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Regular spatial structures emerge in a wide range of different dynamics characterized by local and/or nonlocal
coupling terms. In several research fields this has spurred the study of many models, which can explain pattern
formation. The modulations of patterns, occurring on long spatial and temporal scales, cannot be captured by
linear approximation analysis. Here, we show that, starting from a general model with long range couplings
displaying patterns, the spatiotemporal evolution of large-scale modulations at the onset of instability is ruled by
the well-known Ginzburg-Landau equation, independently of the details of the dynamics. Hence, we demonstrate
the validity of such equation in the description of the behavior of a wide class of systems. We introduce a
mathematical framework that is also able to retrieve the analytical expressions of the coefficients appearing
in the Ginzburg-Landau equation as functions of the model parameters. Such framework can include higher
order nonlocal interactions and has much larger applicability than the model considered here, possibly including
pattern formation in models with very different physical features.

DOI: 10.1103/PhysRevE.103.022210

I. INTRODUCTION

One of the basic mechanisms underpinning the formation
of spatial structures is the instability of spatially uniform,
and stationary, states under small perturbations. This sim-
ple mechanism is the beginning of pattern formation [1–5]
and has yielded valuable insights into natural and controlled
nonequilibrium systems. The diversity of spatial patterns can
be investigated by means of this approach in a wealth of
systems, ranging from the archetypal Rayleigh-Bénard con-
vection [6–9] to reaction-diffusion systems [10–14]. These
latter include reactions of chemical species, eventually leading
to regular patterns in coats and skins of animals [15,16] or
seashells [17].

In the evolution equation, an essential role is played by the
nonlinear terms that are able to stabilize the initial growth
of perturbations and eventually select the spatial pattern. In
many examples of interest, including those we have alluded
to above, nonlinearities are assumed to be local, albeit spatial
patterns can be generated by more general forms of nonlinear
terms. For instance, the phase field crystal (PFC) theory in-
corporates crystalline details on length scales and timescales
of experimental relevance and is used to model the structure of
several materials [18,19]. The connection to the microscopic
details is achieved via the dynamic density functional (DDF)
theory, from which it can be derived [20]. In the DDF theory
the pairwise and higher order spatial correlation functions
are responsible for the nonlocal (and nonlinear) contributions,
which govern the evolution of the conserved order parameter.

Several other examples in ecology include the distributions
of vegetation as a regular alternation of colonized regions
and bare soil, over the landscapes in many different areas
around the globe [21–25]. Interestingly, models describing
plant-species dynamics [26–34] provide, to some extent, the

physical insights about the origin of such observations. In
fact, these models take into account the interactions in the
system via nonlocal contributions in the evolution equations,
and shed light on the empirical observations interpreting them
as pattern formation phenomena. Moreover, they also help
in understanding how regular structures over long scales can
emerge even in the absence of any environmental perturbation.

Further, the nonlocal features also play an important role
while modeling population dynamics. Herein, the intertwin-
ing combination of competition and environmental effects is
usually modeled by assuming that species undergo a diffusion
process and interact nonlocally in space. Such contributions
play a vital role in describing the aggregation and distribu-
tion of individuals or species in terms of emerging patterns
[35–37].

Similar settings also enhance our understanding of species
origination [38]. In particular, the competition can indeed
lead to formation of species by limiting their similarity and
partitioning environmental resources [39]. In this case, the
diffusive process and interspecies interactions occur in the
space of species traits, and the eventual patterns obtained from
such models are a hallmark of the surviving species [40–42].

The simplest method to have an insight into pattern for-
mation is the linear stability analysis. Within this framework,
we gain understanding of the modes which drive instability
and, therefore, determine length scales and timescales that
characterize the spatial structures. Typically, these structures
are distorted over either large length or large temporal scales,
and these slow changes unfortunately cannot be determined
by a simple linear analysis. However, near the onset of a su-
percritical instability [7] and in the weakly nonlinear regime,
it is possible to deduce the evolution equation of the amplitude
of the most unstable modes, which captures the basic informa-
tion about those distortions and their relative scales.
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Such equation known as the Ginzburg-Landau (GL) ampli-
tude equation has been obtained first in simple settings like the
Rayleigh-Bénard convection [43,44] or the celebrated Swift-
Hohenberg model [7]. In the following, those results have
been extended to several models generating patterns from
local dynamics [45–49]. However, the majority of studies
taking into account nonlocal features were limited to partic-
ular cases, such as the generalizations of the aforementioned
Swift-Hohenberg model [50,51] or the paradigmatic Fisher-
KPP equation [52,53]. In these studies, the authors considered
specific settings in order to derive the amplitude equation with
nonlocal interaction terms. Thus, to the best of our knowledge,
the validity of the amplitude equation in describing the large-
scale properties of patterns emerging from a general nonlinear
and nonlocal model has still not been explored.

In this paper, we focus on this latter problem for systems
with nonlinear and nonlocal dynamics exhibiting supercrit-
ical instability [7]. Moreover, we assume that the nonlocal
couplings are even functions and can be expanded in Taylor
series. In this case, we first obtain the criterion for pattern
formation in a general model [see Eq. (1)]. Then, we obtain
the equation that takes the form of the GL equation using
a mathematical approach based on the expansion of non-
local operators in the parameter space around the onset of
instability. We also show that, near the supercritical onset of
instability, where stable pattern solutions emerge continuously
from the homogeneous state, the amplitude equation does not
depend on the details of the specific model. In other words, we
show that the amplitude equation is independent of the form
of the nonlinearity and the interaction kernel as long as its
Fourier transform exists. Finally, we emphasize that the GL
equation depends on the model only through its coefficients
[see Eq. (32)]. These latter are obtained analytically from the
general setting we adopted in our derivation.

The rest of the paper is organized as follows. We first
present our general setting in Sec. II, whereas the mecha-
nism that describes the emergence of patterns is discussed in
Sec. III. Section IV contains the information of the model that
we use to illustrate our theoretical formalism. In Sec. V, we
derive the amplitude equation, and the predicted evolution is
compared with numerical simulation in Sec. VI. Finally, we
conclude our paper in Sec. VII. Some detailed derivations
are relegated in Appendixes A, B, and C. Some particular
solutions of the amplitude equation are shown in Appendix D.
In Appendix E, we discuss the method to obtain the amplitude
in numerical simulations.

