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Internal chaotic sea structure and chaos-chaos intermittency in Hamiltonian systems
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In this paper, we study the inhomogeneity of chaotic sea properties far from islands in billiardlike systems and
its influence on distributions of particle’s return times. A visibly homogeneous chaotic sea at certain parameters
has a nontrivial internal structure, in particular, being divided into two chaotic phases with different properties.
These phases are not separated by any obstacles, neither in phase nor in configuration spaces, and are partially
overlaying. The emergence of a chaotic sea structure may be explained by the existence of remnants of integrable
behavior, like sites of regular trajectories of broken islands of stability built into the chaotic sea. In the case of
such chaotic seas, we find distributions of return times with two main sites of exponential decay.
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I. INTRODUCTION

Billiard-type systems, owing to the combination of their
simple form with complicated, chaotic dynamics, became
standard model Hamiltonian systems in chaos theory. To such
systems belong both usual billiards [1,2] (where a particle
moves inside a closed boundary straightly and reflects follow-
ing the mirror law) and their connections [3]; open billiards
with a hole in the border ([4,5]), billiards with obstacles inside
([6–9]), including a disjoined border, billiards with a “breath-
ing” nonstationary border ([10–12]), placed in a gravitational
field [13], etc. As an example of such model systems, it
is convenient to study different aspects of chaotic behavior,
which are inherent also in systems with a more complex
arrangement.

One of the main concepts of the theory of Hamiltonian
chaos is the existence of a chaotic sea which is filled with
chaotic trajectories evenly and everywhere dense. The idea
of ergodicity is connected to this uniformity [14,15], and
the chaotic sea is also called an ergodic component of the
phase space. There may also be islands of stability, which
are regions filled with regular trajectories. This is the case of
a mixed phase space. Near the boundary of regular regions,
a chaotic trajectory can spend an abnormally long time, so-
called “stickiness” of trajectories [16,17]. It does not break
ergodicity, which assumes uniform filling at infinite times.
Islands of stability are usually separated from the chaotic sea
but may be broken and connected with it [18]. There may be
several ergodic components in the phase space. They appear
as a result of the connection of several billiards [19] or exist
as chaotic layers inside islands of stability. If a trajectory
visits several phase space regions with different properties, it
leads to its intermittency: aperiodic switching of a trajectory
behavior.

*yanovsky@isc.kharkov.ua

In the paper, we consider a billiard with an obstacle inside,
whose chaotic sea has unusual properties, while also consid-
ering a usual billiard with similar dynamics. For some of their
parameters, the chaotic sea appears to be divided into two
chaotic phases with different properties. A similar division of
the ergodic component exists for connected chaotic billiards
where chaotic phases are divided geometrically, and each
requires only part of the system border. Also, similar behavior
is found in Hamiltonian systems with two degrees of freedom
(2 df), where trajectory motion is hindered by the partial
barriers in the phase space [20,21]. Unlike these cases, in our
system these phases coexist in a single indivisible system and
are not divided by anything either in configuration or in phase
spaces. The most unusual is that in the phase space, they are
partially superimposed on one another, and there is a region
of intersection of nonzero measure with its own properties. If
we make a hole in the border and the system becomes open, a
hole will be connected simultaneously with both phases.

One of the often-studied characteristics of open billiard
systems is the different kinds of distributions of particle es-
cape (for particles initially inside) or transit (for particles
entering through a hole then exiting) times [11,22,23]. In
general, such distributions decay exponentially in the case of
chaotic behavior and follow sedate decay law in the case of
regular behavior [24]. If particles get into the system through
a hole, then, as a rule, the precise exponent value is propor-
tional to the hole size and does not depend on its position
[25]. Except for the main exponential decay, the same billiard
may either possess or not a power-law distribution tail. Its
existence depends on the choice of billiard parameters, the
choice of the hole position, and the distribution of initial data
on billiard particles [26–28]. Distributions of return times may
also contain a thin structure [29] which carries a significant
amount of information about the system. This thin structure is
smoothed on large scales.

The paper is organized as follows. In the first sections, we
consider the phase portraits of the system and show that under
certain parameters, part of the phase space is occupied by
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FIG. 1. General view of a stadium billiard with parameters l =
10 and h = 10 and of an internal obstacle with parameters Xobs =
6.8 and Yobs = 3.4. Also shown are border parametrization and three
positions of the hole in the border, for which distributions of escape
times were considered.

destroyed islands of stability. In the next section, we consider
in what order and how evenly over time the points of the
trajectory fill the phase portraits and show the existence of
subdivision of the chaotic sea into phases. In the last section,
we consider the effect of this subdivision on the properties
of the system, particularly on the distributions of particle
transit times. Understanding the laws of formation of such
distributions allows the recovery of the system phase portrait
and also the conduction of nondestructive monitoring [30] of
systems, inaccessible to direct observations.

