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Two-dimensional mobile breather scattering in a hexagonal crystal lattice
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We describe the full two-dimensional scattering of long-lived breathers in a model hexagonal lattice of atoms.
The chosen system, representing an idealized model of mica, combines a Lennard-Jones interatomic potential
with an “egg-box” harmonic potential well surface. We investigate the dependence of breather properties on the
ratio of the well depths associated with the interaction and on-site potentials. High values of this ratio lead to
large spatial displacements in adjacent chains of atoms and thus enhance the two-dimensional character of the
quasi-one-dimensional breather solutions. This effect is further investigated during breather-breather collisions
by following the constrained energy density function in time for a set of randomly excited mobile breather
solutions. Certain collisions lead to 60◦ scattering, and collisions of mobile and stationary breathers can generate
a rich variety of states.
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I. INTRODUCTION

The nature of mysterious particle-like tracks in mus-
covite mica crystals have attracted much recent interest since
Russell’s first observations over 50 years ago [1]. Russell sug-
gested that some of them were caused by localized vibrational
modes (which he called quodons) in the K-K layer of mica
[2] (see also the recent update in [3]). This hypothesis has led
to a number of simulations of breathers in model hexagonal
lattices with on-site potentials [4–7]. The surprising conclu-
sion of these studies is that in two dimensions, localized single
breathers can travel along the main crystal directions of the
lattice with little attenuation or lateral spreading.

In this paper we move beyond the case of single breathers
by examining breather-breather collisions. We present evi-
dence that breathers are remarkably robust to collisions, and
scattering through some multiple of 60◦ into another crys-
tal direction is frequently observed in some circumstances.
In addition we examine ensembles of initial conditions for
breather-breather collisions to begin to understand how the
relative angles and phases of the breathers affect their inter-
actions.
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II. MATHEMATICAL MODEL

Our simplified two-dimensional (2D) model of the hexag-
onal K-K sheet layer in mica crystal [7] is based on the
following dimensionless Hamiltonian which describes the
classical dynamics of N potassium atoms:

H = KE + U + Vc

=
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where KE is the kinetic energy, U is the on-site potential
energy (modeling forces from atoms above and below the K-K
sheet), Vc is the radial interparticle potential of the potassium
atoms with a cutoff radius rc, rn ∈ R2 is the 2D position vector
of the nth K atom, ṙn is its time derivative, and | · | is the
Euclidean distance. Note that no motion in the z direction is
allowed. Any mention of “transverse” in the following means
in-plane motion transverse to the breather propagation line.

The dimensionless on-site potential U is modeled as a
smooth periodic function resembling an egg-box carton with
hexagonal symmetry:
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where x and y are configurational coordinates, rn = (x, y). Im-
portantly, in any of the three crystallographic lattice directions
with direction cosine vectors (1, 0)T and (1/2,±√

3/2)T ,
the on-site potential (2) is a cosine, so the model reduces
to a special case of the Frenkel-Kontorova model. The one-
dimensional atomic chains in the (1, 0)T lattice direction are
denoted by ym, where m ∈ Z. The interatomic interactions of
K atoms are modeled by a scaled Lennard-Jones potential
VLJ (r) with cutoff radius rc, i.e.,

Vc(r) = ε

[(
1

r

)12

− 2

(
1

r

)6]
+ ε

4∑
j=0

Aj

( r

rc

)2 j
(3)

if 0 < r � rc and is zero elsewhere. The cutoff dimension-
less coefficients Aj → 0 when rc → ∞ are determined from
matching and continuity conditions on VLJ at well depth r = 1
and the cutoff rc, respectively; see [7] for more details.

In this paper we consider rc = 3 in dimensionless units.
In general, we did not observe qualitatively different results
for rc �

√
3. This can be attributed to the rapid decay of the

Lennard-Jones potential (3) for r → ∞.
The dimensionless parameter ε controls the relative

strength of the two potentials. If ε = 0, then the system de-
couples into nonlinear oscillators, whereas, for ε → ∞, the
system behaves as a Lennard-Jones fluid. Previous studies [4]
suggest that propagating breather solutions are observed when
the two potentials are of roughly equal relative strength, which
occurs at about ε = 0.05 [7]. The same paper describes how
mobile breather solutions for (1) can be observed in the range
ε ∈ [0.001, 1].

