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Complex network analysis of the gravity effect on premixed flames propagating in a Hele-Shaw cell
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We study the effect of gravity on spatiotemporal flame front dynamics in a Hele-Shaw cell from the viewpoint
of complex networks. The randomness in flame front dynamics significantly increases with the gravitational
level when the normalized Rayleigh number R, is negative. This is clearly identified by two network entropies:
the flame front network entropy and the transition network entropy. The irregular formation of large-scale
wrinkles driven by the Rayleigh-Taylor instability plays an important role in the formation of high-dimensional
deterministic chaos at R, < 0, resulting in the increase in the randomness of flame front dynamics.
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I. INTRODUCTION

A chemically reacting interfacial phenomenon with a high
temperature field, which is referred to as combustion, is one
of the well-known complex dissipation phenomena. Intrinsic
instabilities owing to the thermal-diffusive effect [1,2] and/or
hydrodynamic Darrieus-Landau-type effect [3] give rise to
significant deformation of an initially planar flame, leading
to the self-turbulization of the flame front. The elucidation
and characterization of flame front dynamics have long been
an important subject of theoretical and numerical studies in
combustion physics and related branches of nonlinear science.
Intrinsic instabilities can be modeled by nonlinear evolution
equations such as the Sivashinsky equations [4], and the im-
portance of nonlinear evolution equations has been shown in
many studies [4-8]. A simple geometry with a narrow gap
between two parallel plates, known as the Hele-Shaw cell, is
an interesting apparatus for use in the elucidation of flame
front dynamics induced by intrinsic instabilities in a quasi-
two-dimensional system. Almarcha et al. [9] have recently
demonstrated that the Michelson-Sivashinsky equation can
explain the flame dynamics, pole trajectories, and cell size
statistics experimentally obtained using a Hele-Shaw burner.

Network science incorporating the conceptional frame-
work from graph theory based on discrete mathematics has
recently allowed us to seek universal organizing principles
in complex systems [10]. Taira et al. [11] studied the rele-
vance of the network science to turbulent and vortical flow
systems, which importantly brings about disciplinary fusion
between fluid dynamics and network science. The impor-
tance of the network science in turbulent flow research has
been highlighted in some review articles [12,13]. Diverse
transformation methodologies from time series to network
or graph topologies (e.g., visibility graphs [14,15], recur-
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rence networks [16], and cycle networks [17]) are widely
recognized in the nonlinear science community. The result-
ing network representations have recently been adopted for
complex combustion dynamics in various thermoacoustic sys-
tems [18-22]. For physical settings different from those in
the above studies [18-20,22], Gotoda and co-workers have
clarified the scale-free structure in flame front fluctuations
in a diffusion flame induced by radiative heat loss [23] us-
ing natural and horizontal visibility graphs and in a rotating
premixed flame [24] using the recurrence network. They
have also clearly shown that network entropies in a recur-
rence network and the horizontal visibility graph are useful
for quantifying the changes in the randomness of dynamical
states from low-dimensional chaos to high-dimensional chaos
in a buoyancy-driven turbulent fire [25,26]. In addition to
those networks [14—17], the ordinal partition transition net-
work [27,28] incorporating the concept of symbolic dynamics
has very recently been shown to ensure good performance in
characterizing the dynamical behavior during thermoacoustic
combustion oscillations, including the detection of the state
transition from a practical application perspective [29]. The
findings obtained in those studies [18-26,29] have changed
our overall understanding and interpretation of nonlinear dy-
namics in combustion phenomena, providing interdisciplinary
platforms for nonlinear time series analysis. Our interest in
this study is to examine whether the information entropy in
the network topologies has potential use in discussing the
complexity of flame front dynamics in a Hele-Shaw cell.

