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Estimating topological entropy using ordinal partition networks
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We propose a computationally simple and efficient network-based method for approximating topological
entropy of low-dimensional chaotic systems. This approach relies on the notion of an ordinal partition. The
proposed methodology is compared to the three existing techniques based on counting ordinal patterns—all of
which derive from collecting statistics about the symbolic itinerary—namely (i) the gradient of the logarithm
of the number of observed patterns as a function of the pattern length, (ii) direct application of the definition
of topological permutation entropy, and (iii) the outgrowth ratio of patterns of increasing length. In contrast
to these alternatives, our method involves the construction of a sequence of complex networks that constitute
stochastic approximations of the underlying dynamics on an increasingly finer partition. An ordinal partition
network can be computed using any scalar observable generated by multidimensional ergodic systems, provided
the measurement function comprises a monotonic transformation if nonlinear. Numerical experiments on an
ensemble of systems demonstrate that the logarithm of the spectral radius of the connectivity matrix produces
significantly more accurate approximations than existing alternatives—despite practical constraints dictating the
selection of low finite values for the pattern length.
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I. INTRODUCTION

Topological entropy is a dynamical invariant that consti-
tutes one of many tools aimed at measuring the complexity
of a specified dynamical regime. Intuitively it quantifies the
exponential rate at which the number of distinguishable orbits
grows with partition refinement, i.e., with respect to increas-
ing sampling resolution. This notion was originally developed
by Adler et al. [1] via assignment of non-negative numbers to
open covers of compact topological spaces in order to measure
their size, inspired by ideas of Kolmogorov and Tihomirov [2]
and the definition of Kolmogorov-Sinai (KS) entropy [3–5].
The variational principle relates topological entropy to KS
entropy [6–9]. A different definition that applies to metric
spaces was introduced independently by Dinaburg [8] and
Bowen [10]. Equivalence between the two definitions was
established shortly after [11].

Estimating topological entropy is a notoriously difficult
pursuit, significantly more so in comparison to other dynam-
ical invariants such as the maximal Lyapunov exponent or
fractal dimensions. A number of studies have investigated
techniques to tackle this estimation problem from a range
of viewpoints; kneading theory [12,13], periodic and cyclic
properties[14,15], Markov models [16,17], sofic shifts [18],
and length growth algorithms [19]—all of which involve
symbolic dynamics. Additionally, many of these methods es-
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sentially reduce to constructing a matrix and examining its
spectrum. Originally, Chomsky and Miller [20] used this idea
to calculate the number of grammatical strings of any given
length within the context of finite-state languages, inspired by
the notion of channel capacity by Shannon [21].

In this study our focus is on the approximation of the
topological entropy by means of ordinal patterns. This term
refers to a computationally fast approach that became popular
among practitioners over the last decade. In particular with
permutation entropy, the metric and topological version of
which were originally introduced by Bandt et al. [22]. The
type of dynamical regimes that we are concerned with are
deterministic, low-dimensional—i.e., low number of active
degrees of freedom even if the dimension of the ambient space
is high—measure-preserving systems that display chaotic be-
havior (sensitivity to initial conditions, topological mixing,
existence of dense periodic orbits). The main requirement
underpinning the Markovian formalism employed here, es-
tablished in [23], is for the dynamics to fulfill the ergodicity
property, which guarantees a form of “typicality.” The collec-
tion of iteration maps that we study are all regular maps, with
evolution rules mostly given by polynomial forms. Several
publications on real-world applications followed the analysis
performed on an audio recording in the seminal study [24],
including EEG [25–29] and ECG interbeat interval [30–32]
recordings to name a few.

Symbolic dynamics has traditionally proved itself a useful
tool in the study of dynamical systems. It involves discretiza-
tion of the underlying state space into a finite number of
regions, each of which is uniquely labeled by means of a
finite alphabet of symbols. A symbol sequence is generated

2470-0045/2021/103(2)/022214(14) 022214-1 ©2021 American Physical Society

https://orcid.org/0000-0002-1889-4650
https://orcid.org/0000-0003-2485-6666
https://orcid.org/0000-0001-5378-1582
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.022214&domain=pdf&date_stamp=2021-02-22
https://doi.org/10.1103/PhysRevE.103.022214


SAKELLARIOU, STEMLER, AND SMALL PHYSICAL REVIEW E 103, 022214 (2021)

by recording each region visited by the specific orbit the
system adheres to given a specified initial condition. Thus,
every dynamical orbit may be associated with an itinerary
(of infinite length), a sequence of labels that represent the
order in which successive coarse-grained states of the system
manifest as it evolves in time. The resulting symbolic orbit
shares properties with the original dynamics. Moreover, in the
case of generating covers, the association between orbits and
itineraries is injective.

The Bandt-Keller-Pompe paradigm [22,24,25,33,34] in-
volves counting the frequency of occurrence of types of
subsequences in the symbolic itinerary. The alphabet of choice
comprises the set of permutations of the natural numbers
{1, 2, 3, . . . , m − 1, m}, which are assigned to equal-length
subsequences of successive time series points. Symbolization
is performed on the basis of ordinal relations between points
within each segment and is, therefore, representative of the vi-
sual pattern formed by the respective segment. This paradigm
rapidly gained popularity in the nonlinear time series analysis
community due to its simplicity and ease of computation.

A slightly different approach (in the order of an iterated
limit between pattern length and length of the orbit) by Amigó
and colleagues was developed later. Amigó et al. [35] gener-
alized the equality between (i) metric entropy and (ii) metric
permutation entropy for piecewise monotone maps on one-
dimensional intervals, established in [24], to higher dimen-
sional ergodic systems. Amigó and Kennel [36] established a
parallel result for the topological permutation entropy, gener-
alizing the other main finding of [24], by requiring that the
deterministic map is expansive.

There are three existing ordinal methods for estimating
topological entropy. The first involves the exponential growth
rate of the number of patterns observed in the symbolic
itinerary as their length increases. The second uses the defi-
nition of topological permutation entropy [22,36]. The third
revolves around the concept of the outgrowth ratio of increas-
ingly longer patterns. We propose a more accurate estimator
by exploiting the use of complex networks as representations
of the coarse-grained dynamics. We use the ordinal partition
network formalism introduced by the authors in [23].

A commonplace challenge in time series analysis is that
statistical estimates computed from a single long deterministic
trajectory can sometimes produce misleading results. A robust
workaround transpires from perturbing a dynamical system
by a small amount of noise, which has been recognized as
an alternative to direct analysis for some time [37]. This is
achieved by means of a symbolic approach. The key factor to
a successful probabilistic description of deterministic dynam-
ics hinges on finding an appropriate finite covering of state
space. The germane notion is that of a Markov partition [38].
Typically a regular-grid partitioning of state space is used in
practice, an approach which derives from Ulam’s method [39].
The Markov model approximates the evolution of densities in
state space by the action of the so-called Perron-Frobenius
operator [40] and is easily calculated numerically only for
systems of low dimension [18].

Instead of employing regular-grid or more complicated
partitions that necessitate engagement with more sophis-
ticated techniques or require partial knowledge about the
dynamics, we use a standardized partitioning method [33],

namely an ordinal partition computed according to the Bandt-
Keller-Pompe paradigm. In [23] it was demonstrated that
counting patterns is equivalent to defining an ordinal partition
that becomes finer as the observed pattern size is augmented.
A Markovian framework is, thus, formulated to capture topo-
logical and transitivity properties. The adjacency matrix of
the unweighted directed Markov graph, i.e., the binary con-
nectivity matrix, encapsulates all possible transitions between
state space regions that the symbolic trajectory can exhibit.
Adapting the method established by Chomsky and Miller [20]
to estimate lengths of words composed of binary symbols, we
approximate the topological entropy of the underlying system
by computing the logarithm of its spectral radius for increas-
ingly finer ordinal partitions. Numerical results indicate that
network representations, which incorporate information on
transitions between symbols (i.e., the space of ordered sym-
bol pairs)—as opposed to simply recording statistics on the
symbol space itself—demonstrate merits and increased relia-
bility in topological entropy estimates over traditional ordinal
analysis approaches.

