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In this paper we have investigated through the numerical solution of the basic equation as well as through
the dynamic model the influence of higher-order correction terms to the nonlinear amplification (absorption)
and to the nonlinear refractive index on the self-frequency shift of Raman dissipative solitons. We have found
a nonlinear dependence of the self-frequency shift of Raman dissipative solitons on the parameter describing
intrapulse Raman scattering in the presence of the saturation of the nonlinear gain. With the increase of the
absolute value of the saturation of the nonlinear gain, the maximum absolute value of the frequency shift
decreases and its position moves to larger values of the parameter describing intrapulse Raman scattering. The
increase in the value of the nonlinear gain leads to an increase in the maximum absolute value of the frequency
shift, without changing its position. We have also observed the nonlinear dependence of the absolute value of
the frequency shift on the parameter describing intrapulse Raman scattering in the presence of higher-order
correction term to the nonlinear refractive index. The discovered nonlinear dependence of the self-frequency
shift on the value of the saturation of the nonlinear gain as well as on the higher-order correction term to the
nonlinear refractive index can be used for the better understanding and control of the spectral characteristics of
Raman dissipative solitons. The dynamic model correctly describes all the features of the observed phenomena.
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I. INTRODUCTION

In optics the complex cubic-quintic Ginzburg–Landau
equation (CCQGLE) and the complex cubic Ginzburg–
Landau equation (CCGLE) have been used to describe a
passive mode-locked solid state and fiber lasers [1–3] as well
as wave propagation in nonlinear optical fibers with gain and
spectral filtering [4–6]. The known exact solutions as well
as the numerical solutions of the CCQGLE have been re-
viewed in Refs. [7,8]. Some example solutions in the negative
dispersion region worth mentioning are localized stationary
solutions as well as pulsating solutions: plain pulsating, creep-
ing, and erupting (exploding) solutions [9,10].

Finite-dimensional dynamic models have been used for
determining the exact solutions of the CCQGLE [11–15] and
their stability [16,17] as well as for the dynamic analysis of the
solutions of the CCQGLE. In the last case finite-dimensional
dynamic models have been derived through the soliton per-
turbation theory [5], the method of moments [18–21], and the
variation method in Ref. [22].

For the study of ultrashort optical pulses, it is necessary to
include higher-order effects (HOE): third order of dispersion
(TOD), self-steepening (SS), and intrapulse Raman scattering
(IRS) [5,6,23–25]. The stimulated Raman self-scattering of
femtosecond optical solitons has been experimentally discov-
ered in Refs. [26,27]. This effect is also called intrapulse
stimulated Raman scattering, or often intrapulse Raman scat-
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tering [5,6,28]. In this regime of stimulated Raman scattering,
the spectrum of a high-power short laser pulse proves to be
so broad that it covers the band of Raman resonances of
the medium. In this case, the Stokes spectral component of
the field shifted by the frequency of molecular vibrations
is contained within the pump pulse itself. The amplification
of low-frequency Stokes components in the field of high-
frequency anti-Stokes spectral components of the same soliton
pulse results in a continuous shift of its spectrum known
as soliton Raman self-frequency shift [6]. This effect plays
an important role in studies of a supercontinuum generation
[29,30].

Attention has been paid to the investigation of the influence
of HOE on the exploding solutions numerically [31,32] and
analytically [33]. The transition of erupting solutions under
the influence of SS to fixed-shape solutions has been studied
in Ref. [34]. The appearance of a periodic erupting solution
has been observed under the influence of IRS and has been
related to the sequence of period halving and period dou-
bling bifurcations controlled by the IRS parameter [35]. The
influence of noise (additive and multiplicative), and HOE on
exploding solutions has been studied [36].

The influence of HOE on the localized stationary solutions
(dissipative solitons) as well as on the plain pulsating solu-
tions is of great theoretical and practical importance. An exact
solution of the CCQGLE perturbed with HOE has been iden-
tified which requires a specific relation between the physical
parameters and the parameters of the solution [23]. A finite-
dimensional dynamic system for the amplitude and frequency
of the soliton solution has been derived [37,38]. The analysis
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of its stationary solutions as well as their stability has shown
that narrow-band filtering and nonlinear gain can control the
self-frequency shift due to the IRS of ultrashort optical soli-
tons [37,38]. Thanks to the further analysis of the dynamic
system of [37,38] we have found the Poincaré-Andronov-
Hopf bifurcation with respect to the parameter describing IRS
[39]. In order to describe the influence of the saturation of
the nonlinear gain as well as the influence of TOD and SS
on this bifurcation, a dynamic system describing the spatial
evolution of all soliton parameters (amplitude, frequency, time
position, and phase) has been derived and shortly presented
in Refs. [40–42]. It has been shown that TOD and SS can
lead to a reduction in the time shift of the pulse [40,42].
The existence of short high-amplitude dissipative solitons in
the presence of IRS has been found [42] using the dynamic
system of Refs. [40–42]. It has also been shown that for the
singularity in the solution of the CCQGLE when the saturation
of the nonlinear gain tends to zero [13] (see parameter μ