A large density difference in the interface between hot
combustion products and cold unburnt reactants subjected
to gravity can trigger a buoyant force. This results in a
significant deformation of flame front associated with the
Rayleigh-Taylor instability mechanism. The main purpose of
this study is to elucidate how the gravitational level alters
the randomness in the spatiotemporal flame front dynamics
in a Hele-Shaw cell from the viewpoint of complex networks.
The outline of this paper is as follows. In Sec. II, we present
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the derivation of a nonlinear evolution equation modeling
flame front dynamics in a Hele-Shaw cell. In Sec. III, we
provide a mathematical treatment of complex-network-based
approaches. Numerical results obtained using the nonlinear
evolution equation are presented in Sec. [V. We give our main
conclusions in Sec. V.

II. NONLINEAR EVOLUTION EQUATIONS AND
NUMERICAL COMPUTATION

For the derivation of a nonlinear evolution equation de-
scribing flame front dynamics in a Hele-Shaw cell, we first
consider the following two-dimensional G-equation [30]:

%9 v -vG = |val. ()

ot
Here, G(x, z,t) represents the reacting scalar field, x and z
are the dimensionless space coordinates normalized by the
laminar flame thickness &;, vy, = (up, wp), and ¢ is the di-
mensionless time (= §;, /Sf), where Sf is the laminar burning
velocity in the burnt gas region. The entire flow field consists
of two regions: G > Gy is the region of hot combustion prod-
ucts and G < Gy is the region of cold reactants [30], where Gy
is an isoscalar surface. In this study, we define the flame front
displacement A (x, t) [30] as

G(x,z,t) — Gy =z — h(x,1). 2)

Equation (3) is obtained by substituting Eq. (2) into Eq. (1):
oh 1 [oh\’ dh

—+ =) =wp,— 1 —up—. 3

ot +2<8x> Wb "o ®)

In accordance with a previous study [31], we introduce the
following scaled variables:

up =y°Up, wp=1+y>W,
h=yH, t=1/y. “4)

Here, y (= 1 — pp/pu) is a dimensionless parameter char-
acterizing thermal expansion across the flame front, and p,
(respectively, p,) is the density of hot combustion products
(respectively, cold reactants).

Equation (3) can then be written as

oH 1 <8H

2
— =W, —yU,— 5
5. T3 8x> »—vUs (5)

ax

Equation (7) is derived by adopting the zeroth order of
Eq. (6) for H, U, and W, in Eq. (5). Note that we ne-
glect U,dH /dx by considering the zeroth-order approximation
since the flow in a Hele-Shaw cell is irrotational. A form
similar to Eq. (7) has been obtained in different combustion
settings [31-35].

H=H+yH"Y + 0y,
Uy =U" +yU" + 0y,

W, =W +yw " + o), (6)
OH 1 (0H W o
ar  2\ax /) — "

Following the procedure of a previous study [36], we
introduce Eq. (8) for the stream function ®(x, z, T) incorpo-
rating Darcy’s law to deal with the fluid flow in a Hele-Shaw
cell [37,38]:

H
V2o = M5 . ®)
0x

Here, R = gy /12, g is the dimensionless acceleration of grav-
ity normalized by vS?/d?, d is the gap width between two
vertical walls, v is the kinematic viscosity of combustion
products, and § is the delta function.

We obtain Eq. (9) by substituting W, = d®/0x into Eq. (7):

OH 1 (oH L
at 2\ ax /) ax’
Sivashinsky [4] proposed a nonlinear evolution equation

incorporating the thermal-diffusive effect on flame front in-
stability, which is considered in this study.

OH N 0°H N 484H

— 8_ —

ot ox2 ox*

Here, e = (L,o — L.)/(1 — L), L. is the Lewis number of the
cold reactants, and L. is the critical Lewis number.

As in previous studies [31-33,35], we obtain Eq. (11) by

the synthesis of Egs. (9) and (10) in this study. The coef-

ficient of dH/dt in Eq. (9) is set to 1, as in the previous
studies [31-33,35].