II. METHODOLOGY

Let {x̂n}N
n=1 denote an arbitrary scalar time series of N

temporally ordered measurements of the state of a multidi-
mensional discrete dynamical system. The system is defined
by the pair (M, φ), where the single-valued Cr function φ :
M → M represents the action of a rule for temporal evolu-
tion within the system’s state space, the compact manifold M.
Dynamics in d-dimensional space are described in terms of
forward time iterates of the governing equation from a spec-
ified initial state via functional composition. In general, this
equation is given by xn+1 = f (xn; θ), where f : Rd → Rd ,
x = (x1, x2, . . . , xd ) is an ordered d-tuple, θ corresponds to
a set of parameters, and n ∈ Z. The discrete-time flow which
specifies the solution to this equation is defined by

φ(x0, n; θ) = φn(x0; θ) = f n(x0; θ) (1)

for some initial state x0. We assume that x̂n comprises ei-
ther a state variable or a nonlinear monotonic transformation
thereof, i.e.,

x̂n = h ◦ f n
i (x0; θ), (2)

where the symbol ◦ denotes functional composition, fi repre-
sents the ith component of f and the measurement function
h : R → R fulfils the condition x1 < x2 ⇒ h(x1) < h(x2).

Ordinal patterns can be computed by defining an ordinal
partition [24,35] and recording the evolution of the associated
symbolic trajectory. Statistics of this record are then used
to formulate transition probabilities for a Markovian model
acting as a perturbation to the original dynamics. The ordinal
network encodes the rule under which all allowed Markovian
orbits are generated. We briefly outline the details of the
method developed by the authors in [23] and, following this,
elaborate on how to estimate topological entropy using ordinal
information.
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A. Ordinal patterns and symbolic itinerary

Ordinal symbolization [24] consists of a coarse-grained
segmentation of observable x̂n into elements of equal length
m. Within each such element—often referred to as a temporal
window since it encapsulates a finite history of the reference
trajectory at discrete moments in time—consecutive points
may be separated by τ recordings in the time series. This
procedure is equivalent to embedding the time series into
m-dimensional space using a time delay τ . A third parameter,
the slide lag, is introduced to modulate the level of correlation
between windows—in a similar manner to how τ modulates
correlation among points within each window. Successive
windows are not overlapping at w = w(m) ∈ {1, m} points,
the two extremes of the spectrum being wmax = 1 (almost full
overlap) and wmax = m (zero overlap).

The sequence of windows obtained via this process can be
formally represented by an indexed sequence of m-tuples of
the form

x̂(m)
i = (x̂i, x̂i+τ , . . . , x̂i+(m−1)τ ) ∈ Rm, (3)

where the index takes the values i = 1,w + 1, 2w +
1, . . . , �N−(m−1)τ

w
� + 1 to preserve the original temporal order.

The total number involves the floor function due to the con-
straint max i � N−(m−1)τ

w
imposed by the time series length.

For instance, to demonstrate the procedure on a concrete ex-
ample, consider a 12-point long observable, x̂12

n=1, segmented
into windows of length m = 3 with, say, delay τ = 2. Window
intercorrelation is minimal in the nonoverlapping scheme,
whereby w = wmax = 3 is maximal, and leads to the ordered
window sequence

x̂(3)
1 = (x̂1, x̂3, x̂5),

x̂(3)
2 = (x̂4, x̂6, x̂8),

x̂(3)
3 = (x̂7, x̂9, x̂11).

We remark that the slide lag parameter can have its definition
extended to w = w(m, τ ) ∈ {1, τ, . . . , mτ }, so that wmax =
mτ corresponds to zero overlap in a temporal sense as well.
We refer to wmax = m as the nonoverlapping scheme in ref-
erence to a “sliding window” procedure over segments—if
τ = 1, this scheme is nonoverlapping in a temporal sense too.
However, should one opt for a higher delay, there is a distinc-
tion to be made between window and temporal overlapping
and the slide lag should be defined accordingly. This would,
for instance, lead to the predecessor-successor pairs of the
form

(x̂1, x̂3, x̂5) → (x̂7, x̂9, x̂11),

(x̂2, x̂4, x̂6) → (x̂8, x̂10, x̂12),

in the above example.
Performing the same operation using the maximally over-

lapping scheme, whereby w = wmin = 1 is minimal, leads to
the richer collection

x̂(3)
1 = (x̂1, x̂3, x̂5), x̂(3)

2 = (x̂2, x̂4, x̂6), x̂(3)
3 = (x̂3, x̂5, x̂7),

x̂(3)
4 = (x̂4, x̂6, x̂8), x̂(3)

5 = (x̂5, x̂7, x̂9), x̂(3)
6 = (x̂6, x̂8, x̂10),

x̂(3)
7 = (x̂7, x̂9, x̂11), x̂(3)

8 = (x̂8, x̂10, x̂12),

TABLE I. Number of windows obtained for arbitrary window
length m and time series length N for four distinct segmentation
schemes.

Zero overlap Maximal overlap
Scheme (w = m) (w = 1)

Minimal delay (τ = 1) � N−m
w

� + 1 N − m + 1

Larger delay (τ � 1) � N−(m−1)τ
w

� + 1 N − (m − 1)τ

where correlation between windows is at its highest. Table I
displays the total number of windows obtained for the two
extreme cases of interwindow correlation (A) w = wmin and
(B) w = wmax, using a (I) single-point delay τ = 1 or (II) a
larger value τ � 1 to distinguish between maximal and lower
intrawindow correlation, for arbitrary window length m.

In [23] the authors prescribed a formulation based on the
premise that that maximal intra- and interwindow correlation
is preferable. Parameter selection herein is made according
to this standard, we therefore choose a delay τ = 1 and slide
lag w = 1. This particular slide lag selection was motivated
by a range of numerical results of [23]. First of all, peri-
odicity of a periodic input trajectory can only be retrieved,
i.e., via a random walk, from the network topology exactly
(not at a lower multiple of the period) in the maximally
overlapping scheme. Second, networks produced even from
simple (periodic) dynamics are less sensitive to changes in
the main parameter, the pattern length m, when w = 1. Third,
the set of admissible patterns that are eventually observed is
the same irrespective of w, but reaching the true number of
patterns for a fixed pattern length m occurs for a much smaller
sample size N in the case of the maximal overlap. Fourth,
Markovianity of the underlying deterministic dynamics is not
being fully preserved in the projection to the symbol space
described below. The conditioning on predecessor-successor
pairs leads to a reduction of undesired effects generated as
a consequence, as was shown via numerical experiments on
an ensemble of discrete maps and continuous-time flows [23].
In addition, the nonoverlapping variant w = 1 (with τ = 1)
produces poor estimates of topological entropy (method IV
introduced in Sec. II C) being sensitive to the pattern length m
and exhibiting no clear scaling (results omitted).

Delay selection is motivated by the fact that the value
of unity constitutes a natural choice for discrete-time flows
(since sample points are generated at a precision close to
the maximum numerical limit) and coincides with the global
minimum of the (self-)mutual information in chaotic maps.
Additionally, this choice enables the prevention of the pres-
ence of false admissible patterns (due to undesired aliasing
effects [41]). We propose using a Poincaré surface of section
in the case of continuous-time flows (see [23]), otherwise
the election of τ = 1 can lead to false forbidden patterns.
Both choices are further motivated by the richer collection of
windows produced by the segmentation, as Table I portrays,
which leads to a larger sample of symbols to draw statistics
from.

