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Asymmetric synchronization in lattices of pinned spiral waves
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Networks of coupled oscillators show a wealth of fascinating dynamics and are capable of storing and
processing information. In biological and social networks, the coupling is often asymmetric. We use the chirality
of rotating spiral waves to introduce this asymmetry in an excitable reaction-diffusion model. The individual
vortices are pinned to unexcitable disks and arranged at a constant spacing L along straight lines or simple
geometric patterns. In the case of periodic boundaries or pinning disks arranged along the edge of a closed
shape, small L values lead to synchronization via repeated wave collisions. The rate of synchronization as a
function of L shows a single maximum and is determined by the dispersion behavior of a continuous wave train
traveling along the system boundary. For finite systems, spirals are affected by their upstream neighbor, and
a single dominant spiral exists along each chain. Specific initial conditions can decouple neighboring vortices
even for small L values. We also present a time-delay differential equation that reproduces the phase dynamics
in periodic systems.

DOI: 10.1103/PhysRevE.103.022213

I. INTRODUCTION

Networks of coupled oscillators display a plethora of in-
teresting dynamics and synchronization phenomena [1,2].
Examples include the classic self-synchronization of light-
signaling fireflies [3] and biological cells responsible for the
generation of circadian rhythms [4]. Partial synchronization
can induce the formation of so-called chimeras, which sus-
tain synchronous and asynchronous behavior simultaneously
[5,6]. Of importance for all of these phenomena are the net-
work topology, which can include regular and random as well
as scale-free and small-world networks [7–9]. Quite naturally,
the intrinsic dynamics of each node also play an important
role, and much attention has been dedicated to linear, limit-
cycle, and chaotic oscillators [10,11]. The third important
ingredient is the coupling strength wi j between the connected
nodes i and j, which in the simplest case can be constant
(for i �= j). In neuronal networks, these parameters can en-
code holographic memory and usually obey wi j = w ji [12].
Most experimental systems, however, do not obey this sym-
metric coupling criterion. For example, in a social network
a celebrity or influencer will affect followers more strongly
than the followers affect the celebrity. Also for biological
cells, asymmetric coupling is a well-established phenomenon.
Numerous publications document this “rectification” for elec-
trical synapses in crayfish [13], the giant fiber system in
Drosophila [14], spinal cord preganglionic neurons [15], and
many other examples. Furthermore, non-neuronal cells can
show asymmetric communication as exemplified by oocytes
of the frog Xenopus [16].

The goal of this study is to introduce a nonlinear reaction-
diffusion system that can generate asymmetric coupling
between network oscillators with only minimal external inter-
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vention and that is suitable for future experimental studies. For
this purpose, we consider a population of rotating spiral waves
pinned to a static lattice of stationary and inert heterogeneities.
Spiral waves of excitation exist in numerous experimental
systems such as the chemical Belousov-Zhabotinsky (BZ)
reaction [17], catalytic surface reactions [18], vegetation pat-
terns in high-altitude wetlands [19], and cardiac as well as
neuronal tissue [20,21]. Excitation waves propagate with a
constant amplitude due to the domino-chain-like spread of the
excitation. Figuratively, these dominoes are lifted up again
by slower processes that introduce a refractory zone in the
wake of the front. The resulting constant (and system-specific)
front speed c0 is lowered by a tight spacing of fronts and also
by concave deformations of the front curve that effectively
dilute the often diffusion-mediated spread of the excitation
[22]. Excitation waves typically show no interference and no
reflection at boundaries.

Free spiral waves rotate with a characteristic frequency that
is typically lowered if the spiral tip is forced to orbit around an
inactive heterogeneity [23]. For disk-shaped heterogeneities
of increasing size, the frequency quickly converges to the ratio
of the boundary circumference and the constant wave speed
c0. Pinned excitation vortices have been reported for cellular
automata [24], numerous reaction-diffusion models [23], and
experimental systems including the BZ reaction [25]. In this
chemical system, heterogeneities were generated by laser light
[25], catalyst-free regions [26], and physical obstacles created
by inclusion of inert and impermeable objects [27] as well
as soft-lithography [28]. Pinning of excitation vortices is also
possible for spatially three-dimensional systems in which ex-
citation vortices rotate around one-dimensional space curves
[29].