We mention here that other studies of hexagonal lattices
have mostly concentrated on Morse lattices without an on-site
potential (see, for example, [8,9] and references therein). Ref-
erence [9] discusses general cases of crowdions, also known
as kinks, pulses which asymptote to different values in dif-
ferent directions. Reference [8] discusses soliton collisions
with 2D scattering, but the scattered pulses are not long-lived.
Breather collisions are discussed in [10], but no cases involv-
ing 60◦ are described.

III. NUMERICAL SIMULATIONS OF DISCRETE
BREATHERS

To excite mobile discrete breathers, the simplest method
is to consider atoms in their dynamical equilibrium state,
i.e., at the bottom of each well of the on-site potential (2),
and excite three colinear neighboring atomic momenta in any
crystallographic lattice direction with the pattern

v0 = γ (−1, 2,−1)T , (4)

where the values of γ ∈ R depend on the choice of ε. In
contrast to other initial excitations such as single kicks or
more complex patterns, we find that this pattern produces
clean initial conditions for the excitation of mobile discrete
breather solutions, i.e., produces very few phonons. Note that
although this initial pattern appears to sum to equal and oppo-
site kicks in each direction, the effect is not symmetric due to
the nonlinearities involved.

Similarly, by considering patterns involving four colinear
atomic momenta w0 = γ (−1, 2,−2, 1)T , we are able to ex-

cite stationary breathers. In the present study we concentrate
on breather-breather interactions and therefore avoid the com-
plications that a higher phonon density would bring.

We integrate the Hamiltonian dynamics of the system
with the second order time reversible symplectic Verlet
method [11,12]. In the following, all numerical examples are
performed with time step τ = 0.04 and periodic boundary
conditions for different values of ε and γ . We can define an
energy density function at each lattice point by assigning to
each atom its kinetic energy and on-site potential values as
well as half of the interaction potential values. For conciseness
we refer to this as the “lattice point energy.” To obtain positive
values we redefine H := H + | min {H}| such that H � 0.
In all energy density plots we interpolate H over a square
uniform mesh.

The initial excitation (4) leads [7] to highly localized mo-
bile breather solutions propagating on a chain of atoms in
a crystallographic lattice direction with large displacements
in the x direction, almost zero displacements in the y-axis
direction, and small displacements in both axis directions on
the chains of atoms adjacent to the main chain of atoms.
In addition, the observed mobile breathers are optical, with
breather frequencies above the phonon linear spectrum.

In considering breather collisions, there are three possibil-
ities. The first is inline or head-to-head collisions with two
breathers on the same chain but traveling in opposite direc-
tions. These were first looked at briefly in [5]. The second
occurs when two breathers approach each other along the
same lattice vectors but on adjacent parallel chains. The third
occurs when two breathers approach along different lattice
vectors, i.e., at an angle of a multiple of 60◦.

A. Discrete breather properties

Before proceeding to the study of collisions, we investi-
gate mobile breather lattice point energies and displacement
properties depending on the values of the parameters ε and
γ . We consider a periodic rectangular lattice with hexago-
nal symmetry of Nx = 100 atoms in the x-axis direction and
Ny = 16 atoms in the y-axis direction placed in a mechanical
equilibrium state. We excite atoms by (4) in the (1, 0)T crys-
tallographic lattice direction in the middle of the lattice with
respect to the y axis and integrate in time until the breather
has passed 1000 lattice sites, that is, crossed the domain along
the x-axis direction 100 times. The final computational time
varies depending on the parameter ε and γ values. In what
follows, the main horizontal chain of atoms where the breather
propagates is indicated by ym.