Each window is mapped to a symbol drawn from a finite
alphabet, in particular the set of permutations of the natural
numbers {1, 2, . . . , m}. The symbolic ordering assigned to
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FIG. 1. Counting ordinal patterns with m = 3, τ = 1, and w = 2
from a periodic (top r = 3.5) and a chaotic (bottom r = 4) trajectory
generated by the logistic equation xn+1 = rxn(1 − xn). (a) 4-periodic
regime and (b) chaotic regime.

each window reflects the ordinal relations between points
within. The mapping is defined by a chronological index rank-
ing, according to which shifted time indices of points within
a window are stored in a vector indexed by the corresponding
amplitude rank in ascending order. For example, to identify
the symbols assigned to windows x̂(3)

1 and x̂(3)
2 from the over-

lapping segmentation above, and assuming that the relative
magnitude relations are given by, e.g.,

x̂3 < x̂10 < x̂5 < x̂8 < x̂11 < x̂9 < x̂7

< x̂1 < x̂2 < x̂6 < x̂12 < x̂4,

we shift index sets {1, 3, 5} and {2, 4, 6} to the set {1, 2, 3}.
Given that x̂3 < x̂1 < x̂2 and x̂2 < x̂6 < x̂4, the associated
permutations are, respectively, (3,1,2) and (1,3,2). Figure 1
depicts the counting procedure on periodic and chaotic series
of the logistic map, using m = 3, τ = 1, and w = 2 to illumi-
nate the role of each methodological parameter in the symbol
sequence construction.

Formally, an ordinal pattern of length m for the window
labeled by x̂(m)

i

π
(
x̂(m)

i

) = (π1, π2, . . . , π j, . . . , πm), π j ∈ {1, . . . , m}
may be defined as the permutation π ∈ Sm which arranges
the points within according to their order, i.e., x̂π1 < x̂π2

< · · · < x̂πm . In the event that two elements of x̂(m)
i are equal,

we arbitrarily pick the one that occurs first chronologically as
the smallest [24]. This occurrence is quite rare in continuous-
time dynamics, but may, in principle, be present in discrete
dynamics depending on the system. The number of “ties”

recorded in our test systems seems to be negligible, but we
suggest caution and some testing when faced with a new time
series. If ties are frequent, this could impact the estimated
empirical distribution of patterns.

A symbol sequence that corresponds to a given time series
is generated via the mapping of windows to ordinal patterns.
Note that in the case of the partition being generating, the
association between orbits, of which a time series comprises a
finite subset, and itineraries is injective. The ordinal symbolic
itinerary of time series {x̂n}N

n=1 is denoted by

{sn}N−m+1
n=1 , sn ∈ Sm, ∀n ∈ N. (4)

The empirical distribution of ordinal patterns is defined via
their relative frequency of occurrence within sn,

P [π] = |{n such that sn = π}|
N − m + 1

, π ∈ Sm, (5)

where | · | denotes the cardinality of a set.
The set of all permutations of order m, Sm, can be sub-

divided into two groups. The first contains all the distinct
occurring patterns observed in itinerary sn, called admissible.
The second comprises the complementary set of all patterns
that cannot be realized in a time series due to deterministic
constraints, referred to as forbidden [42]. The number of ad-
missible patterns is

N (sn, m) = |{π ∈ Sm such that P [π] 	= 0}|. (6)

Type I errors (false positives, i.e., false admissible patterns)
can occur due to aliasing when τ > 1. Type II errors (false
negatives, i.e., false forbidden) can occur due to undersam-
pling, e.g., if m is chosen too large for specified N—akin to
overembedding.

B. Ordinal partition network

To construct an ordinal partition network (OPN), bijective
mappings κ : Sm → V and ψ : Sm × Sm → E are applied to
the (i) set of admissible symbols and (ii) product set of ordered
pairs of symbols. The image of κ is the set of nodes (or
vertices) V = {1, 2, 3, . . . ,V } of a graph, say G(V, E ). The
set of directed links (or edges) E is created via assignment of
connections from source to target patterns occurring in tem-
poral succession, i.e., nodes mapped to consecutive symbols
in itinerary sn are linked.

The set of links corresponds one-to-one to admissible
forward-time transitions between regions of the ordinal par-
tition (for details see [23]) as observed in the given time
series. Note that the parameter choice w = 1 implies that the
stochastic model represented by the graph is a finite-memory
Markov process of order m − 1. False admissible transitions
(type I error in the product space of symbol pairs) can occur if
successive patterns are completely uncorrelated when select-
ing w � m. False forbidden transitions (type II) occur due to
undersampling, as with the space of symbols, but effects are
more pronounced in the distribution of symbol pairs for given
partition refinement (dictated by m) and the same (finite) input
trajectory.
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(a)

(b)

FIG. 2. Ordinal networks that represent coarse-grained dynamics
on the m = 3 partition for the periodic and chaotic time series of
Fig. 1. Parameter selection according to the recommendations in
[23], i.e., τ = 1 and w = 1 (instead of w = 2 as in the schematic
of Fig. 1). (a) cycle graph C4 and (b) complex cyclic network.

C. Topological entropy estimators

By construction the network consists of a single giant
component without any disconnected islands or isolated nodes
(Fig. 2 displays networks computed from the logistic tra-
jectories of Fig. 1). The network size equals |V| = V (m) =
N (sn, m). In practice, this is an estimator of the true number
for the case N < ∞ since both experiments and numerical
simulations can only record a trajectory but not the full orbit.
The first method for approximating topological entropy tested
in this study is the simplest, namely estimate the exponential
growth rate of V (m) for increasing m [42]. This estimator
quantifies the rate of growth of the set of admissible patterns
observed in the itinerary, or equivalently the network size, by
increasingly refining the resolution of the ordinal partition.
For piecewise monotone one-dimensional maps it has been
proved [22] that N (sn, m) ∝ emhTOP ( f ). For finite m and N
where the infinite limit cannot be computed, the estimator
reduces to computing the slope of the semi-logarithmic V − m
graph

γ = ∂

∂m
(lnN (sn, m)) [method I] (7)

while discarding outlier data points for sufficiently large val-
ues of m where N (sn, m) ∼ O(N ).

Application of the direct definition of the topological per-
mutation entropy (TPE) [22,36]

hPE
0 (m) = 1

m − 1
log2 N (sn, m) [method II] (8)

comprises the second method that we examine. In contrast to
method I, this estimator generates different approximations
for each value of m and is expected to be more sensitive to
under-sampling when the partition is too fine (large m).

To introduce the third method, note that the absence of an
m pattern, if truly forbidden, pervades all longer patterns for
larger m in the form of outgrowth forbidden patterns whose
growth is superexponential in contrast to admissible m pat-
terns. The outgrowth ratio function of patterns of order m [36]
is defined as the number of admissible patterns of order m + 1
that contain the given m-pattern as a “prefix.” Formally, for
π ∈ Sm

g(π) = |ξ ∈ Sm+1 such that ξ = (π, πm+1),

P [ξ] 	= 0, πm+1 ∈ {1, 2, . . . , m + 1}|. (9)

Since the additional element πm+1 of ξ, as compared to its
prefix π, is necessarily part of the alphabet {1, 2, . . . , m + 1},
at most m + 1 patterns of order m + 1 can be conditioned on
the prefix pattern of order m—irrespective of the underlying
dynamics. The third estimator is the natural logarithm of
G(m), the outgrowth ratio averaged uniformly over all extant
prefix patterns, namely

G(m) = 1

N (sn, m)

∑
π∈Sm

g(π) [method III], (10)

where π is required to be admissible. Note that if pattern π

is forbidden, i.e., P [π] = 0, then necessarily P [ξ] = 0 for all
ξ = (π, ·). Similarly for all ψ = (ξ, ·) = (π, ·, ·) and, by in-
duction, all patterns of the form (π, ·, . . . ) must be forbidden.
These are precisely the outgrowth forbidden patterns (with
respect to π) mentioned above.