II. STADIUM WITH AN OBSTACLE INSIDE

Let us consider a system consisting of the usual billiard
with an obstacle inside. Reflections of particles from this ob-
stacle will follow the mirror law in the same way as reflections
from the billiard’s border. For the billiard, we choose the
well-known Bunimovich stadium, whose phase space does not
contain islands of stability and is densely filled with chaotic
trajectories. An internal obstacle may lead to the emergence
of new regular or intermittent trajectories. It also serves as an
additional source of chaos, particularly due to the cutting of
bunches of trajectories [31]. In the case of an obstacle made
from straight-line segments, the bunches of trajectories will
be cut by the endpoints of these segments.

The obstacle was chosen in the form of the letter H and
located in the center of the billiard. A general view of the
considered Bunimovich billiard with an obstacle is shown
in Fig. 1. This system is described by four dimensional pa-
rameters: l and h for the stadium and Xobs and Yobs for the
obstacle; up to the scale, it is three dimensionless parameters.
It is also convenient to use two additional parameters, namely,
ε = Xobs − l and �, which is the value of the gap between
the obstacle and the external border (see Fig. 1), equal to
� = h − Yobs for ε < 0 and � = √

h2 − ε2 − Yobs for ε > 0.
Since the distributions of return times will be further studied,
a hole in the border is also considered. This hole is described
by two additional parameters: the position of its center on the
billiard’s border, shole, and the hole width, d . The distribution
of initial data of entering particles is defined by an arbitrary
function of the initial particle position and the initial direc-
tion of motion. Thus, the distribution of transit times is fully

determined by setting five dimensionless parameters and one
two-parameter function.

It is clear that it is almost impossible to conduct a full
investigation of such a multiparameter system. Therefore we
consider the most natural cases. We fix the parameters of the
external billiard at the values l = 10 and h = 10 andl vary
the parameters of the obstacle Xobs and Yobs. For the initial
distribution of entering particles we choose a uniform particle
distribution along the hole and a Lambert distribution of their
initial directions of motion I (sin,�in ) = I0 cos �in, where the
constant I0 can be set equal to I0 = 1

2d for normalization and
the angle �in ∈ [−π

2 , π
2 ] is counted from the normal to the

border. The initial directions of motion, thus, will not depend
on the positions of entering particles on the hole. From all pos-
sible hole positions, we consider the three most demonstrative
cases shown in Fig. 1: a hole in the center of the circular
segment of the border, at the edge of the flat border site, and
in the center of this site. The hole size d will be the same
in all considered cases, respectively, fixed will be the relation
of the hole size to the billiard’s perimeter for all constructed
distributions. This value determines the escape rate in the case
of a Bunimovich billiard without an obstacle.

III. PHASE PORTRAITS OF A SYSTEM WITH
A DISJOINED BORDER

Let us now consider the phase portraits of the system
described above with a closed border. Though the considered
system differs from the usual billiard, it is possible to conduct
its description in the same way as for billiards. The differ-
ence from billiards is that the border is not single-connected.
However, the set of all border points is still one-dimensional,
therefore, one variable still suffices for the definition of the
point’s position on the border. We use the border parametriza-
tion shown in Fig. 1. Coordinate s is normalized on the
total border length p = 4l + 2πh + 4Xobs + 8Yobs. We denote
pbun = (4l + 2πh)/p and pobs = (4Xobs + 8Yobs)/p so that
pbun + pobs = 1. The coordinate s ∈ [0, 1] is counted clock-
wise along the system border. Tracing of the system border
starts from the middle of the upper flat site of the Bunimovich
billiard s = 0 and proceeds along the border until returning to
the initial point s = pbun. Further, similarly, we walk along the
perimeter of the obstacle and attribute coordinates pbun < s �
1 to its points.

Thus, the system border consists of two disjoined compo-
nents with a common parametrization. The disjoined border
leads only to some distinctions in the definition of the distance
between two phase space points. These distances are involved,
particularly, in the calculation of the Lyapunov exponents.
It is necessary to account for the fact that geometrically
close trajectory segments may be distant in the phase por-
trait, and vice versa. However, principal difficulties do not
arise.

To build the phase portraits we use Birkhoff coordinates
(s, sin �), defining each trajectory segment by the positions
of its beginning s and the sine of the angle of reflection � (as
shown in Fig. 1), counted from the normal to the border. The
determination of the second coordinate sin � for the obstacle
does not differ from that for the usual billiard. Some of the
phase portraits in these coordinates are shown in Fig. 2. It
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(a) (b)

(c) (d)

(f) (e)

FIG. 2. Phase portraits in Birkhoff coordinates of the system
with parameters l = 10, h = 10. (a) Obstacle parameters Xobs = l
and Yobs = h. The system is equivalent to two separated integrable
billiards. (b) Obstacle parameters Xobs = l + ε and Yobs = h, with
ε = 0.3. Due to the loss of integrability of the circular billiards, a
system of islands is formed. (c) Obstacle parameters Xobs = l + ε

and Yobs = h − �, where ε = 0.3 and � = 1.0. The billiards are no
longer separated, and the system of islands become partly destroyed.
(d) Parameters Xobs = 10.3 and Yobs = 7.5; the gap value � increases
and the system of islands becomes further destroyed. (e) Parameters
Xobs = 12 and Yobs = 7.6; the system of islands is almost destroyed.
For Yobs = 7.2 there will be only one central island. (f) Typical phase
portrait for ε < 0 and � > 0; the obstacle parameters are Xobs = 6
and Yobs = 4.