II. PROBLEM SETUP

In this paper, we investigate pattern formation in systems
whose evolution is characterized by a nonlocal and nonlinear
dynamics in the supercritical regime [7]. For the sake of sim-
plicity, we study the dynamics of a real field φ(x, t ), which is
governed by the following equation in one spatial dimension:

∂tφ(x, t ) = Fq[φ(x, t ), (Gq ∗ φ)(x, t )] + D∂2
x φ(x, t ), (1)

where Fq(·, ·) is an analytic nonlinear function, q indicates a
set of parameters, and D a diffusion constant. In the above
Eq. (1), for convenience, we write ∂y for a partial derivative
with respect to y. Notice that the nonlocal contribution to

the equation comes from the convolution of the field with a
smooth function Gq(·), that plays the role of a kernel, defined
as

(Gq ∗ φ)(x, t ) =
∫ +∞

−∞
Gq(x − y) φ(y, t ) dy. (2)

Moreover, we assume that Gq(·) is even, and this function
and its Fourier transform can be expanded using the Taylor
series. We stress that in our formulation, we are not consider-
ing the contribution from the spatial boundaries. Therefore,
we can perform the integral over the x variable from −∞
to +∞. The generalization to spatial higher dimensions is
straightforward, as long as the kernel maintains the same
symmetry properties, e.g., G(�x) = G(|�x|). Further, we em-
phasize that Eq. (1) generalizes several models, including
the competitive Lotka-Volterra equation [40,54,55] and some
reaction-diffusion models [11,56,57].

III. MECHANISM OF THE EMERGENCE OF PATTERNS

As stated in the Introduction, the patterns start emerging
due to the instability of the homogeneous and stationary solu-
tion φ(0)

q and that solution satisfies [see Eq. (1)]

Fq
[
φ(0)

q , G̃q(k = 0) φ(0)
q

] = 0, (3)

where G̃q(k) = ∫ +∞
−∞ dz Gq(z)eikz is the Fourier transform of

Gq, and k being the wave number. Spatial patterns that form in
the weakly nonlinear regime can be investigated in the region
of instability around φ(0)

q . Therefore, we substitute

φk (x, t ) = φ(0)
q + δeλp(k)t+ikx + c.c.

into Eq. (1). Now we assume that the spatially harmonic
perturbation is uniformly small, namely, 0 < δ � 1. Thus, up
to first order in δ, the growth rate λp(k) as a function of wave
number k reads as

λp(k) = (1, G̃q(k)) · ∇Fq
∣∣
(φ(0)

q ,G̃q (0)φ(0)
q ) − D k2, (4)

where p ≡ {q, D} refers to the set of all parameters of the
model and

∇Fq|(x∗,y∗ ) = [∂xFq(x, y)|(x∗,y∗ ), ∂yFq(x, y)|(x∗,y∗ )]
�. (5)

Since we assume that Gq(x) is an even function, the quantity
λp(k) is a real function of k.

The stability of φ(0)
q depends on the sign of λp(k), i.e., the

homogeneous stationary solution is stable if λp(k) < 0 for all
k; otherwise, φ(0)

q is an unstable solution. In fact, the stability
of φ(0)

q depends on the system parameters p. Therefore, we can
find regions in the parameter space to indicate the stability of
the solution. Let us call kM (p), a solution of

∂λp(k)

∂k

∣∣∣∣
k=kM (p)

= 0,

a point where the growth rate achieves maximum, i.e.,
λM (p) = λp(kM (p)), where the subscript M refers to the max-
imum. Notice that both λp(k) and kM (p) are parametrized by
system parameters p. Thus, a sufficient condition that the pa-
rameters have to fulfill in order to observe pattern formation is
λM (p) > 0. Therefore, in the parameter space a critical hyper-
surface M can be obtained by setting λM ≡ λp0 (kM (p0)) = 0
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FIG. 1. Left panel: The dispersion relation given in Eq. (10) λp(k) as a function of k for the nonlocal F-KPP equation at three different
values of b. The remaining parameters for the plots are β = 0.2, D = 10−8, and R = 0.1. Right panel: Phase diagram in the (β, b) space for
the nonlocal F-KPP equation given in Eqs. (1) and (7) with Fq[u, v] := u[1 − av]. In this case p ≡ {β, b, R, a, D} and the critical hypersurface
M does not depend on a. The phase diagram is shown for two fixed parameters D = 10−8 and R = 0.1, where the solid contour M [defined
by λp0 (kM (p0)) = 0] divides the parameter space depending on whether or not there is pattern formation. A vector p = p0 + ε2v̂ indicates a
point in the pattern forming region, where p0 sits on M.

where p0 ≡ {q0, D0} belongs to M, and this hypersurface
distinguishes the regions depending on the stability of φ(0)

q .

IV. EXAMPLE

In order to make our formalism more transparent, we
consider the extended Fisher-KPP (F-KPP) equation [56,57],
where we also introduce a nonlocal contribution [58–60]. We
refer to such equation as the nonlocal F-KPP equation. Notice
that this latter is known as nonlocal Lotka-Volterra equation
in the ecological literature [40]. Within this context, the model
describes population dynamics characterized by the presence
of nonlocal couplings, which can be interpreted as nonlocal
interactions of individuals with those that are far away in
space or that have different phenotypic traits.

We choose this particular model because it is amenable to
analytical calculations and it exhibits pattern forming dynam-
ics in the presence of nonlocal couplings [52,53]. Therefore,
in this example, the first term on the right-hand side of Eq. (1)
has the following form:

Fq[u, v] := u[1 − av], (6)

where a is a dimensionless parameter. Herein, we consider the
functional form of the kernel as follows:

Gq(z) = exp

(
− |z|

R

)
− b exp

(
− |z|

βR

)
. (7)

This form has been chosen mainly because it illuminates
the main steps of our calculations for the general model. In
Eq. (7), R is the range of the interaction, β and b are dimen-
sionless parameters such that 0 < b, β < 1.

Following Sec. II, we obtain the homogeneous and station-
ary solution as

φ(0)
q = [aG̃q(0)]−1, (8)

where

G̃q(k) = 2R

(
1

1 + k2R2
− bβ

1 + k2R2β2

)
. (9)

Similarly, the dispersion relation using Eq. (4) can be obtained
as

λp(k) = 1

1 − bβ

(
bβ

1 + β2k2R2
− 1

1 + k2R2

)
− D k2, (10)

in which p = {b, β, a, R, D} is the set of parameters as dis-
cussed in Sec. II and λp(k) does not depend on a. We plot
λp(k) vs k in the left panel of Fig. 1 for three different values
of b, while the other parameters are kept fixed.