II. MODEL AND METHODS

The geometry of our model aims to describe the spiral
waves generated in a catalyst-loaded polysulfone membrane
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(or similar host media, such as a gel) submerged in a catalyst-
free solution of BZ reactants [26]. Notice that the catalyst is
immobilized and does not diffuse. These membranes could
be perforated to create pinning sites and optionally attached
to glass cylinders to yield a ribbon-shaped system. The sim-
ulations presented herein are based on the two-dimensional
Barkley model of excitable systems [30]. This model consid-
ers an activator u and an inhibitor v, of which only u is able
to diffuse. The evolution of these variables is described by the
following equations:

∂u

∂t
= ∇2u + 1

ε

[
u(1 − u)

(
u − v + b

a

)]
, (1)

∂v

∂t
= u − v, (2)

where ε, a, and b are dimensionless constants. Throughout
this work, these parameters were set as ε = 0.02, a = 0.90,
and b = 0.05. All lengths and times are expressed using di-
mensionless units. For the given parameters, unpinned spiral
waves exist and the spiral tip describes a small circular tra-
jectory. To study the possible synchronization of spiral waves
pinned to heterogeneities, a two-dimensional (2D) simulation
domain was prepared with specific characteristics.

For a linear chain of pinned spirals, the domain is rectangu-
lar in shape, with a height of L and a width of n × L, where n is
the number of spiral waves to be considered. Each pinning site
is a circular heterogeneity of the system, in which u and v are
fixed at 0. No-flux boundaries should create dynamics that are
nearly identical to the results reported in this study, although
the spiral tip will revolve at a closer distance and hence show
a slightly decreased rotation period. The unexcitable disks are
spaced at a center-to-center distance of L and have a radius r
that is larger than the radius of the free spiral tip trajectory.
The upper and lower border of the system domain obey no-
flux boundary conditions in every case. Furthermore, the left
and right limits are periodic boundaries in the cases presented
in Sec. III A and no-flux boundaries in Sec. III C. Accordingly,
the system is a closed ribbon in the former case and a wide
rectangle in the latter.

For an arrangement of spirals on a square, unexcitable
disks are also included, separated by a distance of L, in a
domain of size 2L × 2L in one case and 3L × 3L in the other,
with four and eight disks, respectively. In these cases, all sides
of the domain obey no-flux boundary conditions.

Spiral waves are initialized by setting u = 0 and v = 0
everywhere in the system except for thin bands that join each
of the disks with the outer system boundary. Within these
bands, the value of u is set according to a Gaussian function
around the center of the band. The value of v is set in the same
way, with a slight shift toward either the left or the right. The
direction of this shift gives the wave a clockwise or anticlock-
wise sense of rotation. The angle between these bands and the
positive x direction is varied as an initialization parameter.

III. RESULTS AND DISCUSSION

A. Spiral waves arranged on closed ribbons

For most of our analyses, all spirals are pinned to
unexcitable disks of the same radius. Accordingly, these
spirals have identical frequencies if left unperturbed by their

neighbors. The spiral wavelength � increases linearly with in-
creasing disk radii r. Around the investigated value of r = 5.0,
�(r) is linear with a slope of 6.90 and an intercept of 8.32.
The slope is close to the expected, simple value of 2π (the
source of deviation is discussed in Ref. [31]). Additionally,
simulations confirmed that the wave propagation speed is
independent of r for r > 3.0.

An important variable that allows for the quantitative anal-
ysis of the synchronization behavior is the phase angle of each
spiral wave, φ. This value is defined as the angle between
the horizontal axis and the segment that connects the center
of the disk to the tip of the spiral. The tip of the wave is
determined as the intersection of the isolines for u = 0.3 and
v = 0.3. This intersection point, marked in the examples in
Fig. 1 with a cross, is unique for each spiral. If a pinned wave
is left to evolve unperturbed by its neighbors, its phase value
will increase (for counterclockwise rotation) or decrease (for
clockwise rotation) at a constant rate ω. This value presents
a linear relationship with respect to r for r > 3.0. The most
relevant geometric parameters that the model allows to mod-
ify are r, L, and n. A radius of 5.0, which corresponds to
� = 42.8, was used for the simulations presented below, and
n was limited to a maximum of 4.