In the first study we fix parameter ε = 0.05 and vary
the value of γ (see Fig. 1.). In Fig. 1, we show five nu-
merical results for different values of gamma, i.e., γ =
0.4, 0.5, 0.6, 0.7, 0.8. In Fig. 1(a) we plot the number of sites
the breather has passed versus time. Results show that the
breather propagates faster as the value of γ increases. In
Figs. 1(b)– 1(d), we plot the maximal lattice point energy
and maximal displacements in the x- and y-axis directions,
indicated by the functions �x and �y, respectively, over the
computational time of atoms on the atomic chains ym+k , where
k = 0, 1, 2, 3, 4. Due to symmetry considerations, we have
omitted from the figures the results in the ym−k chains and the
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FIG. 1. Mobile breather properties for fixed dimensionless pa-
rameter value ε = 0.05 and different values of the excitation
parameter γ . (a) Breather travel distance versus time in a periodic
lattice simulation. (b) Maximum breather lattice point energy in
parallel chains of atoms of propagation. (c) Maximal atomic dis-
placements of the breather solutions in the x-axis direction away
from the equilibrium state. (d) Maximal atomic displacements of the
breather solutions in the y-axis direction away from the equilibrium
state.

plots of the minimal displacement values in the x- and y-axis
directions.

Figure 1(b) shows that most of the propagating breather
lattice point energy is localized on the main chain ym where
the breather propagates and increases with the values of γ .
Figures 1(c) and 1(d) demonstrate large atomic displacements
of the breather solution on the main chain of atoms ym in the
x-axis direction, while there is almost zero displacement in the
y-axis direction. Equivalently to the energy results, Fig. 1(b)
shows that displacements in the x-axis direction on the main
chain of atoms increase with larger values of γ . In contrast,
there is no strong evidence of increases in displacements in
the y-axis direction on the adjacent chain of atoms ym+1 for
larger values of γ [see Fig. 1(d)]. Notice the scale differences
in Figs. 1(c) and 1(d) and that there are nonvanishing displace-
ments of atoms in chains ym+2, ym+3, and ym+4. This is due to
the presence of low-amplitude phonons in the dynamics. Fig-
ure 1 strongly demonstrates the quasi-one-dimensional nature
of mobile breather solutions of the lattice model (1).

We contrast the numerical results in Fig. 1 with numerical
results in Fig. 2, where we have considered numerical simu-
lations of mobile breather solutions for excitation parameter
value γ = 0.5 and various values of ε. We consider five val-
ues of ε, that is, ε = 0.01, 0.02, 0.03, 0.05, 0.1. Figure 2(a)
shows that the breather propagates faster with a larger value
of ε, while the maximal energy on the main chain of atoms
decreases with an increasing value of ε [see Fig. 2(b)]. The
same can be observed in Fig. 2(d) for atomic displacements
in the x-axis direction. On the contrary, for larger values
of ε, displacements in the y-axis direction increase on the
adjacent chain of atoms ym+1, as can be seen in Fig. 2(d).
This strongly indicates an increase in the 2D character of
mobile breather solutions in the dynamics with larger values
of ε. This transverse spreading is important when discussing
breathers colliding on adjacent, parallel tracks. We confirm
this observation in the study of breather energy scattering by
breather-breather collisions below. In the present paper, for
conciseness, we consider only the values ε = 0.01, 0.05.

B. Mobile breather spectra and lattice point energy

The observations of mobile breather spectra and properties
presented in [7] are demonstrated here with ε = 0.05 and a
head-to-head collision shown in Fig. 3. Consider a periodic
lattice of size Nx = 400 and Ny = 32 of atoms in their equi-
librium state, and launch two atomic excitations (4) in the
middle of the lattice at each end of chain ym. We indicate
left and right excitation parameter values by γl and γr , re-
spectively, of opposite signs to set the breathers on a collision
course. We set γl = 0.4 and γr = −0.5 and integrate in time
until Tend = 1200. At around t = 700, the breathers collide
and reappear (see Fig. 3). As in many soliton and breather
collision scenarios, we cannot distinguish between the cases
where the breathers pass through each other or the case where
one breather bounces off the other without passing through. A
more detailed study will be undertaken in future to determine
if energy is exchanged or lost in this process.