The method proposed herein is based on the N × N con-
nectivity matrix A(m) of the ordinal partition network [23].
This is essentially the adjacency matrix of the network with
all nonzero entries mapped to unity (to remove weights repre-
senting the frequency of occurrence of each transition in sn).
The fourth estimator is defined as the natural logarithm of the
spectral radius

ρ[A(m)] = max(λ1, λ2, . . . , λN ) [method IV], (11)

where λ1, . . . , λN are the eigenvalues of A(m).

TABLE II. The four estimators of topological entropy examined
within our numerical experiments. Note that TPE is defined in terms
of logarithm base 2; for a fair comparison a change of basis is
applied.

Estimator Notation

Growth rate of admissible patterns γ

Topological permutation entropy hPE
0 (m) × ln 2

Outgrowth ratio logarithm lnG(m)
Spectral radius logarithm ln ρ[A(m)]
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TABLE III. Numerical experiments were conducted on a range of synthetic time series generated by these systems.

System f (x) Parameters Regime DIM Volume hTOP

Logistic rx(1 − x) r = 4 chaos 1 expanding 0.693
Cubic (a − 1)x − ax3 a = 4 chaos 1 expanding 1.089
Bent baker 4

3

√
6x3 − 2

√
6x2 + (2 + 2

3

√
6)x mod 1 – chaos 1 expanding 0.693

Gauss e−αx2 + β (α, β ) = (6.2, −0.486) chaos 1
Dyadic (or Bit-shift) μx mod 1 μ = 2 chaos 1 expanding 0.693

Tent

{
μx, if x < 1/2
μ(1 − x), if x � 1/2

μ = 2 chaos 1 expanding 0.693

Lozi (x2, 1 + bx1 − a|x2|) (a, b) = (6/5, −2/15) chaos 2 dissipative 0.300
Henon (1 − ax2

1 + x2, bx1) (a, b) = (1.4, 0.3) chaos 2 dissipative 0.465

Folded towel

(
ax1(1 − x1) − 0.05(x2 + 0.35)(1 − 2x3),

0.1[(x2 + 0.35)(1 + 2x3) − 1](1 − 1.9x1),

3.78x3(1 − x3) + bx2)
) (a, b) = (3.8, 0.2) hyperchaos 3 dissipative –

In summary, the four methods that we test as estimators
of the topological entropy of discrete maps are displayed in
Table II.

III. NUMERICAL EXPERIMENTS

We conduct a range of numerical experiments on an en-
semble of well-studied discrete deterministic systems within
parameter regimes known to exhibit chaotic behavior (see
Table III for details). All input time series were simulated
for twice the number of iterations signified by their stated
length to remove transients. The accuracy and computational
efficiency of the four estimators described in Sec. II C is
evaluated on the basis of five separate tests presented below.

A. Test I: Logistic map

For a first comparison between methods I–IV, we consider
a chaotic trajectory generated via iteration of the logistic map
with r = 4, where topological entropy is known to be exactly
equal to ln 2 � 0.6931. Figure 3 displays the estimates pro-
duced by each technique by sequential application of ordinal
symbolization for different pattern lengths, in the range 2 �
m � 20.

Evidently the network-based estimator (method IV; cir-
cle markers) outperforms the three pattern-based methods.
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FIG. 3. Methods I–IV applied to a time series of length N = 107

points generated by the logistic map xn+1 = rxn(1 − xn) with r = 4.

It constitutes the only technique that produces an accurate
estimate. Method III (square markers), which is based on the
outgrowth ratio, is superior to directly applying the TPE defi-
nition (method II; diamonds), but only marginally better than
the approximation produced by the growth rate of admissible
symbols (method I; red dashed line). In fact, γ is close to
the average over the estimates of ln G(m) within the region
7 � m � 15.

In addition to accuracy, method IV exhibits a clear scaling
region in parameter space, for values where the pattern length
(or, alternatively, embedding dimension) is within 4 � m �
17. If m < 4, the refinement of the partition is not sufficiently
detailed to allow the Markov approximation to unveil the true
complexity of the dynamics. Recall that for m = 3 the parti-
tion consists of 3! = 6 elements, only 5 of which are visited in
this case (for elaborate explanations see [23], and specifically
Figs. 5 and 19(b) therein). Typically if the partition is too
coarse and the underlying dynamics is volume expanding, the
spectral radius of A(m) severely underestimates topological
entropy. This also occurs if m is too large due to undersam-
pling. The length of the logistic trajectory used to compute
the symbolic itinerary for Fig. 3 is equal to 10 million points.
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FIG. 4. Juxtaposition of method IV estimates applied to the lo-
gistic trajectory of Fig. 3 and shorter subseries thereof (of length
N = 104, 105, 106). The scaling region of this estimator elongates
as the sample size increases, improving the approximation’s accuracy
for a larger range of pattern lengths.
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FIG. 5. Left axis: Required computation time (in minutes) for
methods II–IV to produce the results displayed in Fig. 3 on an Intel
Core i7-8700 CPU @ 3.20 GHz processor with 16 GB of available
RAM. Right axis: Time required to compute the symbolic itinerary
from the input series of length N = 107 for patterns of length up to
m = 18.

For the complexity of the r = 4 chaotic regime, partitions
with m � 18 are finer than constraints (dictated by this sample
size) will allow for sufficient sampling of all their elements.
Regions of the ordinal partition may not be visited by the
trajectory simply due to not allowing adequate time.

To test further the dependence of method IV on the sample
size and evaluate how its accuracy is affected, we computed
networks from increasingly longer segments that comprise
subsequences of the same trajectory as in Fig. 3. In particular,
we used shortened input series of length N = 104, 105, and
106. The results, shown in Fig. 4, are indicative of the length
and robustness of the scaling region in parameter space.

As expected, the longer the trajectory, the smaller the
effects of undersampling. The scaling region elongates and
an accurate estimate for a wider spectrum of values of m
is obtained. In fact, even for m = 17 where the ordinal
partition is very refined (17! elements, N ({sn}N=107

n=1 , 17) =
486 689 visited regions), the estimate is very close to the ones
computed with lower values; this is more important if higher-
dimensional dynamics are under examination because higher
refinement is required for the Markov model to capture the
full complexity of the underlying dynamics. We remark that
given a time series of specified length, there exists a threshold
value beyond which m is too large. In this case, for m � 19
several regions of the partition are left unpopulated due to
insufficient data, hence the Markovian approximation lacks
faithfulness, the estimator performs poorly and the topological
entropy estimates gradually decay to zero as m increases.

Overall, the results of Fig. 4 are very encouraging as far
as method IV is concerned. The ordinal partition, even if not
generating for finite values of m, can produce rather faithful
stochastic descriptions of one-dimensional chaotic dynamics.
This is true even for shorter time series, e.g., of N = 10 000
points, as long as the selected value of m lies within the
scaling region (4 � m � 9 here). Given that the theoretical
results in [22–35] involve infinite limits, it is unequivocally
surprising that small finite values such as m = 4 can lead to
ordinal networks whose connectivity structure encapsulates
the complexity of the r = 4 logistic dynamics to such an ex-
tent as to enable accurate topological entropy estimates—even

for shorter trajectories whose length is well within the usual
measurements procured by real-world experimental setups.