In order to obtain the phase diagram that identifies the
region of stability, we study the sign of maximum of λp(k)
by varying the parameters p. Specifically, the critical hyper-
surface, that divides the parameter space, we obtain by setting
such maximum equal to zero. The analytical computation to
find this phase boundary is difficult. Nevertheless, we numer-
ically obtain the phase diagram in the (β, b) plane for other
fixed parameters, and it is shown in Fig. 1 (right panel), where
the blue shaded region indicates the region of instability of
the homogeneous and stationary solution. Thus, we name that
region as pattern forming region.

V. AMPLITUDE EQUATION

This section is dedicated to the derivation of the amplitude
of the pattern near the contour of instability in the general case
of which Fig. 1 (right panel) is a particular case.

In order to make analytical progress, we use the Taylor
series expansion of the right-hand side of Eq. (1) around the
homogeneous and stationary solution φ(0)

q , i.e., we expand
the nonlinear function Fq(·, ·) around (φ(0)

q , G̃q(0) φ(0)
q ). This

allows to set up equations that hold in the weakly nonlinear
regime and finally obtain the amplitude equation. We express
the field as φ(x, t ) = φ(0)

q + ϕ(x, t ). The evolution equation
for ϕ(x, t ) can then be cast in the form

ϕ̇ = Lpϕ + Nqϕ, (11)

where the first and second term, respectively, on the right-
hand side correspond to linear and nonlinear contributions
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in ϕ. In the above equation (11), the linear operator has the
structure

Lpϕ = (ϕ, Gq ∗ ϕ) · ∇Fq|(φ(0)
q G̃q (0)φ(0)

q ) + D∂2
x ϕ

= C(1,0)
q ϕ + C(0,1)

q (Gq ∗ ϕ) + D∂2
x ϕ, (12)

while the nonlinear operator is

Nqϕ =
+∞∑

n, m = 0
with n + m � 2

C(n,m)
q ϕn(Gq ∗ ϕ)m, (13)

where C(n,m)
q are the coefficients obtained from the Taylor

series expansion.
We notice that Eq. (1) is translational invariant. Therefore,

the eigenfunctions of the linear nonlocal operator Lp are the
simple wave functions eikx, and then, the eigenvalue equation
reads as

Lpeikx = λp(k)eikx, (14)

where the spectrum is defined in Eq. (4). The general solution
of the linear part of Eq. (11), i.e., ∂tϕ(x, t ) = Lpϕ, is a linear
combination of functions eλp(k)t+ikx with k dependent coeffi-
cients. In this case, Eq. (4) becomes

λp(k) = C(1,0)
q + C(0,1)G̃q(k) − Dk2. (15)

To illuminate Eq. (11), we again consider our model discussed
in Sec. IV. Herein, the linear operator acting on the perturba-
tion field ϕ has the following form:

Lpϕ = −[G̃q(0)]−1(Gq ∗ ϕ) + D∂2
x ϕ, (16)

and the second term on the right-hand side of Eq. (11) can be
shown as

Nqϕ = −a ϕ(Gq ∗ ϕ). (17)

In what follows, unless specified, we focus on our general
setting described in Eq. (1).

To obtain the equation that describes the evolution (whose
form will be discussed later) of the patterns near the bifurca-
tion contour, we investigate the behavior of the system close to
the onset of instability, namely, near the critical hypersurface
M. Thus, we consider parameters p in the neighborhood of
p0 ≡ {q0, D0}, i.e.,

p = p0 + ε2v̂, (18)

where p0 ∈ M, v̂ is a unit vector pointing toward the region of
pattern formation, and 0 < ε2 � 1. An example of such point
p for nonlocal F-KPP equation (see Sec. IV) is indicated in
the left panel of Fig. 1.

In addition, we assume that the growth rate λp(k) exhibits
a quadratic scaling in the wave number k close to the point
of maximum kM (p) > 0, which is satisfied if λp(k) admits
continuous second derivative with respect to k.

With a set of parameters p that can be expressed as in
Eq. (18) with ε small, we can expand the growth rate around
p0 as

λp(k) = λp0 (k) + ε2v̂ · ∇pλp(k)|p=p0 + O(ε4), (19)

where we assume that the second term on the right-hand side
is nonzero.

We know that the above function achieves the maximum at
k = kM (p), and that kM (p) can also be expanded about p0:

kM (p) = kM (p0) + ε2v̂ · ∇pkM |p=p0 + O(ε4). (20)

Substituting Eq. (20) in Eq. (19) at k = kM (p), we get

λM ≡ λp(kM (p))

= λp0 (kM (p)) + ε2v̂ · ∇pλp(kM (p))|p=p0 + O(ε4)

= λp0 (kM (p0))︸ ︷︷ ︸
=0

+ ε2v̂ · ∇pkM |p=p0 λ′
p0

(kM (p0))︸ ︷︷ ︸
=0

+ ε2 v̂ · ∇pλp(kM (p0))|p=p0︸ ︷︷ ︸
λ̄M

+O(ε4). (21)

Therefore, we find that the maximum scales like ε2 as
ε → 0+, i.e.,

λM → ε2λ̄M as ε → 0+, (22)

where we introduce the rescaled quantity λ̄M , which is O(1).
Owing to this scaling property, we can introduce a

temporal- and spatial-scale separation which simplifies
Eq. (11). The long time modulations of the fast oscillations
evolve on scales determined by the slower time variable
τ = ε2t . A similar spatial-scale separation for the pertur-
bation field ϕ(x, t, ε) occurs with a spatial scale given by
the slower variable ξ = εx. Therefore, we make the edu-
cated guess that the ε dependence is as follows: ϕ(x, ξ , t ) =∑

j�1 ε jϕ j (x, ξ , τ ) where the time dependence in each mode
on the right-hand side is through τ . Similarly, the spatial
dependence appears both through the x and the slower variable
ξ [2].

Due to these separation of scales, the time derivative trans-
forms as

∂t → ε2∂τ , (23)

while the spatial derivative encoded in the linear operator
becomes

∂x → ∂x + ε∂ξ . (24)

As discussed above, ϕ(x, ξ , τ ) can be written as a power series
in ε, i.e.,

ϕ(x, ξ , τ ) =
∑
i�1

εiϕi(x, ξ , τ ). (25)

From the above expression (25), we see that close to the
bifurcation, only first terms will be dominant and that will
determine the growth of the patterns.