can be seen that the behavior of the system varies from in-
tegrable to completely chaotic, depending on the parameters.
All trajectories are regular in the case of ε = 0 and � = 0 [see
Fig. 2(a)], i.e., for the obstacle parameters Xobs = l and Yobs =
h. In this case, the considered system is equivalent to two
separated billiards, a rectangle and a half-circle, each of which
is integrable. In the case of ε > 0 and � = 0, the integrability
of these billiards is broken, and for 0 < ε � h the destruction
of the circular billiard’s integrability leads to the emergence of
a system of islands of stability. This system is analogous to the
KAM theorem system of surviving invariant tori. In this case,
the circular billiard’s part of the phase portrait consists of a

(a)

(b)

FIG. 3. Some regions of the system of island chains; the param-
eters of the billiard with an obstacle are l = 10, h = 10, ε = 0.01,
and � = 0.1. (a) A system of islands lying above the minimal chain
of two islands. (b) A system of islands near the border of the central
island.

central island and a set of chains of smaller islands, as shown
in Fig. 2(b) and in more detail (for smaller ε and � �= 0) in
Fig. 3. A similar system of islands is mentioned in Ref. [32].
The biggest chains by island size lie at

sin �
(1)
N = ± sin(π/2N ),

sin �
(2)
N = ± sin(π/2 − π/2N ), (1)

where N = 2 . . . Nmax is the number of islands in a chain, and
Nmax depends on the parameters of the obstacle. The chain
with the minimal length of two islands is labeled in Fig. 2(b)
as N (1,2) = 2. Between every two chains of K and K + 1
islands lies a chain of 2K + 1 islands. Between the chains of
K and 2K + 1 islands lies a chain of 3K + 1 islands. Between
the chains of K + 1 and 2K + 1 islands lies a chain of 3K + 2
islands, etc. In this way, a whole hierarchy of island chains
is formed, with each subsequent level consisting of longer
chains. There are two such chain systems in the phase portrait.
One is above and the other below the chain of two islands. For
example, in Fig. 2(b), two chains of three islands, N (1) = 3
and N (2) = 3, are marked. An example of the chain system for
ε = 10−3h is shown in Fig. 3. The smaller the value of ε, the
more elongated the island forms are and the closer the location
of their centers to the straight line. With an increase in ε, the
central island grows, and the system of chains is deformed and
gradually disappears.
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FIG. 4. With a decrease in the parameter Yobs, part of the system’s
border disappears. Islands of stability are gradually destroyed Their
trajectories become connected with the chaotic sea. Shown is an
example of a trajectory getting from a chaotic sea to the destroyed
part of an island and returning to the sea.

With the appearance of a gap � > 0, the integrability of the
half-circle and rectangular billiards is violated one more time
in a different way, due to the possibility of trajectory transfers
from one billiard to another. Even in the case of ε = 0 for
� > 0, the system will no longer be integrable. At ε > 0, the
appearance of a gap � > 0 causes the islands to be partially
destroyed. This is a consequence of the fact that part of the
border disappears, in collisions which were part of some or
possibly all of the island’s trajectories. The destroyed parts of
the islands became connected with the chaotic sea, as shown
in Fig. 4. With an increase in the parameter �, the islands will
consistently diminish in size and disappear from the phase
portrait. In Fig. 2(c) for the value Yobs = 9, the system of
islands is still present below the minimal chain but is almost
completely destroyed above it. These chains for Yobs = 9.9
are shown in Fig. 3(a). For Yobs = 7 the minimal chain is
destroyed, and the underlying system of chains is destroyed
partially, as shown in Fig. 2(d). With a further increase in ε

and �, only one central island remains in the phase portrait.
A typical phase portrait for this case is shown in Fig. 2(e).
The islands around the central one, which are still visible in
this phase portrait, will be completely destroyed and disappear
with a reduction of Yobs from Yobs = 7.6 to Yobs = 7.2. In the
case of ε < 0, the phase portrait is almost completely occu-
pied by chaotic sea, as shown, for example, in Fig. 2(f). Also
visible are areas of unstable periodic trajectories, which arise
due to the motion between parallel flat border sites.