In Fig. 3(a) we plot the lattice point energy function in time
for the atoms on the main chain ym where the greatest energy
of the breather solution is localized. We indicate by L0 and R0
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FIG. 2. Mobile breather properties for fixed excitation parameter
value γ = 0.5 and different values of the dimensionless parameter ε.
(a) Breather travel distance versus time in periodic lattice simulation.
(b) Maximum breather lattice point energy in parallel chains of atoms
of propagation. (c) Maximal atomic displacements of the breather
solutions in the x-axis direction away from the equilibrium state.
(d) Maximal atomic displacements of the breather solutions in the
y-axis direction away from the equilibrium state.

FIG. 3. Simulation of two mobile breather head-to-head colli-
sions. (a) Lattice point energy function on the main atomic chain
of breather propagation. (b) Frequency spectrum of the atomic dis-
placement function �xm(t ) in the x-axis direction from equilibrium.

the left and right propagating breathers before collision, re-
spectively, while by L1 and R1 we indicate the same breathers
after the collision. Notice the slight change in the breather
propagation speed after the collision. The frequency spectrum
is seen in Fig. 3(b), where we use the same notation to identify
breather solutions. Note also the frequency focusing in time
before and after the collision, as was observed in [7]. In
addition to breather atomic displacement spectrum we have
identified the phonon linear spectrum band of the dispersion
relation calculated in [7].

The result in Fig. 3 can be thought of as demonstrating
a strongly one-dimensional nature, despite the 2D nature of
the lattice. Due to the chaotic nature of molecular dynamics,
the numerical observations, particularly at long times, are
sensitive to changes in the initial conditions and to round-off
error. This motivates us to consider an ensemble of initial
conditions as well as different starting configurations to study
breather-breather collisions.

C. Discrete breather collisions

For the ensemble, we draw two sets of normally distributed
random numbers X,Y ∼ N (0, 1) and scale them to normally
distributed numbers with mean values γl,r and variance σ 2

l,r .
Thus, we obtain two sets of the excitation parameter value
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γ ∼ N (γl,r, σ
2
l,r ) for numerical simulations. For the examples

on the lattice Nx = 200 and Ny = 64, we consider two sets of
2000 random numbers sampling the standard Cauchy distribu-
tion (i.e., of the ratio X/Y ) and scale parameters equal to 0 and
1, respectively, with mean values γl,r = ±0.5 and variances
σ 2

l,r = 0.002. Since a small amount of energy is present in the
lattice, from phonons generated from the initial excitations,
we set atomic energy density values to zero if the value is
smaller than 0.01. This value is estimated from the numerical
observations. Thus, most of the phonon energy is disregarded
for the final energy averages, and most of the information
comes from the breather solutions.

Using this set of initial velocities for inline collisions (as in
Fig. 3), we did not observe scattering of breather solutions into
different crystallographic lattice directions despite a visible
spread of energy around the main chain of atoms of breather
propagation. Despite that, depending on the γl and γr values,
we observed rich collision events such as the appearance of
just one moving or stationary breather, two breathers moving
in the same direction, and one stationary breather together
with one moving breather. Predominantly, the most common
case of all was the appearance of two moving breathers after
a collision.

If, instead, we consider the scattering of two breathers on
adjacent parallel lines, the results depend on the value of ε

used. For ε = 0.01 [Fig. 4(a)], we observed no scattering of
breather solutions into different crystallographic lattice direc-
tions. However, for ε = 0.05, we observe breather scattering
in all lattice directions [Fig. 4(b)]. Notice that dark energy
lines arise only in these directions, indicating propagating
as well as stationary breather solutions. Collisions may even
lead to fast moving breathers which, due to periodic boundary
conditions, enter back into the computational domain.