Similar to Eqs. (19) and (20), we also expand the linear and
nonlinear operators appearing in Eqs. (12) and (13):

Lp = Lp0 + ε2

δLp0︷ ︸︸ ︷
v̂ · (∇pLp)|p=p0 +O(ε4), (26)

Nq = Nq0 + ε2v̂ · (∇pNq)|p=p0 + O(ε4). (27)

Next, we proceed as follows. We first substitute Eqs. (23)–(27)
into Eq. (11), and then we introduce the spatial scale separa-
tion in Lp0 and in the nonlocal terms of Nq0 (see Appendix A
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FIG. 2. Left panel: Comparison between the growth in time of the amplitude predicted by Eq. (32) from the initial condition A(ξ, τ =
0) = A0 = 0.05 (solid red line) and the corresponding numerical evaluation (blue dashed line) from the integration of the nonlocal F-KPP
equation using φ(x, ξ , 0) = φ (0)

q + 2εA0 cos[kM (p0)x] as an initial condition (see Appendix E). Owing to this choice, the amplitude remains
space independent at any time, displaying only temporal changes (see Appendix D). We refer to Appendix E for the details of the parameters p
and p0 used in both analytics and numerical simulation. The insets show the zoom on the initial growth (a) and the saturation observed at large
time (b). We can notice a remarkable agreement between two curves at all times. Right panel: Comparison between the spatially dependent
stationary solution of Eq. (32), Ast (ξ ), presented in Appendix D [the red solid line is the envelope curve φ (0)

q + 2εAst (ξ ), where ξ = εx] and
the solution obtained from the numerical integration of the nonlocal F-KPP equation using φ(x, ξ , 0) = φ(0)

q + 2εAst (ξ ) cos[kM (p0)x] as initial
condition (see Appendix E). This plot is obtained at time t = 102 (time steps). The parameters p and p0 along with a discussion of this solution
are included in Appendix E. We can appreciate how the carrier wave obtained from the numerical integration shows a remarkable agreement
with the analytical solution calculated in the weakly nonlinear regime. This suggests that our framework is able to describe also the spatial
modulations of the envelope of the emerging patterns.

for detailed derivation). Finally, we arrive at

ε3ϕ̇1 + o(ε3) = εH1(p0, ϕ1) + ε2H2(p0, ϕ1, ϕ2)

+ ε3H3(p0, ϕ1, ϕ2), (28)

where the functional form of Hi is given in Appendix A, and
we remind that p0 ≡ {q0, D0}.

The above equation (28) is the starting point to obtain
the amplitude equation. To proceed further, as a standard
approach, we will compare the coefficients on the left- and
right-hand sides of the equation at same order in ε. Let us first
begin with the first order contribution. At the lowest order in
ε, we find from Eq. (28) that

H1(p0, ϕ1) = 0. (29)

Thus, from the expression of H1(p0, ϕ1) shown in Appendix
A one can easily write the solution of this equation as

ϕ1(x, ξ , τ ) = A(ξ, τ ) eikM (p0 )x + Ā(ξ, τ ) e−ikM (p0 )x. (30)

The functional form of ϕ1(x, ξ , τ ) suggests that it has har-
monic oscillation with the mode characterized by kM (p0). We
further notice that the temporal dependence is only present
through the amplitude of this harmonic oscillation on a slower
scale defined by τ . Moreover, such amplitude may display a
spatial evolution, but on the longer scale given by ξ . Near
criticality, we expect that this is the relevant contribution to
the pattern formation. Thus, to understand the growth of the
patterns near bifurcation, we aim to obtain the equation for
that amplitude.

Next, we compare the second order contribution O(ε2) in
Eq. (28), and then use the first order solution (30), we obtain

(see Appendix B for details)

ϕ2(x, ξ , τ ) =
�(x,ξ ,τ )︷ ︸︸ ︷

B(ξ, τ )eikM (p0 )x + B̄(ξ, τ )e−ikM (p0 )x

+�p0

[
A2(ξ, τ )e2ikM (p0 )x

λp0 (2kM (p0))
+ 2

|A|2(ξ, τ )

λp0 (0)

+ Ā2(ξ, τ )e−2ikM (p0 )x

λp0 (2kM (p0))

]
. (31)

Note that the system is at the onset of bifurcation, and we have
|ε2ϕ2(x, ξ , τ )| � |εϕ1(x, ξ , τ )|. Therefore, due to the choice
of the parameters, ϕ2(x, ξ , τ ) does not play any significant
role in shaping the patterns. Hence, Eq. (30) would be suf-
ficient to predict the patterns characterized by the amplitude
A(ξ, τ ).

Finally, on comparing third order contributions (see
Appendix C for details) and utilizing the solutions given in
Eqs. (30) and (31), we obtain the growth equation for A(ξ, τ ):

∂A

∂τ
= λ̄MA − α|A|2A + 1

2
|λ′′

p0
(kM (p0))| ∂2A

∂ξ 2
, (32)

where we have dropped the dependence ξ and τ from A(ξ, τ ).
We stress that the above equation (32) is obtained by ensuring
that the higher order terms in the expansion of Eq. (11) are
well defined. In the above equation (32), all coefficients on
the right-hand side depend on p0, and the detailed expression
of the constant α in terms of model details is given in
Appendix C. Equation (32) represents our main result and,
interestingly, it is the celebrated GL equation for a complex
field A(ξ, τ ).

Since the interaction kernel Gq(·) is even, the resulting
amplitude equation (32) has real coefficients. Relaxing such
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constraint in the nonlocal coupling term, one may end up with
a complex amplitude equation that can generate more compli-
cated behaviors, including spatiotemporal intermittency and
phase turbulence (for example, see Ref. [61]). In our analy-
sis, we have considered systems whose interaction kernel is
smooth in the weakly nonlinear regime. Should the coupling
be strong, those expansions were not valid [62,63] and a dif-
ferent approach is necessary. We leave this study for a future
investigation.

In our framework that includes the expansion of nonlocal
operators in the parameter space at the onset of instability, we
explicitly demonstrate that the GL equation emerges from a
larger class of models, irrespective of whether systems have
nonlocal interactions or not. In particular, we show that this
equation is universal, namely, only the three coefficients of
Eq. (32) are affected by the specific form of the model defined
by Eq. (1) (see Appendix C).

For example, when Eq. (1) defines a nonlocal F-KPP equa-
tion, we retrieve the amplitude equation obtained in [52], in
which, however, a slow spatial variable was not included.
Instead, if we use the explicit forms of F and G [see Eq. (1)]
given in Ref. [53], we exactly end up with Eq. (32).