The system of islands is more developed for lower values
of ε and �. This is because the islands are remnants of in-
tegrable motion, which takes place at ε = 0 and � = 0. The
smaller ε is, the more deformed invariant tori survive. It is
interesting to note that if one destroys the integrability of a
circular billiard in another way, i.e., takes not small positive
but small negative ε, which is equivalent to the transfer from
a circular billiard to a Bunimovich stadium, then all invariant
tori are destroyed immediately. Let us also note that despite
analogy with the KAM theorem, this theorem is not appli-
cable in this situation since the system border is not smooth
enough. We also note that with the partial destruction of an

(b)

FIG. 5. Phase portraits of two parts of the same chaotic trajectory
of length (a) 12 000 and (b) 34 000 iterations. The subdivision of
the chaotic sea on two overlaying subareas is visible. Trajectories
three hundred iterations long, typical for these subareas (c), (d), are
also shown in the configuration space. System parameters are l = 10,
h = 10, Xobs = 12.0, and Yobs = 7.2.

island of stability, the regularity of its trajectories does not
disappear completely. Short parts of the former regular trajec-
tories remain and become part of the chaotic sea, as shown
in Fig. 4. Therefore, the regularity of motion in the area of the
phase space occupied by a destroyed island does not disappear
completely, though in the phase portrait, this area looks like
the usual ergodic component. Such hidden regularity is the
most probable cause of the abnormal chaotic sea properties
discussed below.

IV. CHAOTIC SEA SUBAREAS, CHAOS-CHAOS
INTERMITTENCY

Usual phase portraits of the system show an entire trajec-
tory simultaneously, but they do not bear information about
the order in which the phase portrait was filled with trajectory
points. Usually it is considered that a trajectory fills a chaotic
sea evenly over time, getting to any area distant from islands
with equal probability. However, it turned out that the consid-
ered system under certain parameters demonstrates absolutely
unusual behavior. The chaotic trajectory stays inside the con-
nected subarea of a chaotic sea for a long time, calculated
in tens of thousands of iterations, without visiting the rest
of the phase space. An example of such behavior is shown
in Fig. 5, where different parts of a single typical chaotic
trajectory are shown in both phase and configuration spaces.
The full phase portrait of the system with close parameters
is shown in Fig. 2(e). As shown in Figs. 5(a) and 5(b), the
trajectory fills the chaotic sea unevenly over time, staying for
a long time in one or another of its subareas. It can also be
seen that these two chaotic sea subareas are superimposed on
one another. Thus, there are no obstacles separating them,
like chains of islands, for example, that would complicate
the transitions from one subarea to another. In configuration
space, as shown in Figs. 5(c) and 5(d), the respective trajectory
parts are also not divided by any obstacle and are not space
separated. Therefore, such division of the chaotic sea differs
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FIG. 6. (a) Dependence of a local Lyapunov exponent value,
calculated for different sites of one long chaotic sea trajectory, on the
iteration number. The dotted line above shows when the trajectory is
in the subarea of the phase space shown in Fig. 5(a). The Lyapunov
exponent changes correspond to the transitions of the trajectory
between chaotic sea subareas. The system parameters are l = 10,
h = 10, Xobs = 12.0, and Yobs = 7.2. (b) Distribution of the trajectory
residence times in the subarea shown in Fig. 5(b).

from one in systems of connected billiards or Hamiltonian
systems of 2 df.

The trajectory stays long enough in each of the subareas to
make the calculation of characteristics such as the Lyapunov
exponent possible. It quantitatively characterizes how chaotic
the trajectory is during motion in the given subarea. For this
calculation, the usual algorithm was used with the basic trajec-
tory and another one, which were returned to basic after their
discrepancy. Each such discrepancy cycle was characterized
by the exponent,

λloc = ln �rn/�r0

�n
, (2)

where rn is the distance in phase space between the nth trajec-
tory point and the corresponding point of the basic trajectory.
The exponential character of the discrepancy of trajectories
was also checked. The s axis distance was calculated taking
into account the identity of points s = 0 with s = pbun for
s < pbun and pbun with s = 1 for s > pbun. The behavior of the
mean exponent value of 20 cycles 〈λloc〉 is shown in Fig. 6(a).
There are two characteristic Lyapunov exponent values, which
differ more than twice. For the basic trajectory, in which of the
two subareas it is located was also traced. The dotted line in
Fig. 6(a) shows the cases where it is in the subarea shown

in Fig. 5(a). It is clear that there is an accurate correlation
between the value 〈λloc〉 and the subarea a trajectory is in.

Thus, each of the chaotic sea subareas possesses its own
value of the Lyapunov exponent. The subarea shown in
Fig. 5(a) is more chaotic; the discrepancy of trajectories there
is quicker than in the subarea shown in Fig. 5(b). This is true
both in discrete and in continuous time. The distinction of
the Lyapunov exponent values is explained by the fact that
exponentially rapid discrepancy occurs due to the collisions
with the curvilinear parts of the border. Collisions with flat
border sites are equivalent to the continuation of rectilinear
motion. The share pcoll of collisions with curvilinear border
sites in the total number of collisions is different for two
considered subareas. It depends on the location of the subarea
in the phase space. Collisions with curvilinear border sites
are the main cause of the discrepancy of trajectories, and
the contribution of all other mechanisms can be neglected.
Therefore, the difference in pcoll in different subareas leads
to the corresponding difference in Lyapunov exponents.