Beyond these geometric factors, we also vary parameters
such as the chirality along the vortex chain and the initial
phase values of the spirals. Both of these factors drastically
influence the system’s synchronization behavior. We specif-
ically consider the two cases in which the initial phase of
neighboring spirals is similar or differs by approximately π .
Figures 1(a)–1(d) illustrate these combinations for the sim-
plest case of n = 2. The snapshots in Figs. 1(a) and 1(b) also
emphasize the importance of wave collisions, which effec-
tively shield the spiral tips and prevent a mutual coupling
and ultimately synchronization. Figures 1(e)–1(i) show vector
fields that represent the direction of wave motion at select
points in space. Panels (e) and (f), which correspond to the
waves shown in panels (a) and (b), reveal that the simulation
domain is divided by two separatrices, which extend along the
lines of wave collisions. These separatrices function as a clear
indicator of whether synchronization behavior is possible for
a given geometry and set of initial conditions. Importantly,
this statement holds for more complicated geometries and
arrangements of heterogeneities.

The situation in Fig. 1(g), which corresponds to the wave
in panel (c), is qualitatively different. Here, the lines of wave
collisions connect the upper and lower system boundary to the
unexcitable disks and, hence, do not define distinct regions.
This scenario and the underlying wave behavior lead to in-
teraction between the spiral tips and open up the possibility
for synchronization. The importance of the disk distance L
is illustrated by the vector fields in Figs. 1(h) and 1(i). In
these examples, both waves rotate clockwise and start from
the same phase value as in panel (d), but they have different
values of L. Notice the disparate scales of the two panels.
In general, we find distinct behavior for L values above and
below �. In panel (h) (L = 60), the domain is again divided
into halves. This is the general case for L > � and does
not allow for synchronization. In contrast, panel (i) (L = 30)
has no wall-to-wall separatrices, and parallel wave fronts can
travel continuously within the the lower portion of the system.
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FIG. 1. (a)–(d) Representative snapshots for spiral waves pinned to two adjacent unexcitable disks. The upper and lower domain boundaries
impose no-flux conditions, while the left and right borders are periodic boundaries. The circles represent unexcitable regions. The blue (leading)
isoline corresponds to u = 0.3 and the red (trailing) isoline corresponds to v = 0.3. Each panel corresponds to a different rotation direction
and starting position. (e)–(i) Vector fields showing the propagation direction at each point. (a) and (e) L = 40, counterclockwise and clockwise
rotating spirals; both waves are started in the lower half of the simulation domain. (b) and (f) L = 40, clockwise rotating spirals; each of the
waves is started within opposite sides of the domain. (c) and (g) L = 40, counterclockwise and clockwise rotating spirals; each of the waves is
started at opposite sides of the domain. (d), (h), and (i) Clockwise rotating spirals; both waves are started on the lower half of the simulation
domain, with L = 40 (d), L = 60 (h), and L = 30 (i). Animations corresponding to panels (e)–(i) are included in the supplemental material
[Movies 1(a)–1(e)] [32].

As these dynamics are easier to understand from animations,
we refer the reader to the videos in the supplemental material
(Movie 1) [32].

We analyze the temporal dynamics of the latter two cases
in terms of a relative phase, which we define as the difference
between the phase of the ith vortex, φi, and the mean phase
(φ = ∑n

i=1 φi/n). Corresponding data are shown in Fig. 2,
where panel (a) is representative of all cases with L > �.
This panel shows the φi values of the two spirals evolving

independently with the same angular velocity ω. This be-
havior reveals that the vortices do not interact but are rather
shielded by their sufficiently long wave arms. In contrast,
Fig. 2(b) shows the corresponding plot for a pair of interacting
spiral tips that undergo abrupt phase resets due to collisions
of a given wave arm with the neighboring heterogeneity.
This example is representative for L < �. Surprisingly, both
vortices alternate between two relative phase values, forming
a braidlike pattern in the respective phase evolution curves.
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FIG. 2. Relative phase of each spiral as a function of time.
(a) L = 60 and (b,c) L = 40.