C))

=0. (10)

OH 1 /0H\> 9*H  9*H 3
— f——td——=—_ (1
ox2 ox4 ox

ot 2
In accordance with a previous study [39], we obtain the
nonlinear evolution describing flame front dynamics in a
Hele-Shaw cell after considering a similar variable conversion
into Egs. (8) and (11).

0x

OH 1 (oH P H | 9'H 90

gt 2\ ox ax2 " oxt T ox =t
?d 9’0 OH
— + B~ = —BR.——38z—H). 12
dx2 922 p ax (e ) (12)

Here, H is the flame front fluctuations, R, (= gy /(6./€))
is the normalized Rayleigh number, 8 = 2//|¢|?, and v =
e/le|. ¥ is either positive or negative depending on the sign of
&. The thermal-diffusive effect is dominant at ¥ > 0, whereas

it is suppressed at b < 0. We set D to 1 in this study.
We finally obtain Eq. (13) by introducing a Fourier series
to H(x, t) and ®(x, 7) under the periodic boundary condition:
OH  1(0H 2+_82H N O*H
— —_— — v— —

at 2\ dax dx? ax*
R oo

+ 7 > kHj coskx =0. (13)

k=—00

When R, is positive (negative), the flame front propagates
downwardly (upwardly). The gravitational effect stabilizes
(destabilizes) flame wrinkling in positive (negative) gravity
withR, > 0 (R, < 0).

In this study, the computational domain with the system
size L = 100 is discretized into N;, = 500 points. Equation
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(13) is numerically solved by adopting a pseudospectral
method for spatial derivatives that uses the fast Fourier trans-
form to transform the H (x, 7) solution to Fourier space with
wave number k € [—m /Ax, w/Ax], where Ax = L/N;. The
nonlinear term is evaluated in real space and transformed back
to Fourier space using the inverse fast Fourier transform. As in
a previous study [40], the solution is propagated in time using
a modified fourth-order exponential time-differencing—time-
stepping Runge-Kutta scheme [41] with time step At = 0.01
and sampling time interval dt = 1. Note that Figs. 3, 7, and
13 were obtained after averaging over 10 different realizations
of the initial conditions.

III. COMPLEX-NETWORK-BASED ANALYTICAL
METHODS

As mentioned in Sec. I, we employ two networks in this
study: the ordinal partition transition network and the flame
front network based on the natural visibility graph. The central
idea of these networks is described here.

A. Ordinal partition transition network

The ordinal partition transition network based on the
Markov chain, which incorporates the concept of sym-
bolic dynamics, was proposed by Small and McCullough
et al. [27,28]. For the construction of the network, the
local temporal evolution of flame front fluctuations H =
(H(r),H(t +1),...,H(t + D — 1)) at x = 0 is mapped into
symbolic transition patterns, where D corresponds to the rank
order pattern length. The nodes in the network are represented
by each permutation pattern w; (i = 1, 2, ..., D!). The links
between the nodes are expressed by the transfer probability
w;; (= p(I';;)) from the ith- to the jth-order pattern in a time
series, where I';; = ; — m;. We do not overlap the succes-
sive partitions in a time series. After considering w;; between
m; and 7; for the definition of the information entropy, we
estimate the transition network entropy S; in the network as

S wi Inwy
S =— 5 . (14)
In D!

For the estimation of S;, D is set to 3 in this study. The
permutation entropy [42], which is the information entropy
considering the probability distribution of possible existing
rank order patterns in a time series, can quantify the random-
ness of dynamic behaviors. The transition network entropy
is superior to the permutation entropy in the sense that the
dynamical transition of the rank order patterns is considered
in the ordinal partition transition network.