A chaotic trajectory consistently passes from one subarea
to another, staying in each of them for a possibly long time.
The distribution of trajectory residence times for one of the
subareas is shown in Fig. 6(b). The duration of residence times
from this distribution can be determined only with limited
accuracy, particularly because the subareas are overlaying.
Since the properties of chaotic sea subareas are significantly
different, all chaotic trajectories of the system are intermit-
tent, with chaos-chaos intermittency type. This intermittency
differs from one connected with stickiness to the borders of
regular motion regions and can coexist with it. Chaos-chaos
intermittency was studied earlier for dissipative systems, usu-
ally with regard to stochastic or chaotic resonances [33,34],
but it was not observed in the billiards (except for stickiness).

The usual billiard in the form of a “mushroom” with two
legs was considered to determine whether the emergence of
an internal chaotic sea structure is specific to systems with
obstacles. Parameters of this billiard correspond to the geom-
etry that is closest to the system considered above with the
parameters l = 10, h = 10, Xobs = 12.0, and Yobs = 7.2. The
phase portrait of two parts of the typical chaotic sea trajectory
is shown in Fig. 7. In this case, the chaotic sea is also divided
into two subareas, with regular transitions of the trajectory
from one subarea to another. Thus, chaotic sea subdivision and
the emergence of chaos-chaos intermittency are also possible
for the usual billiards, without obstacles or connection with
other billiards.

To study the chaotic sea properties further, the distributions
of Poincaré return times for different areas of the phase space
were investigated. The phase space was divided into 200 ×
200 regions of equal volume. A chaotic trajectory repeatedly
visits those of these regions that do not lie entirely inside an
island. As a result, a sequence of visit times is formed, and,
respectively, a distribution of Poincaré return times is formed
for each such region. As shown, these distributions for differ-
ent parts of the ergodic component are significantly different.
Three such typical distributions are shown in Fig. 8(d). The
main distinctions between these distributions concern short
return times, whereas the tails of distributions practically co-
incide. This results from the fact that for long enough return
times the trajectories manage to visit both subareas several
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FIG. 7. Phase portraits in Birkhoff coordinates of two different
parts of the same chaotic trajectory with lengths of (a) 23 000 and
(b) 28 000 iterations for the “mushroom” billiard with two legs. Inset:
The form of this billiard. It is visible that the ergodic component of
this billiard is also divided into two phases.

times, and the distinction of their properties diminishes. On
the contrary, for short return times the contribution of tra-
jectories which spend all their time in only one subarea is
essential. Such returns reflect properties only of one subarea
of the chaotic sea, particularly its phase space volume, not the
whole sea.

To construct a map of the phase space on the basis of dis-
tributions of Poincaré return times, each of these distributions
should be assigned a numerical value which can be reflected
by the color of the corresponding phase space area. The stan-
dard moments of the distribution, as shown, are not well suited
for the visualization of distinctions between considered distri-
butions, which practically match except for their initial part.
Moreover, the first moment, i.e., the arithmetic average of
return times, is identical all over the chaotic sea and does not
show any distinctions between its subareas. For these reasons,
we construct a special function H = ln(1+P2−P3 )

1+ln(1+P1−P2 ) , where P1,
P2, and P3 are the numbers of returns in the intervals I1 =

(a)

(c)

(b)

FIG. 8. The map of the special function H characterizes a phase
space area based on the analysis of the Poincaré return time distribu-
tion for this area. Lighter areas on the map correspond to regions
with a higher share of short-time returns. Islands of stability are
shown in black. The obstacle parameters are as follows. (a) Xobs = 12
and Yobs = 7.2; a large-scale structure of the chaotic sea is visible.
(b) Xobs = 12.0 and Yobs = 6.0; the chaotic sea is homogeneous.
(c) Xobs = 9.8 and Yobs = 7.0. The inhomogeneity of the chaotic sea
is visible. (d) Typical distributions of Poincaré return times for two
subareas and their intersection, with corresponding gray levels.

[0, 200], I2 = [1000, 1200], and I3 = [4000, 4200]. These in-
tervals are picked up especially for this case, to maximize
distinctions between distributions. The sense of the function
H is only to visualize the inhomogeneity of the chaotic sea by
showing the difference in the distributions of Poincaré return
times.

The map of the phase space with values of the function H
shown by the gray level is shown in Fig. 8(a). Areas inaccessi-
ble to chaotic trajectories are shown in black. Lighter areas on
the map correspond to regions of the phase space with a higher
share of short-time returns. The lightest regions in Fig. 8(a)
match well the subarea of the chaotic sea shown in Fig. 5(a).
The region of subareas’ intersection, whose distributions dif-
fer considerably from the distributions for each subarea, has
a darker color on the phase space map and clearly differs. Its
location on the map matches the corresponding region in the
phase portrait. Thus, the analysis of Poincaré return times also
shows the division of the chaotic sea in phases, whose forms
match those determined from the phase portraits. The map of
Poincaré return times also shows a more complex small-scale
internal structure of the chaotic sea.