Accordingly, the roles of phase-leading and phase-lagging
rotors also alternate with a constant period. An animation
showing the corresponding wave dynamics is presented in
the supplemental material (Movie 2) [32]. While the braidlike
functions in Fig. 2(b) seem nearly of constant amplitude, long
simulation times reveal synchronization to a relative phase of
zero. This long-term process is illustrated in Fig. 2(c) as an
extension of the data in (b). We note that both braidlike phase
dynamics and synchronization are also found for larger values
of n, as long as L < �.

The mechanism for this synchronization can be rational-
ized in terms of the underlying dispersion relation [33,34],
i.e., the speed-wavelength dependence of the excitable system.
The resulting dynamics in the band of continuous wave prop-
agation below (or on top of) the heterogeneities are strongly
dominated by this dispersion relation. Here, n wave pulses
propagate in the same direction, but with initially noncon-
stant spacing. In many chemical systems as well as in the
investigated Barkley model, these wave pulses will differ in
speed c depending on the distance λ to the pulse ahead of
them because the latter leaves the local system in a state of
partial refractoriness. The monotonically increasing nature of
c(λ) (normal dispersion) ultimately causes the wave train to
establish a constant pulse distance, and, in the process, it also
synchronizes the spiral rotors. To illustrate this hidden mech-
anism, we reduce the system to a one-dimensional domain
of length nL while maintaining periodic boundary conditions
at the edges, and we position three wave fronts with initially
nonequidistant spacings. Figure 3(a) shows the corresponding
u(x) and v(x) profiles for an early and a late time as blue
(solid) and red (dashed) curves, respectively. The collective
deviation from the final state can be quantified by defining the

variable ϒ(t ) as

ϒ(t ) =
n∑

i=1

|λi(t ) − L|, (3)

where λi is the peak-to-peak distance between consecutive
wave fronts. A value of ϒ = 0 indicates that the waves are
equidistant.

Figure 3(b) shows the temporal evolution of ϒ for n =
3 and different values of L. The initial front distances are
L − 2.5, L + 5.0, and L − 2.5. As the simulation domain is
increased in size, the peak-to-peak distances grow and the
speed differences between the pulses decrease according to
the saturating dispersion relation c(λ). Figure 3(c), in turn,
shows the same plot for the 2D system with three pinned
waves. In this case, λi is defined as the peak-to-peak distance
between the nearly parallel wave fronts that travel along the
bottom boundary of the domain [see Fig. 1(i)]. For relatively
low values of L, the graphs in (b) and (c) show very similar
behavior. However, as the value of L approaches �, the shapes
of the graphs differ drastically, showing in some cases abrupt
changes in slope. From each of these graphs, a value of t1/2

can be extracted. This value is defined as the time needed for
ϒ to reach half of its initial value. Figure 3(d) shows how this
value depends on L for the data in Figs. 3(b) and 3(c). In the
case of the 1D model, t1/2 increases monotonically with L. The
behavior for pinned spirals is initially similar, but t1/2 reaches
a maximum (slowest synchronization) at L ≈ 38. For higher
L values, the synchronization of the spirals occurs again more
rapidly, but above 46, synchronization does not occur at all.
Notice that the wavelength � = 42.8 of the pinned spirals is
within the range of accelerating synchronization. The most
important observation in this context is the existence of an
apparent resonance effect.

B. Time-delay differential equation

Time-delay differential equations are useful for the de-
scription of certain complex systems and especially of those
involving feedback control, such as automatic engines or
physiological systems [35]. Additionally, they have been used
to capture nonlinear chemical kinetics [36–38]. We formulate
a system of delay differential equations to describe the behav-
ior of a group of pinned spiral waves arranged on a periodic
1 × n lattice. From the numerical results in Sec. III A, it can
be stated that φi(t ) evolves by means of only one of two
mechanisms. The trivial case is a gradual increase with rate ω

as the wave center rotates independently around its anchoring
disk. The second case involves sudden phase changes due
to collisions with one adjacent wave arm. In the following,
we will assume—without loss of generality—that all spirals
rotate clockwise (decreasing phases) and that each spiral i is
subject to perturbations by its right neighbor i + 1 due to wave
collision.