Another facet of comparison between the methods is the
total computational time required by each. Figure 5 illustrates
the difference (in minutes) between methods II, III, and IV
(diamond, square, and circle markers, respectively) on a semi-
logarithmic axis for the parameter range 2 � m � 18 (method
I only requires a linear curve fit on the m- lnN (sn, m) graph,
hence results are omitted due to the negligible time require-
ment). The time necessary for computing the symbol sequence
from the input time series is common to all methods and is,
hence, not included in the displayed results. For completeness
we show it on the right axis of Fig. 5 (triangle markers). The
short times (�1 min), even for values on the right end of the
spectrum, demonstrate the computational efficiency of ordinal
symbolization (recall that the trajectory consists of N = 107

points).
When m � 14, all three estimators (II–IV) require less than

10 min, which is quite fast given the length of the input
series. Beyond this value, the outgrowth ratio (method III) is
by far the most computationally costly; clearly the required
time grows exponentially when m � 12 at an approximate rate
of 1.56, i.e., almost double the rate of growth of observed
patterns as m increases (γ � 0.79). This is presumably due
to the fact that G(m) requires a search for subsets of length m
within the set of admissible patterns of order m + 1—whose
cardinality N (sn, m + 1) is about twice as large (more pre-
cisely, around e0.79 � 2.203) as the set of admissible patterns
of order m, N (sn, m). In contrast, the computation of all the
other estimators is fast for all values of m.

We note that methods I and II are rather light timewise
since they constitute very simple computations on statistics of
the itinerary sn that has already been computed. Method IV is
also very efficient since less than a minute is required to arrive
at an estimate even for m = 18 for this N = 10 000 000-long
observable—where DIM[A(m)] ∼ O(106). The short time is
owing to the sparsity of the connectivity matrix and the fact
that modern tools for calculating the largest eigenvalue of
an irreducible matrix (see Sec. IV in [23] for details of the
ordinal Markov process, in particular Secs. IV B and IV C on
ergodicity and irreducibility) are very efficient.

B. Test II: One-dimensional expansive maps

We extend our analysis to a collection of one-dimensional
expansive dynamics. In particular we examine an additional
five well-known maps. For the dyadic (or doubling and bit-
shift) map and the tent map, we consider dynamical regimes
that are topologically semiconjugate and conjugate, respec-
tively to the logistic r = 4 chaos. Topological entropy is an
invariant for topological conjugacy [10]. Consequently, their
topological entropy is known to be equal to ln 2. This result
has been proved to be true in greater generality for the case of
shift maps, such as the dyadic, of the form f (x) = μx mod 1
for μ ∈ N, where hTOP( f ) = ln μ [43]. In the case of the
family of tent maps parametrized by μ, hTOP( f ) = ln μ pro-
vided 1 < μ � 2 and identically zero for 0 � μ � 1 [13]. The
remaining three examples that we present comprise chaotic
regimes drawn from the cubic, bent baker, and Gauss maps
(see Table III), whose entropy is at present not found within
the literature.
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FIG. 6. Growth of the number of admissible patterns (i.e., net-
work size) as patterns become longer for six one-dimensional
expansive chaotic maps.

Results on all five maps are computed from samples equal
in size to our primary example series, the logistic trajec-
tory, and juxtaposed for comparison. Figure 6 shows the
growth of N (sn, m) (and hence the network size) with m on a
semi-logarithmic scale. Intuitively, one expects that the more
complex the dynamical regime, the larger the growth rate
of admissible patterns. If the dynamics in a pair of regimes
is topologically conjugate, then the curves should coincide,
provided that sampling of the orbits is sufficient.

Evidently the logistic (green star markers), dyadic (light
blue diamonds), and tent (yellow right arrows) regimes admit
ordinal networks whose size is almost identical for all m. This
is a first indication of their complexity being “similar,” at least
from a macroscopic point of view. The bent baker regime
(dark blue circles) exhibits a very similar growth. Clearly
the cubic regime (blue squares; whose state space [−1, 1] is
double the size of the logistic state space in the Lebesgue
measure) produces networks of larger size as compared to all
other dynamics for the same pattern length. Moreover, the cu-
bic map’s network size exhibits a faster saturation to its upper
bound, i.e., the total number of time series points, whereby the
network has collapsed to a long serial connectivity chain—a
trivial structure that does not encode any useful information
about the underlying dynamics. In this situation, the Markov
model is no longer useful since the partition is too refined and
undersampling has reached a maximum. The Gauss regime,
on the other hand, seems to be less complex and sufficiently
well sampled for any 2 � m � 20.

Figure 7 depicts the topological entropy estimates us-
ing methods II (dark blue diamond markers) and IV (light
blue circles) for all six one-dimensional dynamics. Method
III requires significant computation time and has not been
computed, except for two examples (1D logistic, 2D Lozi).
The ordinal spectral radius not only leads to more accurate
estimates than directly computing topological permutation en-
tropy, but also generates long scaling regions, which verifies
the results observed on the logistic map. Furthermore, we can
confirm that the estimate for the logistic, dyadic, and tent
regimes is approximately equal—and the same holds true for
the bent baker trajectory.

While their ordinal structure and the associated networks
for these four regimes are similar, they are not identical even

for the same pattern length, since the trajectories are finite.
In theory, one would expect identical networks in the double
limit m → ∞ and N → ∞ for topologically equivalent dy-
namics. It is, therefore, remarkable that method IV performs
so well for such small values of m. Additionally, comparing
these four regimes, we notice that the scaling region is not
equally long for all, which implies that undersampling may
appear for lower m in a subset of them. This effect is more
pronounced in the bent baker regime. The underlying dynam-
ics could be also characterized by a topological entropy equal
to ln 2, as with the other three regimes, as results indicate.
However, it is unknown if it is indeed topologically conjugate
to the other dynamics. Dynamical complexity manifests in
several properties, such as sensitivity to initial conditions or
fractal dimensionality (active degrees of freedom), hence the
discrepancy in undersampling for a fixed value of m in the bent
baker map could be the result of a difference in nontopological
(e.g., metric) properties.

Comparing the three equivalent regimes, the dyadic seems
to incur undersampling slightly earlier, e.g., the estimate reads
0.4 for m = 20, whereas the logistic and tent estimates are
higher. In theory larger m, i.e., a finer partition, is necessary
to obtain the true topological entropy not only to sufficient
accuracy but also to arbitrary precision. Hence, the minor
discrepancies between the three regimes could be attributed
to this limitation of lower m values and would disappear as m
grows, provided a sufficiently long sample for fixed m.

Another important aspect worth noting is that while the
ordinal partition can be a generating partition in the m → ∞
limit for these 1D maps [22], it is not necessarily so in the
case of finite m. This holds true only in the case of the dyadic
map, even for m = 2, since the diagonal line segment {(x, y) ∈
R2 such that x = y} constitutes a generating partition by def-
inition. It also appears to be true for the bent baker map; in
fact the m = 2 estimates are equal to ln 2 to numerical preci-
sion for these two maps, and arbitrarily close (>12 decimal
digits) for all m � 8 in the bent baker case and m � 13 in the
dyadic case. Consequently, discrepancies in estimates among
topologically conjugate dynamics are possible for finite m
depending on how close to generating the ordinal partition is.

Finally, as expected, the estimate for the cubic map is much
higher (�1.095) than all other dynamics, whereas much lower
for the Gauss regime (�0.407), confirming the suspicion of,
respectively, higher and lower complexity than the four maps
examined above. Notice the clear, albeit shorter, scaling re-
gion generated by the computed networks in the cubic case.
The usual culprit, undersampling, shortens the scaling with m
because longer trajectories are required in order to populate all
the visited elements of the partition. Many more elements are
occupied in the cubic regime due to both higher complexity
as well as a larger support of the natural invariant measure (in
the Lebesgue sense).