Figures 8(b) and 8(c) show the phase space maps for other
system parameters, constructed absolutely similarly. The pa-
rameters Xobs = 12.0 and Yobs = 6.0 in Fig. 8(b) correspond to
the boundary case where there is practically no division of the
chaotic sea yet, but for greater values of Yobs, it already starts
to appear. At these system parameters, the chaotic trajectory
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FIG. 9. Distributions of return times for the parameters (a) Yobs =
7.2 and (b) Yobs = 6.0. The additional site is visible at the beginning
of the first distribution. It disappears with the reduction in Yobs.
Other system parameters are l = 10, h = 10, and Xobs = 12; the hole
d = 0.5 is at the center of the circular border site, and the number
of trajectories Ntr = 4 × 109. Insets: The small-scale structure of
distributions.

almost evenly fills the chaotic sea. It is visible that in this
case, on the returns map, there is also no clear subdivision into
areas with different properties. Figure 8(c) shows the case of
Xobs = 9.8 where there are no stability islands in the phase
space, but the dynamics bear traces of integrable behavior. In
this case, as shown, the division of the chaotic sea also takes
place, though it is less obviously expressed. The darkest area
in Fig. 8(c) corresponds to the region of overlaying of two
chaotic sea subareas; these subareas are from different sides
of this region. Thus, the existence in the phase space of islands
of stability is not a necessary condition for the emergence of
chaotic sea subdivision.

V. DISTRIBUTIONS OF ESCAPE TIMES

Let us now consider the system with a hole in the border,
through which particles both get into and, after some resi-
dence time, leave the system. The arising distribution of transit
(return to the hole) times is an often-studied characteristic
of open systems. We consider the appearance of these distri-
butions for the case of a chaotic sea with internal structure.
In Fig. 9 two distributions are shown, corresponding to the
presence and absence of subdivision of phases. The hole is in
the center of the circular border site. It is visible that there
is a short site of the most rapid descent at the beginning
of both distributions, then the main exponential decay and
a distribution tail. But the first distribution also has an addi-
tional exponential or close site, which is absent in the second

distribution. The first rapid descent site of both distributions
is due to the averaged thin structure of these distributions.
This structure is mainly concentrated at the beginning of
the distributions but also proceeds further. The view of this
structure for the next site is shown in the insets in Fig. 9; the
thin structure of both distributions is identical. Therefore, the
emergence of an additional exponential distribution site is not
connected with its reorganization due to the change of system
parameters.

For both considered Yobs values, the central island of sta-
bility exists in the phase space. It collapses with the hole
opening, and the thin structure of considered distributions is
mostly connected with the trajectories of this island. To be
convinced that the emergence of the additional site is not
connected with the central island, distributions of return times
only for trajectories with initial data outside of the destroyed
central island were developed. Such distributions have no
initial site of fast decay but still have an additional exponen-
tial site. Distributions of return times for the same system
parameters, but two other hole positions, not leading to the
destruction of the central island, were also constructed. In both
cases, a similar distribution’s behavior, though very weakly
expressed, took place. This behavior is that the distribution
for Yobs = 7.2 after the first site decays at first more rapidly,
and then more slowly, than the distribution for Yobs = 6.0.
Thus, the additional site on the distribution in Fig. 9(a) is not
connected with the trajectories of the destroyed central island.

The most probable cause of the emergence of an additional
site is the internal structure of the chaotic sea, i.e., the exis-
tence of two chaotic phases with different properties for the
corresponding choice of parameters. For short enough times,
a trajectory is unable to visit both subareas several times. At
these times, it is possible for a distribution to be defined by
the properties of a separate subarea rather than the chaotic
sea in general. These times include the typical decay time of
considered distributions (for a chosen hole size) as is apparent
in Fig. 6(b). The exponent value for an additional site is found
to be beyond simple assessment; it depends in a complex,
nonlinear way on the hole size. It also depends on the distri-
bution of initial directions of entering particles. Generally, the
mechanism of influence of this phase space structure on the
distributions of return times, and on other system properties,
currently requires additional study.

Further, we consider how the distributions of transit times
change with the system parameters. The typical distribution at
Xobs < l has the main site of exponential decay P(n) ∼ eλn

and a power-law tail, but with the growth of Xobs it may
turn into a distribution with two exponential sites and a tail.
Two curves describing this transformation with the change
in Xobs for a fixed value Yobs are shown in Fig. 10(a). The
lower curve shows the exponent value of the first distribu-
tion site. It was evaluated from the best linear approximation
of the distribution on the logarithmic scale in the interval
t ∈ [tmin1, tmax1]. Time intervals for site approximation were
within the limits tmin1 > 5 and tmax1 < 20 and did not contain
the bend connected with transition to the next site. The upper
curve in Fig. 10(a) was constructed similarly, but the inter-
vals for approximation were chosen within t ∈ [tmin2, tmax2],
tmin2 > 75, and tmax2 < 125. Depending on the value of the
parameter Xobs, the upper curve is either an exponent of the
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FIG. 10. Transformation of the return time distribution from one site of exponential decay and a tail to two exponential sites and back
to one exponential site. (a) Dependence of two distribution angles on the obstacle parameter Xobs in the case of the fixed value Yobs = 7. The
billiard parameters are l = 10, h = 10, and d = 0.5. The hole is in the center of the curvilinear border site. (b), (c) The distribution with two
exponential sites for the parameter Xobs = 9.8 on logarithmic and double-logarithmic scales. Inset: The thin structure of this distribution. The
number of trajectories is Ntr = 4 × 109. (d) The distribution for Xobs = 15 and Yobs = 7 on the logarithmic scale, Ntr = 2 × 109. In this case,
two exponential sites practically merge.