The distinction between chaotic and stochastic states is an
intriguing challenge in a nonlinear time series analysis. The
permutation spectrum test [43] is useful for examining the
presence of deterministic chaos in terms of symbolic dynam-
ics and has been widely used for various physical settings
from fluid to combustion phenomena [24,26,29,40,44]. The
central idea of this test is that if the dynamic behavior is
dominated by a deterministic process, forbidden patterns ap-
pear in the permutation spectrum. Note that the permutation
spectrum consists of the frequency distribution of the permu-
tation pattern for each sequence in disjointed windows and

their standard deviation. We adopt this idea for the forbidden
transition patterns in the ordinal partition transition network
to distinguish between chaotic and stochastic states; this has
also more recently been discussed by Olivares et al. [45]. We
here show the validity of the permutation transition spectrum
test, focusing on Lorenz chaos and two important stochastic
fluctuations: white Gaussian noise and Brownian motion.

Figure 1 shows the permutation transition spectrum for
Lorenz chaos, white Gaussian noise, and Brownian motion,
together with representative network structures. Forbidden
transition patterns appear for Lorenz chaos, whereas the num-
ber of forbidden patterns is zero for both Gaussian noise and
Brownian motion. This clearly shows that the permutation
transition spectrum test enables us to distinguish between
chaotic and stochastic states. On this basis, we estimate the
number of forbidden transition patterns Ny, normalized by the
maximum number of possible forbidden transition patterns
(= D'?) in the ordinal partition transition network.

B. Flame front network

The flame front network, which is constructed directly
from the flame front configuration, has recently been pro-
posed by Singh er al. [21]. They clearly showed that the
degree distribution in the network is an important network
property for characterizing the flame-turbulence interaction.
The flame front network is obtained by adopting the visi-
bility algorithm [14] for flame front positions. The node v;
in the network corresponds to flame front position, and two
nodes v; and v; are connected by links under the following
geometrical criterion. If the flame front does not exist on the
two-dimensional line of sight from v; to v}, v; will be consid-
ered as being visible to v;. The adjacency matrix A;; = 1 if v;
is visible to v;; otherwise, A;; = 0. We obtain the flame front
network entropy by estimating the degree k; (= ) ;Aij) in the
network.

Kmax

hy == pk)In p(k). (15)

k=1

Here, h, is the flame front network entropy, p(k) is the
probability of the degree k in the network, and kp,.x is the
maximum k.

IV. RESULTS AND DISCUSSION

Figure 2 shows the spatiotemporal structure and extracted
spatial variation in H for different R,. The flame front is
significantly wrinkled at R, = 0, and well-organized intrinsic
cells with small scales are formed throughout the flame front.
We clearly observe arrayed structures with large fluctuations
due to the continuous interactions between the cells. The
amplitude of H at R, > 0 decreases owing to the stabilizing
gravitational effect, accompanying with the local formation
of regular structures. In contrast, at R, < 0, complex dynam-
ics are progressively promoted owing to the destabilization
of the arrayed structures, yielding wrinkles with substantial
amplitude and large-scale wavelength. Figure 3 shows £, as a
function of R,. h, at R, > 0 (R, < 0) decreases (increases)
with increasing g, indicating a decrease (increase) in the
randomness of the flame front configuration. The gradient of
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FIG. 1. Permutation transition spectrum for (a) Lorenz chaos, (b) white Gaussian noise, and (c) Brownian motion, together with represen-

tative network structures.

h, with respect to R, at R, < 0 is larger than that at R, > 0.
The promotion of the Rayleigh-Taylor instability at R, < 0
gives rise to a wider range of degree distributions in the
network, resulting in a notable increase in flame front network
entropy. The normalized Rayleigh number more strongly
affects the complexity of an upwardly propagating flame
front configuration than that of a downwardly propagating
flame.

o (b
1000

The local temporal evolution of H at x = 0 and the corre-
sponding power spectrum density (PSD) are shown in Fig. 4
for different R,. Aperiodic fluctuations of H are formed
at R, = 0, exhibiting exponential power-law decay in the
PSD. The exponential power-law decay indicates the presence
of chaotic dynamics. The irregularity of H becomes small
(large) at R, =1 (R, = —2). The PSD at R, = —2 exhibits
power-law decay with the exponent « ~ —5/3, indicating
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FIG. 2. Spatiotemporal structure and extracted spatial variation in flame front fluctuations H for different normalized Rayleigh numbers