To incorporate these sudden phase changes of φi into a
differential equation, and to describe the overall dynamics, we
consider

dφi(t )

dt
= ω + Aδ(θ ), (4)

δ(θ ) = δ
{[

φi+1

(
t − L

c

)
mod 2π

]
− φB

}
, (5)
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FIG. 3. (a) u (thin lines) and v (thick lines) as a function of x for the 1D model, corresponding to an early stage (t = 12, solid blue lines)
and a later stage (t = 144, dashed red lines), showing the evolution of a wave train toward equidistant waves. (b) ϒ(t ) for different values of
L according to the 1D model. (c) ϒ(t ) for different values of L according to the 2D model with unexcitable disks. (d) t1/2 as a function of L,
corresponding to the simulations shown in panels (b) and (c).

where θ is an auxiliary variable, A is an amplitude, and φB =
3π/2. The value of φB describes the phase value at which
the collision-induced phase reset occurs (the lowest position
of the spiral tip with respect to Fig. 1). The function δ(θ )
must satisfy two conditions: (i) δ must fall off quickly when
departing from θ = 0 to achieve a sufficiently fast phase jump,
and (ii) its integral must be equal to 1. The expression for
the variable θ involves the time L/c that the wave needs to
travel the distance L between neighboring pinning sites. This
value is the delay constant of our model. Finally, θ is chosen
so that the maximal phase reset occurs when its neighboring
rotor i + 1 had reached φB at a time L/c earlier. In addition,
the modulo function is used to account for the motion of the
tip along a circle.

Notice that the period of the system is shortened from
the single rotor period T = 2π/ω to L/c. Considering an
instantaneous phase reset, the reduction factor for the period
is ξ = (2π − A)/2π since A is the amplitude of the phase
jump. Accordingly, we find that ξT = L/c and hence that the
amplitude is A = 2π − ωL/c. In addition to this, a correction
must be made to account for the phase difference between
waves i and i + 1. If wave i lags behind, then A will be higher,
and if wave i + 1 lags behind, the wave front will arrive later,

leading to a smaller increase in phase. φi(t ) − φi+1(t ) cannot
be taken as a measure of this difference because it is likely
that by time t , φi+1 has been influenced by the wave pinned to
disk i + 2, so a previous time value should be chosen, such as
t − L

2c . As a consequence,

A = 2π − ωL

c
+ φi

(
t − L

2c

)
− φi+1

(
t − L

2c

)
. (6)

Equation (4) can then be written as

∂φi(t )

∂t
= ω +

[
2π − ωL

c
+ φi

(
t − L

2c

)
− φi+1

(
t − L

2c

)]

×δ

{[
φi+1

(
t − L

c

)
mod 2π

]
− φB

}
. (7)

Equation (7) can be solved numerically with a suitable
choice of δ to predict the relative phase values as a function of
time. It should be noted that the dispersion relation, which
was identified above as the source for the synchronization
behavior, is not taken into account by this description (c is
constant), and, as a consequence, results are expected to differ
from the direct simulations based on Eqs. (1) and (2) in the
long run.
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FIG. 4. Relative phase as a function of time for three pinned
spiral waves. (a) Results corresponding to the Barkley model sim-
ulation. (b) Results corresponding to Eq. (7).

To compare these results with the Barkley model simula-
tions, we integrate Eq. (7) using the forward Euler method
for n = 3 and r = 5.0. The values for ω and � are obtained
from a simulation with a single spiral wave and a large enough
value of L (L > �). A boxcar function with a width of ωt
and a height of A/(ωt ) was chosen as δ, where t is a
single time step. The comparison of results from simulations
[Fig. 4(a)] and the solution of Eq. (7) [Fig. 4(b)] shows a
clear correspondence between the predicted relative phase and
the value extracted from direct simulations. Equation (7) is
able to reproduce both the correct timing between sudden
increases in φ and the correct amplitude of each jump. It is
also generalizable to any value of n, r, and L < �.

It should be noted that the description of the individual
phases by means of this equation only requires the knowledge
of geometrical aspects of the expanding spirals. These aspects
are essentially independent of the particular reaction-diffusion
model chosen to describe their evolution and of the physical
basis of their formation. This implies that this treatment can
be generalized to any excitable system capable of producing
rotating spiral waves. In addition, the reduction in the degrees
of freedom that accompanies the analysis of reaction-diffusion
by a delay differential equation has allowed us to gain physical
insight into the essential parameters needed to produce and
describe this behavior.