second distribution site or an initial slope angle of the distri-
bution tail. This initial angle is not a main characteristic of
the tail, but the definition of its power value requires huge
statistics. With smaller statistics, only the initial part of the
tail can be confidently determined. Besides, a comparison
of exponent and power values is obviously senseless. But it
makes some sense to determine the tail’s initial slope angle,
which at least shows the tail’s existence and the presence
or absence of its transformations with the change of system
parameters.

As follows from Fig. 10(a), the distributions of escape
times are almost the same for all Xobs less than some value,
after which quasiregular behavior and deep reorganization of
dynamics begin. At this time, the new distribution site ap-
pears. With further growth of Xobs, the exponent values of two
exponential sites draw together and, starting from some value,
practically match. The distribution for the case of the fastest
main decay at Xobs = 9.8 is shown in Fig. 10(b). It is shown
that this distribution contains at least three different sites, two
of which are close to the exponential law of decay and one
of which is the tail. The same distribution on the double-
logarithmic scale is shown in Fig. 10(c). Both exponential
sites have explicit curvature. The inset in Fig. 10(b) shows the
thin structure of this distribution. It essentially differs from
the one in Fig. 9. This is natural since, at Xobs = 9.8, there
are no islands in the phase space. The distribution for the
greatest admissible value of Xobs is shown in Fig. 10(d). More
than 80% of all returns in this distribution are concentrated
in two peaks lying at the very beginning of the distribution at
times tp1 = 2(l + h − Xobs) = 0.0204 (2.5%) and tp2 = 4(l +

h − Xobs) = 0.0408 (80.3%). This is explained by the regular
character of trajectories of the destroyed central island. It is
interesting that the trajectories which lingered on it create the
separate distribution site shown in the insets in Fig. 10(d). This
site consists of the periodically following distribution peaks
and has an explicit beginning and end.

Similarly obtained dependencies for the case of the hole
located at the junction of circular and flat border sites are
shown in Fig. 11. This case differs from the previous one only
in the hole’s position. Distributions of return times for this
hole position generally consist only of one exponential site
and a tail for all values of Xobs. A second exponential site with
an explicitly different exponent value does not appear. Thus,
the division of the chaotic seainto subareas may not lead to
the emergence of a new distribution site; it depends also on
the position of the hole.

The upper curve in Fig. 11(a) corresponds to the tail of the
distribution. It practically does not change with the parameter
Xobs for the considered hole position. The tail value starts to
decrease with an increase in Xobs after the reorganization of
system dynamics, but not as considerably as in the previous
case. The distribution of return times for Xobs = 9.8 is shown
in Fig. 11(b) and on the double-logarithmic scale in Fig. 11(c).
It is shown that the distribution tail is sedate; it follows its
rectilinear form in Fig. 11(c). The thin structure of this distri-
bution is shown separately in Fig. 11(d).

Some other transformations of transit time distributions
with the change in obstacle parameters are shown in Fig. 12.
In the case of the hole in the flat border site, the distribution
behavior is similar to that considered above. The distribution
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FIG. 11. Transformations of the exponential decay site and a tail of the return time distribution. (a) Dependence of the distribution values
on the parameter Xobs for the fixed value Yobs = 7. Billiard parameters are l = 10, h = 10, and d = 0.5; the hole is at the junction of the
curvilinear and the flat border sites. (b)–(d) Distribution for Xobs = 9.8 on logarithmic and double-logarithmic scales and the thin structure of
this distribution. The second exponential site does not appear for this position of the hole.

preserves its structure, which is one exponential site and a
power-law tail. Their characteristics weakly depend on the
obstacle parameters Xobs and Yobs. In the case of a hole in
the circular border segment, such behavior remains only until
values of Xobs less than l , or ε < 0. After this, the dynamics
of the system changes significantly and one more site of

exponential decay appears at the times where earlier there
was a distribution tail. Exponent values at both sites draw
together with further growth of Xobs until they become almost
identical. The obstacle parameters Xobs = 12.0 and Yobs =
6.0 correspond to the case of such a merger almost having
happened.