C. Test III: Bifurcations

To compare method IV to previous work on topological
entropy not based on ordinal patterns (e.g., see [13,15,18,44]),
we applied it with 2 � m � 16 to the r ∈ [3.5, 4] family of
logistic mappings xn+1 = fr (xn) = rxn(1 − xn). Selected re-
sults for m = 12 are displayed on the right axis of Fig. 8),
superimposed on the orbit diagram.
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FIG. 7. Methods II and IV applied to time series obtained from six one-dimensional maps in a chaotic regime. The estimated exponential
growth rate of admissible patterns for each map is γ = 0.8378 (bent baker), γ = 1.2147 (cubic), γ = 0.8419 (dyadic), γ = 0.5438 (Gauss),
γ = 0.8232 (logistic), and γ = 0.8232 (tent). (a) bent baker, (b) cubic, (c) dyadic, (d) Gauss, (e) logistic, and (f) tent.

The discretization of this parameter range into 1000 equi-
spaced points provides a high refinement (spatial step r =
0.0005) for investigating the efficacy of the method, espe-
cially around bifurcation points where Pommeau-Manneville
intermittent regimes can occur. The curve in Fig. 8 is con-
sistent with previous results (see Fig. 7 in [13], Fig. 1
in [15], Fig. 1 in [18], Fig. 2 in [44]) except at periodic
windows.

It is known that the entropy should be zero for any r < 3.5
[13], however Block et al. [13] state that “on those intervals
of μ [i.e., r here] where there are attracting periodic points
for the map fμ, the topological entropy is constant. This is
known for theoretical reasons to be true.” Clearly this is ver-
ified by all aforementioned techniques, whereas the ordinal
spectral radius indicates that the entropy is zero for every

periodic window within r ∈ [3.5, 4]. An explanation for this
behavior is given in Sec. IV. We remark that it is unclear
why topological entropy should be constant rather than ex-
actly zero within periodic regimes and no details or citations
are given in [13] (moreover, none of the other references
even discuss this issue). According to the definition based
on ε-separated points [9,10], if distance between neighboring
points is preserved under sequential iteration of the map, the
number of distinguishable orbits remains constant and hence
the topological entropy ought to be zero. Finally, we note
that for this archetypal one-dimensional system, method IV
proved a great predictor of regime switching between peri-
odic and chaotic dynamics—whether due to an artifact of
the technique or because entropy is indeed zero for periodic
dynamics.
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FIG. 8. Logarithm of the ordinal spectral radius applied to the
logistic family of maps fr (x) for r ∈ [3.5, 4]. The results displayed
correspond to the m = 12 ordinal partition.

D. Test IV: Two-dimensional dissipative maps

Next we consider two famous examples of dissipative
dynamics in two dimensions, the Lozi and the Henon
map. The topological entropy of both is known to be
equal to hTOP( fLOZI) = 0.3 and approximately equal to
hTOP( fHENON) � 0.465, respectively.

Figure 9 shows that methods I, III, and IV (diamonds,
squares, and circles, respectively) can all produce relatively
accurate estimates for some values of m in the chaotic Lozi
regime. For the latter method, the quality of the partition is
poorer for odd values of m, especially when the partition is
not very refined. For m = 23, eigenvalues do not even con-
verge. The ordinal spectral radius exhibits oscillatory behavior
rather than the type of smooth scaling region observed for
the one-dimensional maps, which is not something that we
have observed with any other test system. In fact, both method
III and method IV display oscillations in this case (see, for
example, Fig. 1 in Amigó and Kennel [36] as it shows this
effect more clearly than Fig. 9 here due to the scale), however
their amplitude is much more pronounced for the latter. There-
fore, it is clear that for lower m values, odd m produce poor
partitioning. The situation slightly improves as m increases.

We conjecture that false ordinal transitions appear due to
the poor partitioning which may be due to the peculiarities
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FIG. 9. Methods I–IV applied to a time series of length N =
107 points generated by the chaotic Lozi map regime (a, b) =
(6/5, −2/15).
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FIG. 10. Methods I, II, and IV applied to a time series of length
N = 107 points generated by the chaotic Henon map regime (a, b) =
(1.4, 0.3).

of this specific attractor, particularly the spatial symmetries
that arise in state space. In order to investigate this further, we
recorded all occurring transitions and observed that certain
transitions appear much more infrequently in comparison to
others. By removing the particularly infrequent ones—using
a threshold of relative frequency larger than 10−4 as a proof
of concept—we recomputed the connectivity matrix. This is
simply a practical heuristic; the threshold should ideally be
dependent on m rather than constant. Essentially, the threshold
can be set by detecting the largest gap in the relative frequency
histogram of transitions. Even with our coarse heuristic, the
results (dark blue triangles on Fig. 9) display significant im-
provement for lower values of m. Further improvement for
higher m necessitates that the threshold is not independent
of m.

Note that longer patterns (i.e., finer partitions) are required
by all methods to obtain accurate estimates than for the 1D
maps. The outgrowth ratio provides a smoother curve with
reduced oscillation amplitude. TPE converges much more
slowly, as is the case with all studied systems. Method I
performs surprisingly well, probably due to the extremely thin
support of the invariant measure of the Lozi attractor. Only a
very small number of patterns are admissible even when m is
large, therefore no undersampling occurred for the parameter
range that we investigate in the Lozi regime.

The Henon trajectory on which computations are per-
formed to generate the estimates of Fig. 10 is drawn from
the original parameter regime in [45]. Method III is very
expensive computationally—required time is in the order of
hours and days even for m � 20—hence we omit estimates
for m > 12 and do not present results for lower values. None
of the methods lead to an accurate estimate in this case.
Method IV seems to be the most reliable, producing values
closer to the accepted one for all m (except m = 3). Addition-
ally, for m = 24, 25 some scaling begins to appear, but more
pronounced undersampling for any m � 26 prevents us from
establishing a clear deduction. A longer time series needs to
be examined to test whether the partition refinement m > 23
is such that the Henon dynamics can be fully encapsulated by
the ordinal network.
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FIG. 11. Left axis: Method IV applied to three N = 107-long
time series, each corresponding to a component (x1, x2, x3) of the
trajectory generated by the hyperchaotic regime (a, b) = (3.8, 0.2)
in the folded-towel map. Right axis: Network size produced for each
component by the ordinal mapping.

E. Test V: Hyperchaos in a three-dimensional dissipative map

The final test to which the network-based method IV is
subjected is a hyperchaotic regime, in the sense of two pos-
itive Lyapunov exponents. We use the the three-dimensional
folded-towel map, originally introduced in [46] as a simpler
prototypic map of a Poincaré’ cross section through the hyper-
chaotic four-dimensional continuous-time Rössler flow. The
dynamics may be understood via consideration of a rectan-
gular cube that will evolve into a “folded-towel” shape after
compression, stretching and folding over itself in two direc-
tions, then placed back onto itself during each iteration. Pairs
of adjacent points diverge exponentially in both the x and the
z direction, a phenomenon termed lateral instability in two
directions by Rössler. Its topological entropy is unknown, but
presumably it is higher than in all prior examples.

Figure 11 shows the entropy estimates obtained for each
state variable (x1, x2, x3) by method IV with 2 � m � 20,
depicted by circle, square, and diamond markers, respectively.
This is the first example where different components of the
map do not yield identical estimates; the main reason be-
ing undersampling since longer trajectories than N = 107 are
required to sample the given orbit sufficiently. In fact, by
checking the critical sample size beyond which the network
size, i.e., N (sn, m), saturates as N increases (results omitted),
we can confirm that at least some undersampling effects are
present for any ordinal partition with m � 4. This is evident by
observing the right axis of Fig. 11 that displays the evolution
of the network size as the pattern length increases. Networks
generated by the three components diverge in size if m > 5.
The higher complexity of this map in comparison to all one-
and two-dimensional examples presented herein implies that
finer partitions are necessary to capture the true dynamics.
However, due to the trade-off between refinement and sample
size, N = 107 is not adequate for most values in the interval
m ∈ [2, 20].