C. Spiral waves arranged along a finite line

We performed additional simulations replacing the peri-
odic boundary conditions with no-flux boundaries, and we
found distinctly different coupling dynamics. Under these
conditions and for equal chiralities, either the leftmost or the

FIG. 5. Vector fields showing the propagation direction at each
point for domains with nonperiodic boundaries. Each panel corre-
sponds to different initial conditions. All waves rotate clockwise.
L = 30. (a) All waves are initialized on the lower half of the sim-
ulation domain. (b) Waves are initialized in an alternated way above
and below the midline of the simulation domain. (c) The two leftmost
waves are initialized in the lower half of the simulation domain,
while the rest are initialized in the upper half of the simulation
domain. (d) The leftmost wave is initialized in the lower half of the
simulation domain, while the rest are initialized in the upper half of
the simulation domain.

rightmost spiral invariably remains unperturbed due to the
absence of an upstream wave. This master spiral exerts its
influence over all points within the simulation domain if no
wall-to-wall separatrices exist. All phases are determined by
the master, and next-neighbor phase differences depend only
on their respective spacing. As discussed before, the existence
of wall-to-wall separatrices depends not only on the spacing
L, but also on the initial phases. This feature is illustrated in
Fig. 5.

Figure 5(a) shows the vector field of local wave directions
for a case in which the rightmost wave determines the fre-
quency and phase of all other waves. The initial conditions
are L < �, clockwise rotation sense for each spiral and wave
initialization in the lower half of the system (initial phase
around 3π/2). If the sense of rotation is reversed, or if the
waves are initialized in the upper half of the system, the
leftmost wave becomes dominant. If both of these changes
are applied together, the rightmost wave becomes dominant
again.

Wall-to-wall separatrices can be introduced by modifying
only the initial state, and thus independent regions within the
system arise. Each of these independent regions follows the
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FIG. 6. (a),(b) Vector fields showing the propagation direction at each point for spiral waves pinned to four unexcitable disks arranged in
a square in a (2L × 2L)-sized domain (a) and a (3L × 3L)-sized domain (b). All boundaries present no-flux conditions. L = 30. (c) Relative
phase as a function of time corresponding to the geometry shown in panel (a). φi values are corrected for the π/2 rotation originated from
the fourfold symmetry of the domain. (d) t1/2 as a function of L, corresponding to (2L × 2L)- and (3L × 3L)-sized domains. Animations
corresponding to panels (a) and (b) are included in the supplemental material [Movies 3(a) and 3(b)] [32].

same rules as mentioned before, where the upstream spiral
determines the frequency and phase of the rest of the waves
within its region. In Fig. 5(b) [as in the case of Fig. 1(f)], each
spiral has its own region, resulting in noninteracting waves.
In Figs. 5(c) and 5(d), the domain is divided into two regions
by maintaining the clockwise sense of rotation for all waves,
while initializing either two [Fig. 5(c)] or three [Fig. 5(d)]
vortices in the upper half of the system. In the case of Fig. 5(c),
this results in the second and third waves becoming dominant
in their subdomains. In Fig. 5(d), the first (leftmost) spiral is
the only one in its own region, and the second wave deter-
mines the phase of the third and fourth waves.

D. Spiral waves arranged on simple lattices

A straightforward way to avoid the existence of a dominant
spiral without the use of periodic boundary conditions is to
arrange the pinning disks along the edge of a closed shape,
such as a square. Figures 6(a) and 6(b) illustrate examples
for squares of size 2L × 2L and 3L × 3L, respectively. These
vector fields show the continuous propagation of waves along
the outer edges of the domain. Although these systems share
many of the characteristics of those in Sec. III A, the presence

of 90◦ corners brings forth some additional features. First,
the wave fronts responsible for the synchronization are not
parallel at all times, as was seen in the previous cases. As
a consequence, dispersion effects are weaker, and a longer
time is required for synchronization to occur. Secondly, the
presence of corners requires that the wave fronts travel longer
distances between consecutive disks. This translates into a
reduction of the maximum L value that allows for interaction
between wave centers. As a consequence, L < � stops being
a useful criterion for assessing whether synchronization can
occur. Thirdly, in the case of a 3L × 3L (or larger) domain
[Fig. 6(b)], a qualitative distinction arises between disks that
occupy the corner positions and those positioned along the
sides. While the former behave like those in the basic 2L × 2L
arrangement [Fig. 6(a)], the latter behave similarly to the
ribbons discussed in Sec. III A.