FIG. 12. Dependence of the return time distribution site values (a) on the obstacle parameter Xobs for Yobs = Xobs/2, with the hole at the
edge of the flat border site; (b) on the parameter Xobs at the fixed value Yobs = 7, with the hole in the center of the flat site; (c) on the obstacle
parameter Yobs at the fixed value Xobs = 12, with the hole in the center of the flat site; and (d) on Xobs in the case of Yobs = Xobs/2, with the hole
in the center of the circular border site. The billiard parameters are l = 10 and h = 10; the hole size is d = 0.5.
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TABLE I. Joint table of transformations of phase portraits, the evenness of their filling, and return time distributions occurring with a change
in parameter ε. It is shown that the second exponential decay site and subdivision of the ergodic component in phases appear simultaneously
when ε ≈ 0 and the system dynamics is close to integrable. This dynamics may not be reflected in the phase portrait. But the existence of
remnants of regular motion leads to the emergence of unusual system properties, uneven chaotic sea filling, chaos-chaos intermittency, and
additional sites on escape time distributions.

ε < 0 ε � 0 ε � 0 ε > 0

Phase portrait No islands No islands System of islands One central island
Filling of chaotic sea Even Uneven Uneven (most explicit) Even
Escape time distribution One exponential site One or two exponential sites One or two exponential sites One exponential site

The obtained results are listed in Table I. For values of
parameter ε ∼ 0, corresponding to the existence of remnants
of destroyed regular motion, the system dynamics differs
qualitatively from the usual chaotic dynamics. This is mani-
fested both in the uneven filling of phase portraits and in the
existence, for certain hole positions, of a second exponential
decay site on the distributions of return times. At values of
ε � 0, this change in dynamics is not yet reflected in the
phase portrait. However, the unevenness of its filling and an
additional distribution site have already appeared. The most
explicit division of the chaotic sea into subareas, and, ac-
cordingly, the appearance of a chaos-chaos intermittency, was
observed in the case of ε � 0. Thus, traces or remnants of inte-
grable behavior in the phase space of the Hamiltonian system
can lead to the appearance of special chaotic sea properties,
intermittency of the chaos-chaos type, and the appearance of
additional decay sites on the distributions of return times.

VI. DISCUSSION

Chaos-chaos intermittency is found in many systems,
such as one-dimensional cubic mapping and the Chua chain.
Usually, this intermittency is associated with the trajectory
transitions between the attractors of a dissipative system as
a result of external influence. Similar behavior is also found
in 2-df Hamiltonian systems, where a chaotic trajectory is
confined in a resonance area for a long time and eventually
escapes to another resonance area through so-called turnstile
structures. However, in billiards, this behavior has not been
observed before. This type of intermittency occurs naturally
for two connected different chaotic billiards. In this case, the
division of the chaotic sea into different phases is trivial and
due to purely geometrical reasons.

In our case, this heterogeneity of the chaotic sea is caused
by its internal dynamics. In phase portraits, the sea looks
homogeneous, not divided into subareas by any obvious phase
space structures. The heterogeneity of the properties of the
chaotic sea leads to the presence of two exponential decay
sites on some distributions of return times. This is also unusual
for billiards, including connected ones. In connection with
such behavior of the system, many questions currently remain
open. In particular, it is unclear what determines the shape of
the boundaries of the chaotic sea subareas. These boundaries
do not seem to be related to any special trajectories. The ex-
ponent values of both exponential decay sites are also beyond
simple analytical estimates. Thus, a behavior of Hamiltonian

systems (with nonsmooth borders) close to the integrable one
is nontrivial and has not been sufficiently studied.

VII. CONCLUSIONS

In this paper, we consider systems that behave unusually
when their dynamics is close to an integrable one. Their
phase portraits may contain islands of stability, which under
certain parameters are arranged in an unusual hierarchy of
chains of islands, similar to the surviving KAM tori. This
hierarchy of islands either appears or does not, depending on
how integrability is broken. In the considered system, these
islands are partially destroyed, which leads to the emergence
of hidden regularity in the form of sites of the island’s regular
trajectories built into the chaotic sea.

It turns out that with the system parameters correspond-
ing to the existence of traces of integrable behavior, a
chaotic trajectory fills the phase portrait unevenly. The visibly
homogeneous chaotic sea appears to consist of two overlay-
ing subseas with different properties. For each subarea, the
Lyapunov exponent was calculated; they are considerably dif-
ferent. All chaotic trajectories regularly visit both subareas,
passing from one to another after some time of residence.
Thus, for certain parameters, all chaotic trajectories of the
system are intermittent, with the chaos-chaos intermittency
type. Phase space maps were also constructed, characterizing
the area based on the analysis of its distribution of Poincaré
return times. They also show the inhomogeneity of chaotic
sea properties and its division into subareas matching those
determined from phase portraits.

Distributions of particle’s escape times were considered for
several positions of the hole in the border. All the distributions
in the case of a homogeneous chaotic sea have one main site
of exponential decay and a power-law tail. Distributions for
those parameters that correspond to the subdivision of the
chaotic sea contain an additional site of exponential decay
for one of the considered hole positions. In two other cases,
however, this site does not appear. Dependence of the dis-
tributions on the system parameters and the thin structure of
these distributions were also considered. In some distributions
a separate site was found, formed by the system of sharp
quasiperiodic distribution peaks.

Thus, in this paper, the possibility of chaotic sea subdivi-
sion into phases is shown, as well as the existence, in this case,
of return time distributions with two sites of main exponential
decay.
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