VI. NUMERICAL SIMULATION

We confirm Eq. (32) with the numerical integration of the
model discussed in Sec. IV, i.e., the nonlocal F-KPP equation,
obtained inserting Eqs. (7) and (6) into Eq. (1). For fixed pa-
rameters p and p0, we consider two cases, which differ by the
choice of the initial conditions used in the amplitude equation
as well as for the evolution of the nonlocal F-KPP equation.
In the first one, we take a homogeneous initial condition for
the amplitude, while in the second we set the initial condition
to be a particular stationary solution of Eq. (32) (discussed in
Appendix D). The comparison between analytical predictions
and numerical results are shown in Fig. 2 (left and right
panel, respectively). In both figures a remarkable agreement
can be observed, suggesting the validity of our findings for
temporally and spatially modulated patterns. The numerical
amplitude and the predicted envelope displayed in Fig. 2 are
obtained by taking into account only the first order term (30)
of the perturbative expansion. In Appendix E we present the
results for the numerical evaluation of the amplitude when
considering the next-to-leading order terms and compare with
the numerical simulation, and they also have a very good
agreement.

VII. CONCLUSIONS

In this paper, we have considered a general model which
can describe pattern formation in several physical systems.
We have combined nonlocal coupling terms and nonlinear
interactions, which may possibly include many-body terms.
From this dynamics, the patterns can emerge when the homo-
geneous stationary solution becomes unstable. As an example,
we can think of an ecological model defined on the abstract
niche space, where species emerge as a tradeoff between
nonlocal interactions and their tendency to scour the space for

better evolutionary solutions. In this case, we find regularly
spaced lumps, showing a general tendency of species to co-
exist when they are either sufficiently similar or sufficiently
different, with typical distance of lumps O[k−1

M (p0)] along a
niche axis.

The amplitude of the patterns emerging from dynamics
described by Eq. (1) is dictated by the universality which
operates near the instability. The aforementioned universality
is particularly interesting for the implications. The key steps
in our derivations, e.g., the introduction of the nonlocal linear
operator Lp, the expansion close to the boundaries of the crit-
ical hypersurface M where a quadratic scaling occurs, could
equally well be applied to models with different physical
features. For instance, nonlocal higher order interactions may
play an important role in shaping patterns of many physical
systems, e.g., ecological communities, and may also help to
stabilize their dynamics [64]. The inclusion of such contribu-
tions in our framework is straightforward. One just needs to
insert in the function Fq in Eq. (1) terms with the form

∫
Gq(x − y1, x − y2, . . . , x − yn)

n∏
i=1

[φ(yi, t ) dyi]. (33)

Close to instability, those terms will affect only the coeffi-
cients of the GL equation (32). Further, by replacing Fq with
∂2

x (δFq/δφ) in Eq. (1), we could also describe the dynamics
of a conserved order parameter as we have alluded to in the
Introduction. Large-scale modulation of patterns of such fields
may still be described by GL equations. Finally, generalized
GL equations for many amplitudes could be derived for sys-
tems with many interacting fields/species φm(x, t ), with m
being a discrete index. We expect that, even in the presence
of long range coupling terms, the number of components in
the amplitude equation is determined by the symmetries and
the conservation laws of the system [7]. This is an interesting
aspect which we leave for future investigations.
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APPENDIX A: DERIVATION OF EQ. (28)

In this Appendix, we show the derivation to obtain
Eq. (28). We begin with substituting Eqs. (23)–(27) into
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Eq. (11) which gives

ε3ϕ̇1 + o(ε3) = ε(Lp0ϕ1) + ε2[Lp0ϕ2 + C(2,0)
q0

ϕ2
1 + C(1,1)

q0
ϕ1(Gq0 ∗ ϕ1) + C(0,2)

q0
(Gq0 ∗ ϕ1)2]

+ ε3[Lp0ϕ3 + δLp0ϕ1 + 2C(2,0)
q0

ϕ1ϕ2 + C(1,1)
q0

[ϕ1(Gq0 ∗ ϕ2) + ϕ2(Gq0 ∗ ϕ1)]

+ 2C(0,2)
q0

(Gq0 ∗ ϕ1)(Gq0 ∗ ϕ2) + C(3,0)
q0

ϕ3
1 + C(2,1)

q0
ϕ2

1 (Gq0 ∗ ϕ1)

+C(1,2)
q0

ϕ1(Gq0 ∗ ϕ1)2 + C(0,3)
q0

(Gq0 ∗ ϕ1)3
]
, (A1)

where, for convenience, we have not written the x, ξ , t dependence in ϕi.
Note that the expansion of Eq. (11) should also include all the contributions at different orders of ε. Therefore, we have to

also take into account the ones coming from the spatial scale separation. Using Eq. (24), we can see that

∂2
x → (∂x + ε∂ξ )2 = ∂2

x + 2ε∂x∂ξ + ε2∂2
ξ , (A2)

and this indicates how the Laplacian operator in the Lp0 given in Eq. (A1) transforms and operates on both x and ξ variables.
The next ingredient we need in the following is the convolution between the function Gq0 (x) and ϕi(x, ξ , τ ) that appear in

Eq. (A1):

(Gq0 ∗ ϕi )(x, ξ , τ ) =
∫ +∞

−∞
dy Gq0 (x − y)ϕi(y, ξ

′, τ ) dy, (A3)

where ξ = εx and ξ ′ = εy. Following [51], we write the above integration (A3) as

(Gq0 ∗ ϕi )(x, ξ , τ ) =
∫ +∞

−∞
dz Gq0 (−z) ϕi(x + z, ξ + εz, τ ), (A4)

where we make a change in the integration variable from x to z = y − x.
Expanding the above equation (A4) about the slow variable ξ , and integrating term by term yields

(Gq0 ∗ ϕi )(x, ξ , τ ) =
∞∑

n=0

εn

n!
(Gq0 ∗ ϕi )n, (A5)

where, for brevity, we define

(Gq0 ∗ ϕi )n(x, ξ , τ ) =
∫ +∞

−∞
dz Gq0 (−z)zn ∂nϕi

∂ξ n (x + z, ξ , τ ). (A6)

With these considerations, the linear operator given in Eq. (26) can be rewritten as

Lp0 =
∞∑

n=0

εnL(n)
p0

, (A7)

where

L(0)
p0

ϕi(x, ξ , τ ) = D0∂
2
x ϕi(x, ξ , τ ) + C(1,0)

q0
ϕi(x, ξ , τ ) + C(0,1)

q0
(Gq0 ∗ ϕi )0(x, ξ , τ ),

L(1)
p0

ϕi(x, ξ , τ ) = 2D0∂x∂ξϕi(x, ξ , τ ) + C(0,1)
q0

(Gq0 ∗ ϕi )1(x, ξ , τ ),

L(2)
p0

ϕi(x, ξ , τ ) = D0∂
2
ξ ϕi(x, ξ , τ ) + 1

2
C(0,1)

q0
(Gq0 ∗ ϕi )2(x, ξ , τ ),

L(n�3)
p0

ϕi(x, ξ , τ ) = 1

n!
C(0,1)

q0
(Gq0 ∗ ϕi )n(x, ξ , τ ).