Re.(@ R, =1,(b)R, =0, and (c) R, = —1.
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FIG. 3. Variation in flame front network entropy 4, as a function
of normalized Rayleigh number R,.

the presence of chaos with typical turbulentlike dynamics.
Figure 5 shows the permutation transition spectrum at R, =
0, together with a representative network structure. We ob-
serve two specific self-loop transition patterns I'j; and T,
where I'11(I'¢s) = 71 — 71 (w6 — 76). They correspond to
the monotonically increasing and decreasing processes, re-
spectively. Some forbidden transition patterns (unconnected
nodes) appear in the network. This clearly shows the appear-
ance of nonlinear determinism, indicating that the dynamic
behavior of H is chaotic. The iterative amplitude-adjusted
Fourier transform (IAAFT) surrogate data method [46] is a
well-known statistical test for examining nonlinear determin-
ism in a time series. The null hypothesis of IAAFT surrogate
data is that the irregular components of a time series are
governed by a Gaussian linear stochastic process. We here
examine the frequency distribution of the forbidden transition
pattern numbers and the transition network entropy for the
original and surrogate data at R, = —1 as a representative
case of chaotic fluctuations. Figure 6 shows the frequency
distributions of Ny, and §; for the original and surrogate data,
where S; is the transition network entropy. Note that 500 sets
of surrogate data are considered in this study. The values of
Ny, and S, for the original data do not correspond to those for
the surrogate data. The hypothesis can be rejected with 95%
reliability obtained by a ¢ test of estimates of Ny, and S; for
the surrogate data sets. This indicates the possible presence
of a nonlinear deterministic process. Variations in Ny, and S,
are shown in Fig. 7 as a function of R,. Ny, (S;) significantly
increases (decreases) with increasing g under R, > 0. The
formations of I'j; and I'¢s become predominant, resulting in
a significant decrease in S;. In contrast, Ny, (S;) significantly
decreases (increases) with increasing g under R, < 0, which
indicates an increase in the randomness of flame front dynam-
ics.

In relation to symbolic dynamics, the multiscale
complexity-entropy causality plane (CECP) is also useful
for verifying the presence of deterministic chaos in aperiodic
fluctuations. The CECP consists of the permutation entropy

©) 202::::
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106" ' '
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f

FIG. 4. Variations in local temporal evolution of flame front
fluctuations H at location x = 0 and corresponding power spec-
trum density (PSD) for different normalized Rayleigh numbers R
(@R, =1,(b)R, =0, and (¢c) R, = —2.

S, and the Jensen-Shannon complexity Cjs, and can quantify
the degree of dynamical complexity at various time scales in
phase space. We adopt the multiscale CECP for the temporal
evolution of H (see Ref. [47] for details of the multiscale
CECP). Figure 8 shows the variations in S, and Cys of H as
a function of the embedding delay time t; in phase space for
different R,, together with the trajectory on the CECP. Here,
the maximum and minimum of Cjs are Cjsmax and Cjs min,
respectively. S, at R, = 1 monotonically increases with 7, and
becomes almost constant. Cyg takes a local maximum value at
T = 6 and gradually decays with increasing 7. The trajectory
on the CECP moves from (S,, Cys) = (0.26, 0.22) to (0.96,
0.07) with increasing t,, clearly exhibiting a parabolic curve.
The shape of the trajectory at R, = 1 almost corresponds
to that of low-dimensional deterministic chaos obtained in
the Lorenz system [48]. The Lorenz system describing the
global dynamics of Rayleigh-Bénard convection is widely
used to explain the nonlinear dynamics appearing in a
buoyancy-driven irregular convective flow [49-52]. Although
the Lorenz chaos does not represent the flame front dynamics
in this study, on the basis of a finding by Zunino et al. [47]
and Tang et al. [48], the complexity of flame front dynamics
at R, =1 is equivalent to low-dimensional deterministic
chaos. In contrast, S, at R, = —1 rapidly increases with 7,
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FIG. 5. (a) Representative network structure and (b) permutation
transition spectrum at normalized Rayleigh number R, = 0.