To better illustrate breather 2D scattering in Fig. 4(b) we
consider a single collision with excitation parameter values:
γl = 0.475 and γr = −0.57. In Figure 5 we plot the energy
density function at four different times. At time t = 120
[Fig. 5(a)], two breathers are moving towards each other.
Around time t = 160 [Fig. 5(b)], both breathers collide. The
mobile breather from the right continues its path after the
collision, while the moving breather from the left gets scat-
tered with an angle [see Figs. 5(c) and 5(d)].

These examples demonstrate the 2D properties of breather
solutions, energy scattering by breathers, and the importance
of the parameter ε. Figure 4(b) confirms that the mobile
breather’s 2D character increases for larger values of ε, that is,
for a stronger interaction potential relative to a weaker on-site
potential energy. Since the Hamiltonian (1) is time reversible,
Fig. 4(b) also demonstrates breather-breather collisions with
an angle to each other when the time is reversed.

To explore further breather scattering by breather-breather
collisions in the 2D lattice model (1) we consider simulations
of mobile breather collisions with a stationary breather at an
angle to the incoming in Fig. 6. We consider four different
locations of the (1,−2, 2,−1) stationary excitation pattern
indicated by black circles, while mobile breather propagation
directions are indicated by black arrows.

For this experiment we consider a smaller size lattice,
Nx = 120 and Ny = 64, and integrate until Tend = 500 if ε =

FIG. 4. Constrained (H > 0.01) energy density function aver-
aged over 50 time snapshots and 2000 individual simulations of
breather-breather collisions on adjacent chains of atoms. (a) Simu-
lation with ε = 0.01 until Tend = 1000. (b) Simulation with ε = 0.05
until Tend = 500.

0.05 and until Tend = 1000 if ε = 0.01. We consider a mean
excitation value of γl = 0.5 and γr = −0.35, where γr refers
to the stationary breather and variances σ 2

l = 0.001 and σ 2
r =

0.00025. We used a much smaller variance value for the
stationary breather compared to the moving one to ensure that
the excitation is not too large to generate a mobile breather.

Because of the spread in incoming velocities, strengths,
etc., the relative phases of the two breathers will also be
different in each simulation.

As above, we observe stronger breather scattering in the
computations with ε = 0.05 [Fig. 6(b)], in contrast to the
simulations with ε = 0.01 [Fig. 6(a)], where the scattering is
predominately only in the lattice directions of both breathers.

Not only do we see scattering through a multiple of 60◦,
but the details of which track the breathers scatter to is very
sensitive to the velocity and phase of the incoming breather
as well as the position of the stationary breather. To better
interpret the results of Fig. 6 we note that the energy plot illus-
trates a rich variety of states, e.g., single stationary or moving
breathers in all lattice directions, two breathers moving with

022212-5
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FIG. 5. Lattice point energy density function of a single moving
breather collision on adjacent parallel lines at four different times:
(a) t = 120, (b) t = 160, (c) t = 180, and (d) t = 320. Parameter
values: ε = 0.05, γl = 0.475, and γr = −0.57.

an angle to each other, and two breathers, of which one is
stationary.

FIG. 6. Constrained (H > 0.01) energy density function aver-
aged over 50 time snapshots and 2000 individual simulations of
mobile breather collisions with a stationary breather on a crystal axis
at 60◦ to the moving one. The stationary breather is at a slightly
different position in each case. (a) Simulation with ε = 0.01 until
Tend = 1000. (b) Simulation with ε = 0.05 until Tend = 500.

IV. CONCLUSIONS

Our study has given us a better understanding of particle-
like tracks in muscovite mica crystals. We demonstrate the
importance of the relative strengths of the interatomic force
and of the force from the surrounding atoms for the existence
of long-lived propagating breathers and their 2D collision
properties. Recent experimental work by Russell et al. [13]
suggested strongly that breather-like objects are important in
real three-dimensional crystals of several different materials,
displaying hyperconductivity and annealing effects at finite
temperatures despite a range of defects such as impurities,
dislocations, and crystal boundaries. We plan to extend the
current model to one covering more realistic physical situa-
tions.
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