Estimates produced by observables x1 and x3 do not
reveal any faithful scaling with m, except for when 3 �
m � 7. The average values within this range are, respec-
tively, ln ρAVG[A(m; x1)] � 1.079 and ln ρAVG[A(m; x3)] �
1.093. Undersampling is less substantial for these two ob-

servables than for x2, with the network size coinciding for all
m � 8.

It is particularly interesting to examine the x2 component as
there is no exponential divergence between neighboring points
in this direction (contrary to the focal point if looking for
Lyapunov exponents). In addition, the nature of this attractor
dictates that transitions between the two “towel branches” cor-
relate with the x2-component series. The growth of admissible
patterns displays a clear exponential growth in the interval
4 � m � 11 for this component, at a significantly higher rate
in comparison to x1, x3. Undersampling sets in more rapidly
in this case—in fact for any m > 11 the network is close to
trivial—hence we deem only partitions with m � 11 to be
reliable. With 5 � m � 8, x2 estimates manifest some scaling
(ln ρAVG[A(m; x2)] � 1.561), however it the scaling region is
rather short and it is hard to reach conclusions.

Ultimately, if undersampling is the pertinent factor, esti-
mates obtained from x1 and x3 are more reliable. Furthermore,
the entropy estimates decay more slowly as m increases
than for x3, another indication of increased robustness of
results. For example, computing the average estimate in
the parameter region 3 � m � 11 obtained using x1 yields
ln ρAVG[A(m; x2)] � 1.047, a value quite close to the one cal-
culated for 3 � m � 7 whereby the scaling is very clear. If, on
the other hand, the complexity factor is more crucial, for small
pattern lengths (i.e., coarse partitions), x2 may be a preferable
observable as its symbolic dynamics may enable superior esti-
mates due to its revealing a “wilder” higher-mixing evolution
closer to the true underlying dynamics.

Whether the x1, x3 series yield more reliable estimates
or the x2 series is preferable, all estimates produce higher
values than in the case of all lower-dimensional (and
lower-complexity) maps, which is in agreement with our
expectations. Additionally, all estimates are higher than the
approximate metric entropy of the map equal to 0.807 (pos-
itive Lyapunov exponents λ1 � 0.430, λ2 � 0.377). This is
consistent with the theoretical result that topological entropy
is the supremum of metric entropy attained when a partition is
generating.

Finally, we remark that another source of inaccuracy may
be due to the map not necessarily being ergodic. Judging by
the gamut of systems examined for the purposes of this study,
we note that apart from high complexity or attractors occu-
pying a large volume—both of which lead to more stringent
requirements of partition refinement and sample size—lack
of ergodicity also contributes to the unfaithfulness of the
ordinal representation. A suitable example that can convey
this point is the Ikeda map under the most studied chaotic
regime (μ = 0.9). It is known to contain homoclinic orbits
[47] that prevent the system from being fully mixing. The
ordinal statistics collected from a time series (of length N ∼
106) generated by this dynamical regime led to less faithful
representations. This is evidenced by the lack of irreducibility
of ordinal networks computed from the Ikeda trajectory with
m > 12 (results omitted). In Sakellariou et al. [23] the authors
prescribed a Markovian framework for ordinal networks un-
der the assumption of ergodicity in the underlying dynamics.
None of the ordinal methods that we examined is expected
to be applicable to such systems since several building argu-
ments no longer hold> true.
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IV. SPECTRAL RADIUS OF CONNECTIVITY MATRIX

Why is the network-based method IV more effective in es-
timating topological entropy as compared to the other ordinal
analysis techniques? The main difference lies on the Marko-
vian description of the dynamics. It encapsulates information
about the transitions between patterns within the symbolic
itinerary.

Markov processes date back to the first half of the 20th
century. Since the early days accompanying methods that
utilize the transition graph as a natural representation were
developed. In the context of finite-state languages, Chomsky
and Miller [20] established a method for estimating lengths of
words composed of binary symbols. Since then, the logarithm
of the largest eigenvalue of the connectivity graph associated
with a specified Markov model has been used to estimate the
topological entropy of dynamics on cellular automata [48]
and chaotic unimodal self-interval maps [49]. Block et al.
[13], Góra and Boyarsky [15], and Balmforth et al. [16] de-
veloped improved algorithms based on it for more general
one-dimensional settings (e.g., nonunimodal or discontinuous
maps), focusing on convergence results and computational
efficiency. Froyland et al. [18] proposed an analytically rig-
orous and sophisticated approach based on right-resolving
representations and sofic shifts.

We have essentially adapted the idea to the setting of an
ordinal partition. This allowed us to (a) place ordinal represen-
tations under a more stringent quantitative test of faithfulness
to the underlying dynamics and (b) investigate whether build-
ing a complex network produces superior approximations than
simply counting patterns. As demonstrated, our findings indi-
cate significantly improved performance.

To provide some intuition with respect to the effectiveness
of this approach, consider the space of infinite sequences of
natural numbers up to J ∈ N, namely {1, 2, . . . ,J }N . De-
note the set

s = {(s0s1s2s3 · · · ) | s j ∈ N, 1 � s j � J }, (12)

by �J . In the case of ordinal symbolization, the permutation
indices can be mapped bijectively to the natural numbers up to
J = m! for pattern length m ∈ N, m � 2. For instance, when
m = 2, �2 is the binary sequence space examined by [20].

A natural metric on �J is defined by

dJ (s, t ) =
∞∑

i=0

δ(si, ti )

J i
,

δ(si, ti ) =
{

0 if si = ti,
1 if si 	= ti

(13)

since dJ � 0, dJ (s, t ) = dJ (t, s) (symmetry) and
dJ (s, t ) � dJ (s, r) + dJ (r, t ) (triangle inequality).
Furthermore, dJ (s, t ) = 0 ⇔ s = t . Note that

dJ (s, t ) <
1

J k
⇒ si = ti for 0 � i � k (14)

and

si = ti for 0 � i � k ⇒ dJ (s, t ) � 1

J k
. (15)

Additionally, dJ (s, t ) is bounded by the geometric sequence

dJ (s, t ) �
∞∑

i=0

1

J i
= 1

1 − 1
J

= J
J − 1

, (16)

with the upper bound attained when si 	= ti ∀i ∈ N. The (one-
sided) 1-shift map σ : �J → �J given by

σ (s) = σ (s0s1s2s3 · · · ) = s1s2s3s4 · · · (17)

is continuous in the metric dJ .
A connectivity matrix of size N × N , say A = (ai j ) where

N � J and ai j ∈ {0, 1}, describes a subset of �J , denoted
by �A, whereby member sequences obey the following rule:

�A = {s = (s0s1s2s3 · · · ) | asisi+1 = 1, ∀i ∈ N}. (18)

As an example consider the simple connection matrix of a 3-
node network

A =
⎡
⎣0 1 0

1 0 1
1 0 0

⎤
⎦. (19)

Since it contains no nonzero diagonal elements, there are no
links connecting a node to itself. Therefore, sequences of the
constant form (1111 . . . ), (2222 . . . ), or (3333 . . . ) are for-
bidden. The only possible links between successive elements
of sequences in �A are 1 → 2, 2 → 1, 2 → 3, and 3 → 1.
Hence, member sequences include the periodic itineraries
(121212 . . . ), (123123 . . . ), (1212312123 . . . ), etc., as well
as aperiodic trajectories, e.g., (1231212123121212123 . . . )
which in this case is composed of several periodic 2 and 3
blocks.