and the maximum value of Cjg is shifted at a lower t;. The
left point of the trajectory on the CECP is located in the
middle of the upper region. In our preliminary test using
the Kuramoto-Sivashinsky equation, we observed that for
high-dimensional chaos, the left-hand side of the curve on
the CECP is located in the middle of the upper region of
the plane. On this basis, it is conceivable that the flame front
dynamics at R, = —1 exhibits high-dimensional deterministic
chaos.

A positive Lyapunov exponent is an important signature of
chaos, which indicates an exponentially rapid divergence of
neighboring trajectories in phase space. One of the standard
methods of estimating the maximum Lyapunov exponent is
the Rosenstein method [53]. We here estimate the largest
Lyapunov exponent An.x for H at R, = —1 by the Rosen-
stein method. In this method, we assume that the pair of
nearest neighbors along the trajectories in phase space con-
sisting of H(r) develops exponentially and diverges at a
certain rate after At; time. This rate corresponds to Apmax
(= dg/ A1, where dg=(1/N) YN_, In [H(t + A7) — H(z; +
AT)|/|H(t) — H(7;)|). Amax 1S finally obtained from the slope
of dg plotted as a function of At;. Figure 9 shows the variation
in dg as a function of Az, for the original data of H at
R, = —1, together with the frequency distribution of A, for
the original and surrogate data of H. Here, N = 5000. Five
hundred sets of surrogate data are considered as well as the
estimation of Ny, and S;. We observe a monotonic increase in
dg with increasing At;, indicating an exponential divergence
of the distance between initially neighboring trajectories. As
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g0l ™ IAAFT surrogate data

2 [
= 60} 1
S I
&
L 40 i .
~ [
| Original data
20 .

-/

0
0.65 0.7 0.75 0.8 0.85 0.9
St

FIG. 6. Frequency distribution of (a) numbers of forbidden pat-
terns in transition network Ny, and (b) transition network entropy
S, for original and surrogate data at normalized Rayleigh number
R,=—1.

shown by the dashed line, we estimate Ay,,x from the slope of
dg in terms of At;. Here, the region of the slope for estimating
Amax 18 selected in accordance with a previous study [53]. In
our preliminary test, we confirm that A.x for the time series
data of the Lorenz chaos is in agreement with that obtained
by Rosenstein et al. [53] and Jayaraman et al. [54]. The value
of Amax at R, = —1 is approximately 0.18 and is positive. As
shown in Fig. 9(b), the value of A,y for the original data
does not correspond to those for the surrogate data, and the
hypothesis can be rejected with 95% reliability obtained by a
t test as well as on the basis of Ny, and S;. This result clearly
shows that the dynamic behavior of flame front instability is
governed by a nonlinear deterministic process.

The short-term predictability and long-term unpredictabil-
ity of dynamic behavior are important features of chaos
in terms of orbital instability in phase space. Gotoda and
co-workers [40,55,56] have proposed a methodology of
nonlinear forecasting to distinguish between chaotic and
stochastic states. Taking particular note of this feature,
we adopt a nonlinear forecasting method for the temporal
evolution of H (see [40,55,56] for details of the nonlinear
forecasting method). In this method, the temporal evolution of
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FIG. 7. Variations in (a) number of forbidden transition patterns
Ny, and (b) transition network entropy S, as a function of normalized
Rayleigh number R,.