Finally, we obtain Eq. (28) in which

H1(p0, ϕ1) = L(0)
p0

ϕ1,

H2(p0, ϕ1, ϕ2) = L(0)
p0

ϕ2 + C(2,0)
q0

ϕ2
1 + C(1,1)

q0
ϕ1(Gq0 ∗ ϕ1)0 + C(0,2)

q0
(Gq0 ∗ ϕ1)2

0 + L(1)
p0

ϕ1,

H3(p0, ϕ1, ϕ2) = L(0)
p0

ϕ3 + δL(0)
p0

ϕ1 + 2C(2,0)
q0

ϕ1ϕ2 + C(1,1)
q0

[ϕ1(Gq0 ∗ ϕ2)0 + ϕ2(Gq0 ∗ ϕ1)0]

+ 2C(0,2)
q0

(Gq0 ∗ ϕ1)0(Gq0 ∗ ϕ2)0 + C(3,0)
q0

ϕ3
1 + C(2,1)

q0
ϕ2

1 (Gq0 ∗ ϕ1)0C
(1,2)
q0

+ ϕ1(Gq0 ∗ ϕ1)2
0

+C(0,3)
q0

(Gq0 ∗ ϕ1)3
0 + L(2)

p0
ϕ1 + L(1)

p0
ϕ2 + C(1,1)

q0
ϕ1(Gq0 ∗ ϕ1)1 + 2C(0,2)

q0
(Gq0 ∗ ϕ1)0(Gq0 ∗ ϕ1)1. (A8)
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APPENDIX B: DERIVATION OF EQ. (31)

In this Appendix, we present the detailed derivation to obtain Eq. (31). To do so, we group the second order terms in Eq. (28)
by comparing the left- and right-hand sides, and we obtain

H2(p0, ϕ1, ϕ2) = 0 (B1)

that can be rewritten extensively as

L(0)
p0

ϕ2 = −C(2,0)
q0

ϕ2
1 − C(1,1)

q0
ϕ1(Gq0 ∗ ϕ1)0 − C(0,2)

q0
(Gq0 ∗ ϕ1)2

0 − L(1)
p0

ϕ1. (B2)

In order to find the solution ϕ2 we need to evaluate (Gq0 ∗ ϕ1)0 and L(1)
p0

ϕ1. Using Eqs. (A6) and (30), we get

(Gq0 ∗ ϕ1)0(x, ξ , τ ) =
∫ +∞

−∞
Gq0 (−z)[A(εx, τ )eikM (p0 )(x+z) + Ā(εx, τ )e−ikM (p0 )(x+z)]dz. (B3)

Thanks to the even nature of the function Gq0 (z), we find

(Gq0 ∗ ϕ1)0(x, ξ , τ ) = G̃q0 (kM (p0))[A(ξ, τ )eikM (p0 )x + Ā(ξ, τ )e−ikM (p0 )x] = G̃q0 (kM (p0))ϕ1(x, ξ , τ ). (B4)

Let us now evaluate L(1)
p0

ϕ1. Doing some algebra, we get

L(1)
p0

ϕ1 = C(0,1)
q0

(Gq0 ∗ ϕ1)1 + 2D0∂x∂ξϕ1, (B5)

where

(Gq0 ∗ ϕ1)1(x, ξ , τ ) = (∂ξ A)(εx, τ )eikM (p0 )(x)I + (∂ξ Ā)(εx, τ )e−ikM (p0 )(x)Ī, (B6)

in which the integral

I =
∫ +∞

−∞
Gq0 (−z)zeikM (p0 )zdz = −iG̃′(kM (p0)), (B7)

and Ī is its complex conjugate. Therefore, L(1)
p0

ϕ1 becomes

L(1)
p0

ϕ1 = i∂ξ A(ξ, τ )eikM (p0 )x λ′
p0

(kM (p0))︸ ︷︷ ︸
=0

+i∂ξ Ā(ξ, τ )e−ikM (p0 )x λ′
p0

( − kM (p0))︸ ︷︷ ︸
=0

= 0. (B8)

Using Eqs. (B4), (B6), and (B8) in Eq. (B2), we finally get

L(0)
p0

ϕ2 = �p0ϕ
2
1 , (B9)

where we define the coefficient �p0 as

�p0 = −C(2,0)
q0

− C(1,1)
q0

G̃q0 (kM (p0)) − C(0,2)
q0

G̃q0 (kM (p0))2. (B10)

Clearly, Eq. (B9) satisfies the Fredholm’s alternative since ϕ2
1 �∈ ker(L(0)

p0
). In fact, the right-hand side of Eq. (B9) is orthogonal

to ϕ1 and, therefore, using Fredholm’s alternative, Eq. (B2) admits a bounded solution. Thus, using Eq. (30) in (B9), we obtain
the solution ϕ2(x, ξ , τ ) and it is shown in Eq. (31).

APPENDIX C: DERIVATION OF EQ. (32): THE GL AMPLITUDE EQUATION

Here, we obtain the GL amplitude equation shown in Eq. (32). In the following, we compare the terms of third order in ε in
the two sides of expansion (28). Therefore, we get

ϕ̇1 = H3(p0, ϕ1, ϕ2) (C1)

that can be recast as

−L(0)
p0

ϕ3 = −ϕ̇1 + δL(0)
p0

ϕ1 + 2C(2,0)
q0

ϕ1ϕ2 + C(1,1)
q0

[ϕ1(Gq0 ∗ ϕ2)0 + ϕ2(Gq0 ∗ ϕ1)0]

+ 2C(0,2)
q0

(Gq0 ∗ ϕ1)0(Gq0 ∗ ϕ2)0 + C(3,0)
q0

ϕ3
1 + C(2,1)

q0
ϕ2

1 (Gq0 ∗ ϕ1)0 + C(1,2)
q0

ϕ1(Gq0 ∗ ϕ1)2
0

+C(0,3)
q0

(Gq0 ∗ ϕ1)3
0 + C(1,1)

q0
ϕ1(Gq0 ∗ ϕ1)1 + 2C(0,2)

q0
(Gq0 ∗ ϕ1)0(Gq0 ∗ ϕ1)1 + L(2)

p0
ϕ1 + L(1)

p0
ϕ2. (C2)
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We substitute the expression of (Gq0 ∗ ϕ2)0 [following Eqs. (A6) and (31)], δL(0)
p0

ϕ1, and L(2)
p0

ϕ1:

(Gq0 ∗ ϕ2)0(x, ξ , τ ) = �p0

{
G̃q0 (2kM (p0))
λp0 (2kM (p0))