The restriction of σ to the set �A is denoted by σA. This
makes sense as �A is a closed subset of �J . Furthermore, �A

is invariant under the action of σA since the σ image of any in-
finite sequence s ∈ �A necessarily also comprises an element
of �A due to the constraints imposed by Eq. (18). In traditional
terminology, σA is a subshift of finite type. Therefore, ordinal
networks constitute a subshift of finite type on the space of
infinite sequences composed of indices associated with each
element of the ordinal partition.

For instance, consider the restriction of the shift map σ

in the case of the chaotic (r = 4) logistic trajectory and a
4-periodic trajectory (r = 3.5). We construct networks with
a pattern length equal to m = 3 whereby the ordinal partition
consists of 3! = 6 elements. Figure 2 illustrates the topology
of these networks; node labels refer to the specific pattern or
permutation.

The symbolic itinerary in the 4-periodic case only visits
four out of the six partition elements since patterns (1,2,3) and
(3,2,1) are forbidden. The Markovian connectivity matrix for
this regime is given by

(1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2)

Ar=3.5 =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞
⎟⎟⎠

(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)

. (20)

Only four transitions are allowed, namely 1 → 2, 2 → 4,
3 → 1, and 4 → 3 (using the index notation instead of the
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permutation or pattern), and no element is connected to itself.
Consequently, �A constitutes of periodic itineraries of the spe-
cific form (12431243 . . . ) only; no other infinite sequence is
possible, be it constant, e.g., (1111 . . . ), periodic of a different
form, e.g., (12341234 . . . ), or aperiodic. The eigenvalues of
Ar=3.5 are 1,−1, i,−i, hence

ln ρ(Ar=3.5(m)) = ln 1 = 0. (21)

Refining the partition by counting increasingly longer m pat-
terns yields the exact same connectivity matrix for this regime.
In fact, this invariance holds true for any 2k-periodic regime,
provided that m � 2k−1 (and also that τ = 1, w = 1; see Sec.
V A in [23] for details). The number of distinguishable orbits
prescribed by Ar=3.5 remains constant as m increases.

The chaotic itinerary, on the other hand, visits five regions
[only pattern (3,2,1) is forbidden]. In addition, nine transitions
are possible, specifically 1 → 1, 1 → 2, 1 → 5, 2 → 3, 3 →
5, 4 → 1, 4 → 2, 5 → 3, and 5 → 4. The connectivity matrix
is

Ar=4 =

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2)⎛
⎜⎜⎜⎜⎜⎝

1 1 0 0 1
0 0 1 0 0
0 0 0 0 1
1 1 0 0 0
0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎠

(1, 2, 3)
(1, 3, 2)
(2, 1, 3)
(2, 3, 1)
(3, 1, 2)

. (22)

As a result of the larger number of allowed transitions
prescribed by Ar=4, �A comprises a much richer set
of member sequences. Examples include the constant
sequence of the form (1111 . . . ), 2-periodic itineraries,
e.g., (3535 . . . ), 3-periodic itineraries, e.g., (154154 . . . ),
4-periodic itineraries, e.g., (23542354 . . . ), 5-periodic
itineraries, e.g., (1235412354 . . . ), etc. as well as aperiodic
trajectories, e.g., (12353542351115411111123 . . . ). Three
eigenvalues of Ar=4 are real, namely 1.7549,−1, 0, while
the complex conjugate pair 0.1226 ± 0.7449i has a nonzero
imaginary part and a modulus approximately equal to 0.7549.
Hence we have

ln ρ[Ar=4(3)] = ln 1.7549 = 0.5624 > 0. (23)

The approximation is poor in this case; it generates an un-
derestimate of the true entropy. The pattern length m = 3
does not induce a sufficiently fine partition to fully capture
the complexity of this expansive regime. However, partition
refinement by merely increasing the pattern length to one ad-
ditional point (m = 4), leads to a significantly more accurate
value (ln ρ[Ar=4(4)] � 0.676) as Fig. 3 shows.

In general, by the Perron-Frobenius theorem for non-
negative matrices, there exists a non-negative eigenvalue λmax

such that no other eigenvalue of A has absolute value greater
than it. Corresponding to λmax there exist unique non-negative
left and right eigenvectors. Moreover, if A is irreducible and
aperiodic, λmax is a simple eigenvalue and the eigenvectors
are strictly positive. Note that the set �A consists of symbolic
itineraries which are the manifestation of all possible random
walks from any starting node on A. Consequently, a leading
eigenvector corresponds intuitively to a set of regions in state
space which remain invariant (up to scaling) under a single
update of the evolution rule and, furthermore, endure the

maximum possible scaling (in absolute value), i.e., regions
where mass tends to concentrate the most after an update
of the dynamics. Topological entropy is then related to the
growth rate of the number of possible paths from all starting
nodes, which in the infinite limit tends to grow as the natural
logarithm of λmax, i.e., the maximum scaling factor.

V. DISCUSSION

Amigó and Kennel [36] argue that attempting to estimate
topological entropy from a single long trajectory is very dif-
ficult. Metric entropy is also not captured easily due to the
requirement for very long input time series that enables faith-
ful representations by observing longer patterns, as reflected
in undersampling heuristics such as N � m! + m − 1 pro-
posed in the literature [42]. Quoting [36], “. . . but topological
entropy is worse yet, because it weights each pattern equally.
This means that patterns which are exceptionally infrequent
on the natural measure of the attractor can still have a sig-
nificant influence on the result. Attempting to estimate the
same quantities using empirical occurrences of order patterns
is even more difficult, requiring more data than would a
good, low-alphabet generating partition for ordinary symbolic
dynamics.” These invariant estimation challenges associated
with all other symbol-only methods seem to be somewhat
addressed by employing the network and matrix characteri-
zation. The reason is that the largest eigenvalue of the ordinal
Markov discrete operator—that acts as an approximation to
the evolution operator of the underlying system—measures
the accumulated effect of matrix multiplication. Vectors on
eigendirections—or equivalently “mass” distributions in the
symbol space—are preserved up to a scaling factor by the
action of the ordinal Markov operator. This scaling factor
lowers the effect of infrequent admissible patterns on ordinal
estimates mentioned in [36].

The five tests that we conducted on the ensemble of sys-
tems and dynamical regimes examined herein suggest that
ordinal partition networks can prove of great practical use.
The ability to approximate accurately an invariant such as
topological entropy by merely observing rather short patterns
(low finite m, far from the thermodynamic limit m → ∞)
on scalar observables suggests that the proposed method is
effective. Furthermore, these results shed light on the faithful-
ness of ordinal finite-memory Markov processes as a coarse
approximation to chaotic dynamics.

Our study will hopefully spark some interest for further
theoretical and numerical investigations of the properties of
an ordinal partition in chaotic maps. In particular, determining
the maximum finite value of m for which faithful compu-
tations are feasible, examining how the proposed method
performs if the input time series is generated by a map of infi-
nite entropy, establishing convergence rates for m in relation to
dynamical invariants or known features of a specified system,
e.g., dimensionality, volume preservation, ergodicity, etc. This
shall determine more clearly the type of data for which this
methodology can be applicable in practice. McCullough et al.
[41] showed that heart variability state distinction as well as
characterisation of complexity of cardiac dynamics may be
pursuits amenable to ordinal analysis. Moreover, Downarow-
icz [50] developed a rich theory on the concept of entropy
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structure, a kind of master invariant for the entropy theory
of topological dynamical systems, in order to shed light on
the complex interplay between entropy and scale. It would
be interesting to determine whether ordinal partitioning along
with successive refinement can potentially extract information
about the entropy structure.
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