the increments AH (= H(t + 1) — H(t)) is first divided into
two parts: one based on the library data and the other
on the reference data set. After constructing a phase
space from the library data, we obtain the predicted
point Aﬁ(rf +T) of a trajectory in the phase space.
Here, AH(t;+T)=YF_ AH(t + T)exp(—||AH(zs) —
AH(1)[)/ Y exp(—[| AH(ty) — AH(z)|]). AH(z) is the
point near a final point AH(z) of a trajectory in phase space,
T is the time step, and K is the number of nearby points.
The temporal evolution of the predicted AH (tp+T) is
finally obtained inversely from Aﬁ(rf + T'). We estimate the
correlation coefficient C between the predicted AH (tp +T)
and the reference AH(t; + T'). The short-term predictability
and long-term unpredictability characteristics are determined
by examining the relationship between C and the prediction
time 7,. Figure 10 shows the variation in C as a function of 7,
for different R,. Note that K = 50 and AH at 500 < t < 3000
are used as the library data, whereas those at 3000 < 7 <
5500 are used as the reference data. When R, is 0, C at 7, = 1
is approximately 0.93 with high predictability. It decreases
exponentially with increasing t,, forming the region of
short-term predictability and long-term unpredictability.
This is a distinctive feature of deterministic chaos. When
R, is 1, C at 7, =1 is approximately 0.98 and gradually

O 4_—0— ]Izalzl 1 I I I I ]
o= R,=-1
0.3t c .
” JS,max
Coof N :
0.1F Cs.min ]

50200

FIG. 8. Variations in permutation entropy S, and Jensen-
Shannon complexity C;s of H as a function of embedding delay
time 7, in phase space at normalized Rayleigh numbers (a) R, = 1
and (b) R, = —1, together with trajectory on multiscale complexity-
entropy causality plane (CECP). Here, the two continuous parabolic
lines represent Cjs max and Cs, min-

decreases with increasing t,. The short-term predictability
region is significantly larger than that for R, = 0. The
important point to note here is that the distribution of C in
terms of 7, at R, = 1 nearly corresponds to that for Lorenz
chaos. This indicates that the dynamical state represents
low-dimensional deterministic chaos. When R, = —1, C
rapidly decreases with increasing 7, but does not take a value
close to zero at 1 < 1, < 5, clearly indicating that the flame
front dynamics does not follow a stochastic process. The
frequency distribution of C for the original and surrogate
data of AH at R, = —1 is shown in Fig. 11. Note that we
analyze the original and 500 sets of surrogate data at 7, = 1
corresponding to the short-term predictability region. The
value of C for the original data does not correspond to those
for the surrogate data, which clearly indicates the presence
of a nonlinear deterministic process. The results shown
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FIG. 9. (a) Variation in dg as a function of A7, for original data
of H at normalized Rayleigh number R, = —1, together with (b) fre-
quency distribution of A, for original and surrogate data of H.

FIG. 10. Variation in correlation coefficient C between actual
and predicted temporal evolutions for increments AH as a function
of prediction time 7, for different normalized Rayleigh numbers R,.
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FIG. 11. Frequency distribution of correlation coefficient C for
original and surrogate data at normalized Rayleigh number R, = —1.

in Figs. 5-11 demonstrate that the flame front dynamics
represents low (high)-dimensional deterministic chaos at
R, > 0(R, <0).