[A2(ξ, τ )e2ikM (p0 )x + Ā2(ξ, τ )e−2ikM (p0 )x] + 2G̃q0 (0)

λp0 (0)
|A(ξ, τ )|2

}
+ G̃q0 (kM (p0))�(x, ξ , τ ), (C3)

δL(0)
p0

ϕ1 = v̂ · ( �∇pL(0)
p

)|p=p0ϕ1 ≡ λ̄Mϕ1, (C4)

L(2)
p0

ϕ1 = 1
2C(0,1)

q0
(Gq0 ∗ ϕ1)2 + D0∂

2
ξ ϕ1, (C5)

in Eq. (C2), where

(Gq0 ∗ ϕ1)2(x, ξ , τ ) = −G̃′′(kM (p0))∂2
ξ A(ξ, τ )eikM (p0 )x − G̃′′( − kM (p0))∂2

ξ Ā(ξ, τ )e−ikM (p0 )x. (C6)

Notice that in arriving the above form of (Gq ∗ ϕ1)2(x, ξ , τ ) we have used the same strategy as in Eq. (B6). Thus, Eq. (C5)
becomes

L(2)
p0

ϕ1 = − 1
2λ′′

p0
(kM (p0))∂2

ξ A(ξ, τ )eikM (p0 )x − 1
2λ′′

p0
( − kM (p0))∂2

ξ Ā(ξ, τ )e−ikM (p0 )x. (C7)

Finally, we substitute Eqs. (C3), (C4), (C7), and ϕ1 from Eq. (30) in Eq. (C2). Since ϕ3 has to be bounded, the right-hand side
of Eq. (C2) must be orthogonal to ϕ1 (Fredholm’s alternative). Therefore, setting the coefficients of eikM (p0 )x in Eq. (C2) equal
to zero while noticing that L(1)

p0
ϕ2 + C(1,1)

q0
ϕ1(Gq0 ∗ ϕ1)1 + 2C(0,2)

q0
(Gq0 ∗ ϕ1)0(Gq0 ∗ ϕ1)1 does not have any term proportional to

eikM (p0 )x, we obtain the GL amplitude equation as shown in Eq. (32), where λ̄M is given in (21) and the coefficient α has the
following form:

α = −
{

2�p0C
(2,0)
q0

[
2

λp0 (0)
+ 1

λp0 (2kM (p0))

]
+ �p0C

(1,1)
q0

[
2

G̃q0 (0) + G̃q0 (kM (p0))
λp0 (0)

+ G̃q0 (kM (p0)) + G̃q0 (2kM (p0))
λp0 (2kM (p0))

]
+ 2�p0C

(0,2)
q0

G̃q0 (kM (p0))
[

2G̃q0 (0)

λp0 (0)
+ G̃q0 (2kM (p0))

λp0 (2kM (p0))

]

+ 3C(3,0)
q0

+ 3C(2,1)
q0

G̃q0 (kM (p0)) + 3C(1,2)
q0

(G̃q0 (kM (p0)))2 + 3C(0,3)
q0

(G̃q0 (kM (p0)))3
}
. (C8)

APPENDIX D: PARTICULAR SOLUTIONS
OF THE GL AMPLITUDE EQUATION

In this Appendix, we present two interesting analytical
solutions of the GL amplitude equation (32). Let us substitute
the complex amplitude A(ξ, τ ):

A(ξ, τ ) = |A(ξ, τ )|eiθ (ξ,τ ), (D1)

where both |A(ξ, τ )| and θ (ξ, τ ) are real functions of ξ and
τ , in Eq. (32). Separating the real and imaginary parts, we
obtain a set of coupled differential equations for the modulus
|A(ξ, τ )| and the phase of the amplitude θ (ξ, τ ):

∂τ |A| = λ̄M |A| − α|A|3
+ 1

2 |λ′′
p0

(kM (p0))|[∂2
ξ |A| − |A|(∂ξ θ )2

]
, (D2)

|A|∂τ θ = 1
2 |λ′′

p0
(kM (p0))|[2(∂ξ |A|)(∂ξ θ ) + |A|∂2

ξ θ
]
, (D3)

where, for convenience, we have dropped the arguments in
both |A(ξ, τ )| and θ (ξ, τ ).

It is difficult to obtain the solution of above coupled differ-
ential for a generic initial condition. Nonetheless, for some
particular initial conditions, the exact solution can be ob-
tained. As a first example, we consider an initial homogeneous
condition, i.e.,

A(ξ, 0) ≡ A0eiθ0 , (D4)

where both A0 and θ0 are independent of ξ . Therefore, the
solution in this case can be obtained as

|A(ξ, τ )| = A0

√
λ̄M exp (λ̄Mτ )√

λ̄M + A2
0α[exp (2λ̄Mτ ) − 1]

, (D5)

θ (ξ, τ ) = θ0, (D6)

and they satisfy both Eqs. (D2) and (D3) and the initial con-
dition (D4). Thus, for a given initial homogeneous condition,
the GL amplitude equation predicts the amplitude to be ho-
mogeneous where only the modulus |A| evolves with time τ .

To obtain a spatial solution of the amplitude equation, we
again consider an initial homogeneous condition for the phase,
i.e., θ (ξ, 0) ≡ θ0. Thus, the equation for the modulus of the
amplitude reduces to

∂τ |A| = λ̄M |A| − α|A|3 + 1
2 |λ′′

p0
(kM (p0))|∂2

ξ |A|. (D7)

A steady solution |Ast (ξ )| of Eq. (D7) can be obtained by
setting the left-hand side of Eq. (D7) to 0, and we get

|Ast (ξ )| = ±
√

λ̄M

α
tanh

[
ξ

√
λ̄M

|λ′′(kM (p0))|

]
(D8)

as one possible solution, as shown in Ref. [2].
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FIG. 3. Comparison between theoretical prediction of the GL amplitude equation (32) with the initial condition A(ξi, 0) = |A(ξi, 0)| =
A0 = 0.05 (solid red line) and the amplitude obtained from the numerical simulation (blue dashed line) for the discrete nonlocal F-KPP
equation where the system is initialized in the state φi(ξi, 0) = φ(xi, ξi, 0) = φ (0)

q + 2εA0 cos [kM (p0)xi]. In the numerical implementation, we
take N = 3060 species equispaced along a ring of length 2L = 3, and these are interacting among each other with an interaction kernel given
by Gq(z) = exp (−|z|

R ) − b exp (− |z|
βR ). In the left panel, the amplitude is extracted from the numerical simulation exploiting Eq. (E7), whereas

in the right panel we employ the truncated series (25) up to second order to estimate the amplitude from the same numerical simulation. Insets
in the two plots show the zooming of the curves up to a particular range of time τ . Both plots are shown for fixed sets of parameters p and p0.
In particular, here we set R = 0.1, β = 0.5851, b = 0.6, a = 10−4, and D = 10−8. To compute the coefficients of Eq. (32) we used the set p0

in which we tuned β leaving the other parameters fixed.

