
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FIG. 6. Zero forcing fraction z = ZLM/N and minimum vertex
cover fraction v = VLM/N of deactivation graphs, with N = 10 000
and averaged over 100 graphs.
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In this case all leaves need to be forced, resulting in

Z (G−�)

N
=

∑

k>1

pk (k − 2) = p1 < 1. (16)

Z (G0�) < N and Z (G−�) < N regardless of the shape of the
degree distribution. A power low degree distribution pk ∼ k−γ

with γ → 2 is not a sufficient condition for Z (G) = N (G).
The deactivation graphs of Klemm and Eguíluz [11] (GD)

provide another counterexample inspired by natural rules
of network evolution. The basic idea of the deactivation
graph model is that, with time, some vertices will no longer
participate in the network evolution, becoming inactive or
deactivated. That rule models the retirement of a scientist in
the context of coauthorship networks for example. The de-
activation graphs studied here are generated as follows. Start
with a fully connected graph of m + 1 active vertices. At each
graph evolution step, add a new active vertex, connect the new
vertex to the preexisting m active vertices and set one of the
active vertices (i ∈ A) inactive with a probability

πi =
∑

s∈A((a − 1)m + ks)−1

(a − 1)m + ki
. (17)

The deactivation model generate graphs with a power low
degree distribution pk ∼ k−γ with exponent [11]

γ = 2 + a. (18)

By tuning a we can thus generate power law exponents in the
range 2 � γ < ∞.

Using the leaf-maximum degree removal algorithms, I
have estimated the zero forcing number and minimal vertex
covering of deactivation graphs (Fig. 6). For the deactivation
graphs the zero forcing number does not approach the graph
size when γ → 2 [Fig. 6(a)]. In fact, ZLM (GD)/N < 1 and
VLM (GD)/N > 0 for all values of γ [Figs. 6(a) and 6(b)].

As shown before, there is a key difference between the
preferential-attachment and deactivation graphs regarding the
graph diameter, denoted by d . The preferential attachment
generates small-world graphs for γ > 3 (d ∼ ln N) and ul-
trasmall graphs (d ∼ ln ln N) for 2 < γ < 3 [12]. In contrast,
deactivation graphs are effectively one-dimensional (d ∼ N)
[13]. This, together with the analysis of star graphs, indi-
cates that the small-world property is a requirement to obtain
Z (G) ≈ N when γ → 2.

V. CONCLUSIONS

Using numerical simulations of preferential-attachment
graphs, I have demonstrated that the zero forcing number
approaches the graph size (Z → N) when the exponent of the
power law degree distribution approaches 2 (γ → 2). This
extends a similar result by Liu-Slotine-Barabási for directed
graphs [14] to undirected graphs. Through the analysis of
some counterexamples, I have shown that the small-world
property of preferential-attachment graphs is a necessary re-
quirement for this result.

These observations are relevant for the controllability of
quantum systems. If the degrees of freedom are coupled by
a small world network with a power law degree distribution,
then we would need to manipulate almost all degree of free-
doms to achieve full controllability. A putative scenario is the
configuration space of energy basins associated with protein
folding. The network of energy basins of a Lennard-Jones gas
and a β-sheet peptide is characterized by a power law degree
distribution, with exponents γ ≈ 2.8 [15] and γ ≈ 2 [16],
respectively. For the Lenard-Jones gas it was further shown
that the network is small world. Controlling the quantum
dynamical evolution of these systems with the zero forc-
ing Hamiltonians (3) would be unfeasible. It would require
the manipulation of almost all energy basins to achieve full
control.
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