As shown in the plot of φi(t ) − φ(t ) in Fig. 6(c), the
braidlike behavior observed for periodic linear systems can
also be encountered for unexcitable disks along the sides of
a square. This specific example is obtained for a 60 × 60
domain with four pinning sites, i.e., the situation in Fig. 6(a).
The graph also shows the long-term synchronization behav-
ior. The underlying events are essentially identical to those

022213-7



FRANCO M. ZANOTTO AND OLIVER STEINBOCK PHYSICAL REVIEW E 103, 022213 (2021)

causing the braidlike phase dynamics for closed ribbons
(Fig. 2).

Lastly, Fig. 6(d) shows the synchronization half-lives t1/2

as a function of L for three different configurations, namely
the original closed ribbon data (green squares), the 3L × 3L
square (full red circles), and the 2L × 2L square (hollow blue
circles). The curves are similar to each other, but—compared
to the closed ribbon—the data for the square arrangements
are shifted to lower L values. We conclude that resonance
is achieved for lower values of L if disks are arranged
along closed paths with 90◦ turns. This effect is less pro-
nounced for the 3L × 3L square, where corner sites make
up only a fraction of the disks. In addition, we find that
the largest L values for which synchronization can occur
also shift in the same way. The specific values are L = 33,
39, and 45 for the 2L × 2L, 3L × 3L, and linear systems,
respectively.

IV. CONCLUSIONS

Pinned spiral waves in excitable systems are chiral oscilla-
tors that can interact with nearby counterparts and potentially
phase-synchronize. The coupling between interacting vortex
pairs is reliably asymmetric and hence introduces interesting
features such as position-dependent masters and slaves. In
addition to the specific chiralities and distances, the initial
phases of the spiral waves affect whether adjacent waves
are able to interact. For systems with periodic features (rib-
bonlike chains or closed 2D paths), dominant oscillators do
not arise and the population synchronizes due to a circu-
latory wave train and its specific dispersion behavior. The
sometimes long-lived transients toward the synchronized state
show unexpected dynamics which create braidlike features in
the phase evolution curves. In addition, we found that the syn-
chronization times vary with vortex distance and can show a
single maximum. This maximum is the result of two opposing
trends: as the distance increases, dispersion effects become
weaker, delaying synchronization; at the same time, an ap-
parent resonance effect greatly accelerates synchronization
as the center-to-center distance approaches the intrinsic wave-
length of the pinned spirals.

The pinned vortex chains and lattices analyzed in this
study are suitable for experimental realizations with chemical
systems such as the Belousov-Zhabotinsky reaction. For ex-
ample, this reaction can be carried out in thin, catalyst-loaded
polysulfone membranes submerged in a catalyst-free solution
of BZ reactants [26]. These membranes could be perforated to
create pinning sites and attached to glass cylinders to yield a
ribbon-shaped system. Various experimental protocols for the
initiation of pinned vortices have also been reported for this
reaction. Unlike our simulations, the radius and position of the
pinning sites will likely show small deviations from a constant
value. We performed additional calculations to evaluate the
effect of such variations, and we found that the phenomena
described here continue to exist as long-lived transients. After
sufficiently long times, however, the highest frequency spiral
(smallest pinning site) becomes the dominant pacemaker and
eventually establishes its frequency throughout the entire sys-
tem [39,40].

The main idea of this study was to explore pinned spiral
waves as phase oscillators with tunable, asymmetric cou-
pling. The presented examples allowed us to establish basic
rules, but clearly more complex geometries can be studied
including vortex chains on closed Möbius bands and pinning
site arrangements with branching points as well as irregular
structures. Also, the shape of the individual spiral anchors
could be varied to introduce anisotropies, for instance through
elliptical pinning sites. Since the synchronization dynamics
depend on the system’s dispersion relation, we expect that
excitable media with anomalous dispersion [41] will create
even richer dynamics. Lastly, one can envision extensions to
three-dimensional systems where rotating scroll waves readily
pin to inert cylinders and tori [29]. In such three-dimensional
cases, each rotor has the ability to encode a range of phases
that would manifest themselves as a twist of the wave pattern.
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