Since |Ast (ξ )| must be non-negative, a solution that satisfies
this condition can be constructed as

|Ast (ξ )| =
√

λ̄M

α
tanh

[
|ξ |

√
λ̄M

|λ′′(kM (p0))|

]
. (D9)

In the above solution, we consider both solutions (D8) de-
pending on the sign of the variable ξ and introduce a defect
at ξ = 0, where the amplitude becomes zero. In fact, this so-
lution also satisfies the amplitude equation everywhere except
at the defect where it changes the behavior passing from one
to the other solution displayed in Eq. (D8).

It is possible to show analytically that the homogeneous
solution of Eq. (32) is linearly stable while the steady spa-
tial one (D8) is locally linearly unstable. In other words, the
numerical spatial solution is a good approximation of the ana-
lytical prediction only up to a finite observation time. Indeed,
because of numerical inaccuracies, at larger timescales the
profile will inevitably fall into the basin of attraction of the
stationary stable solution.

APPENDIX E: NUMERICAL METHODS

In this Appendix, we discuss the method of numerical
simulation to verify the analytical prediction of the amplitude
equation (32) of the main text. As an example, we consider
the discrete nonlocal Fisher equation. To do so, we consider
a one-dimensional line where the spatial variable x ranges
from −L to L. Then, we discretize the space creating a lattice
introducing the discrete spatial variable xi defined as follows:

xi = −L + i dx where i = 1, . . . , N, (E1)

with xN = x0 [i.e., periodic boundary condition (PBC)]. In the
above equation, dx = 2L/N is the uniform spacing.

The dynamics described by the discrete nonlocal Fisher-
KPP equation reads as

∂tφi(t ) = φi(t )

[
1 − a

N∑
j=1

Gq(min{|i − j|dx,

2L − |i − j|dx})φ j (t )

]
+ D�φi(t ), (E2)

where the kernel respects PBC. The above equations (E2) are
supplemented with initial conditions φi(t = 0) which we will
discuss later.

In the above Eq. (E2), the subscript i corresponds to ith
position along the lattice, φi(t ) is the value of the field at that
position at time t , and the discrete Laplacian operator � acting
on the field φi is defined as

�φi = φi−1 − 2φi + φi+1

dx2
.

The homogeneous and stationary solution corresponding to
Eq. (E2) is given by

φ(0)
q = 1

a
∑N

j=1 Gq(min{|i − j| dx, 2L − |i − j| dx})

= 1

2a
∑ N

2 −1
j=1 Gq( j dx) + a Gq(L) + a Gq(0)

. (E3)

Now, to understand the stability of φ(0)
q , we substi-

tute φ j (t ) ≡ φ(0)
p + δeλp(kn )t+iknx j + c.c., where 0 < δ � 1 and

022210-10
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FIG. 4. Comparison of theoretical prediction of the GL amplitude equation (32) (solid red line) with the numerical simulation (blue circles
and green squares) for the discrete nonlocal F-KPP equation using the defective steady solution Ast (ξ ) [Eq. (D9)] and φi(ξi, 0) = φ(xi, ξi, 0) =
φ (0)

q + 2εAst (ξi ) cos [kM (p0)xi], respectively, as initial conditions. From the numerical integration of the discrete nonlocal F-KPP equation, we
extract the envelope of the pattern using its local maxima (circles) and minima (squares). In the left panel, the amplitude is extracted from
the numerical simulation exploiting Eq. (E7), whereas in the right panel we use the truncated series (25) up to second order to estimate the
amplitude from the same numerical simulation. We show in the main plots the comparison at t = 106 of the discrete nonlocal F-KPP equation,
while in the insets the comparison is displayed at t = 102 (a) and t = 104 (b). Clearly, we can see that when we consider the higher order
contribution, the agreement improves at larger time. The simulated dynamics, including the interaction kernel and the sets of parameters p and
p0 used, is the same one presented in the caption of Fig. 3, where the initial condition has been changed.

kn = n π
L with n being an integer, in Eq. (E2). Therefore, we

obtain the following dispersion relation (up to a linear order
in δ):

λp(kn) = − g̃q(kn)

g̃q(0)
+ 2D

cos (kn dx) − 1

dx2
, (E4)

where we have introduced the discrete Fourier transform as

g̃q(kn) = 2

N
2 −1∑
j=1

cos (kn j dx)Gq( j dx)

+ (−1)nGq(L) + Gq(0). (E5)

In the following, we describe the recipe to obtain the am-
plitude of the pattern formed near the critical hypersurface
M (Fig. 1) by numerical simulating Eq. (E2). We stress that
the theoretical prediction of amplitude equation [see Eq. (32)]
does not get affected for the above discussed model. In this
case, we just replace the Fourier transform with its discrete
counterpart (E5).

First, we consider a point p in the pattern forming region
(see Fig. 1) and find the value of λM using Eq. (E4), where
λM = maxkn{λp(kn)}. Then, we take the point p0, that lies on
M around which we perform the expansion as discussed in

the main text, and we compute kM (p0) and the coefficients
appearing in Eq. (32) of the main text.

We note that in general for the continuous model shown
in Eq. (1) of the main text, the analytical solution of the
dynamics [using solution of Eq. (32) given initial conditions,
and Eq. (25)] can be written as (up to first order in ε)

φ(x, ξ , τ ) ≈ φ(0)
q + εϕ1(x, ξ , τ )

≈ φ(0)
q + 2ε|A(ξ, τ )| cos [kM (p0)x + θ (ξ, τ )],

(E6)

where A(ξ, τ ) = |A(ξ, τ )|eiθ (ξ,τ ). Therefore, the analogous
discrete version of the above solution is

φi(ξi, τ ) = φ(xi, ξi, τ )

≈ φ(0)
q + 2ε|A(ξi, τ )| cos [kM (p0)xi + θ (ξi, τ )],

(E7)

where xi corresponds to discrete spatial location of the ith
species.

Here, we aim to compare the amplitude given in Eq. (E7)
with the numerical simulation. To do so, we use the same
initial and boundary conditions imposed on the solution (E7).
Finally, we verify the analytical prediction for growth of
the amplitude for two different initial conditions given in
Eqs. (D5), (D6), and (D9) in Figs. 3 and 4.
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