We here discuss the physical mechanism for the increase
in the randomness of the flame front dynamics at R, < 0,
focusing on the local maxima in H in terms of x. Note that
the local maxima in H correspond to cusps in Ref. [9]. The
temporal evolution of the local maxima in H in terms of x
is shown in Fig. 12 for different R,. A striped pattern with a
relatively constant distance between flame wrinkles is clearly
formed at R, = 0, accompanying with the sudden appearance
and disappearance of flame wrinkles. The local appearance
and disappearance are attributed to the merging and di-
viding of contiguous wrinkles. The flame wrinkles interact
continuously and randomly with each other with increasing
g (R, <0), leading to the collapse of the striped pattern.
This is an important feature of the strong nonlinear mutual
interaction between multiple scales of wrinkles. The flame
wrinkles merge and divide much faster with increasing g. It
is interesting to note that a local order pattern at v = 800
emerges in the complex spatiotemporal structure during the
nonlinear evolutions of flame wrinkles. Figure 13 shows the
variations in the mean distance (d) between local maxima
and the probability density function P(£) of the normalized
distance between local maxima at R, < 0. Both (d) and
P(&) at £ > 1 significantly increase with g. This indicates
that the promotion of Rayleigh-Taylor instability in nega-
tive gravity gives rise to large-scale wrinkles on the flame
front. Ferndndez-Galisteo et al. [37] have recently showed
that for an upwardly propagating flame in a Hele-Shaw cell,
the enhanced gravity significantly increases the propagation
speed and flame surface area, resulting in an increase in
the amplitude of flame wrinkles. The irregular formation of
large-scale wrinkles plays an important role in the forma-
tion of high-dimensional deterministic chaos. This results
in the increase in the randomness of flame front dynam-
ics in a Hele-Shaw cell. In this work, we have derived a
nonlinear evolution equation modeling flame front instability
in a Hele-Shaw cell subjected to a buoyant force and have
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FIG. 12. Temporal evolution of local maxima in flame front fluctuations H in terms of location x for different normalized Rayleigh numbers

R,. ()R, =0, (b) R, = —1, and (c) R, = —2.

focused on the characterization of spatiotemporal flame front
dynamics under enhanced gravity. Our nonlinear evolution
equation gives a comprehensive physical interpretation that is
as simple as possible for the dynamical mechanism by which

(@ 10.5 ————r——r————
10} :
9.5F ° ]

0] °60 ]

(d)

8.5t

104

FIG. 13. Variations in (a) mean distance (d) between local
maxima and (b) probability density function P(§) of normalized
distance between local maxima at normalized Rayleigh number
R, <0.

deterministic chaos due to the interplay between hydrody-
namic and thermal-diffusive effects is progressively promoted
with increasing gravitational level at R, < 0. The presence of
low (high)-dimensional deterministic chaos at R, > 0 (R, <
0) in flame front dynamics was not elucidated in the previ-
ous studies using nonlinear evolution equations [4—7,35]. Our
results are expected to provide a physical understanding of
spatiotemporal flame front dynamics in a Hele-Shaw cell.

Finally, there is an important point concerning the analyt-
ical method we should include in our next study. We have
demonstrated that the transition network entropy is a useful
measure for capturing subtle changes in the randomness of
flame front dynamics. The ordinal partition transition network
we used in this study is constructed from the continuous
signals of H. How can one more deeply understand the nonlin-
ear mutual interaction between multiple scales of wrinkles in
flame front from the viewpoint of complex networks? To this
end, the temporal dynamics of a spatial network consisting
of discrete signals, that is, the local maxima of H, will be
examined in our next study.

V. SUMMARY

We have studied the effect of gravity on spatiotemporal
flame front dynamics in a Hele-Shaw cell from the view-
point of complex networks. A nonlinear evolution equation
is theoretically derived and numerically solved to produce
flame front dynamics. The randomness in the flame front
dynamics significantly increases (decreases) with increasing
gravitational level when the normalized Rayleigh number R,
is negative (positive). This is clearly identified by two net-
work entropies: the flame front network entropy estimated
from the degree distribution in the natural visibility graph and
the transition network entropy in the ordinal partition transi-
tion network. Low-dimensional deterministic chaos appears
in the flame front dynamics at R, > 0, which is satisfactorily
shown by the permutation transition spectrum test, multiscale
complexity-entropy causality plane, and nonlinear forecast-
ing method. The formation of high-dimensional deterministic
chaos becomes apparent with increasing gravitational level at
R, < 0. The irregular formation of large-scale wrinkles driven
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by the Rayleigh-Taylor hydrodynamic instability plays an im-
portant role in promoting the formation of high-dimensional
deterministic chaos at R, < 0, resulting in the randomness of
flame front dynamics.
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