when it is negative below), no more exists in the presence of
IRS [42]. The perturbation approach using as initial ansatz
the form closer to the exact solution of the CCGLE for the
analysis of perturbed with HOE CCGLE has been presented
in Ref. [43]. Using the method of momentum [18] we have
developed the finite degree of a freedom model which takes
into account the independent evolution of the width and chirp
of the pulse for the analysis of the influence of HOE on the
solutions of the CCQGLE in the anomalous dispersion regime
[41,44] (see also Ref. [45]). The transformation of the single-
spike dissipative solitons with extreme spikes of CCQGLE
into dissipative solitons have been found in Ref. [46]. There it
was found numerically as well as by the model [44] that the
amplitude of the Raman dissipative solitons decreases, while
the absolute value of the self-frequency shift decreases with
the increase of the value of the IRS. In a recent study the
role of IRS as a feedback mechanism for the existence of sta-
ble propagating dissipative solitons with uniquely determined
velocity in CCGLE has been studied through a semianalyt-
ical approach [47]. It has been shown that the limit of the
vanishing magnitude of the IRS coefficient is singular. In
Ref. [48] the influence of IRS, SS, and TOD on the solutions
of the CCQGLE has been studied by means of bifurcation
analysis of the dynamical model (DM) proposed in Ref. [44].
The following types of transformations have been identified:
(a) from chaotic into two-periodic solution; (b) from two
periodic into a limit cycle; and (c) from a limit cycle into
a stationary solution under the influence of IRS. Interaction
between all higher-order effects has been studied [48]. Fol-
lowing the idea of Ref. [48] in Ref. [49] we have studied
numerically the influence of IRS and self-steepening on the
period-2 pulsating solution of the CCQGLE. A cascade of
transformations of the numeric solutions under the influence
of SS has been reported, which includes the existence of:
period-1 solutions, chaotic solutions, period-doubling trans-
formations, and others. It has been shown that by increasing
the IRS parameter, the period-4 pulsating solution related
to the SS can be successfully transformed into a period-2,
period-1 pulsating solutions and, finally, into a stationary
solution [49]. It has been mentioned [48] and reported in
Ref. [50] that the obtained numerical results of Ref. [47] can
be described very well by the dynamic model of Ref. [44].

We present here a study of the localized stationary soliton-
like solutions of the perturbed CCGLE and CCQGLE with the
terms responsible for the IRS. As the solitonlike solutions of
CCGLE and CCQGLE are usually called dissipative solitons,
we may formulate our aim as the study of the self-frequency
shift of the Raman dissipative solitons (RDS). Our aim is to
study the influence of the nonlinear gain, higher-order cor-
rection terms to the nonlinear amplification (absorption) and
to the nonlinear refractive index on the self-frequency shift
of RDS. In order to accomplish this, we have solved numeri-
cally the basic equation with the Agrawal’s split-step Fourier
method with two iterations and applied the dynamic model
with finite degrees of freedom obtained with the method of
moments [44]. A detailed comparison of the results obtained
by these two methods has been presented and analyzed.

The paper is organized as follows: First, the physical
meaning and application of the CCQGLE perturbed with
higher-order effects are presented in Sec. II. In Sec. III we
introduce the finite-dimensional dynamic model derived in
Ref. [44] as well as the approximate fixed points of the model.
In Sec. IV we study the IRS in the presence of nonlinear
gain. We fix the value of the parameter describing IRS and
change the parameter describing the nonlinear gain. The pre-
sented results show that the self-frequency shift of the RDS
increases with the increase of the value of the nonlinear gain.
In Sec. V we present our results concerning the influence
of higher-order correction term to the nonlinear amplification
(absorption) on the self-frequency shift of the RDS. We have
found a nonlinear dependence of the absolute value of the
self-frequency shift of RDS on the parameter describing IRS
in the presence of the saturation of the nonlinear gain. With the
increase of the absolute value of the saturation of the nonlinear
gain the maximum of the absolute value of the frequency
shift decreases and its position moves to larger values of the
parameter describing IRS. In Sec. VI we present our results
concerning the influence of higher-order correction terms to
the nonlinear refractive index on the self-frequency shift of
the RDS. Here we present our findings for the nonlinear de-
pendence of the absolute value of the frequency shift on the
γ in the presence of the higher-order correction term to the
nonlinear refractive index. Our discussion of the applicability
of the dynamic model [44] is presented in Sec. VII. Finally,
we make our conclusions in Sec. VIII.

II. NUMERICAL CALCULATION
OF THE BASIC EQUATION

The dynamic behavior is described by the following
CCQGLE perturbed by IRS [1–6]:

i
∂U

∂x
+ 1

2

∂2U

∂t2
+ |U |2U

= iδU + iβ
∂2U

∂t2
+ iε|U |2U − ν|U |4U + iμ|U |4U

+γU
∂

∂t
(|U |2) , (1)

where U is the normalized envelope of the electric field, t
and x are the retarded time and the normalized propagation
distance, δ is the linear loss-gain coefficient, β describes the

022208-2



HIGHER-ORDER CORRECTION TERMS … PHYSICAL REVIEW E 103, 022208 (2021)

spectral filtering (gain dispersion), ε is the nonlinear gain or
absorption coefficient [14–16] (the nonlinear gain arises from
the saturable absorption), μ, is the higher-order correction
term to the nonlinear amplification (absorption) [14–16] (if
negative, it accounts for the saturation of the nonlinear gain
[10,19]), ν is the higher-order correction term to the nonlinear
refractive index [14–16] (if negative, it corresponds to the sat-
uration of the nonlinear refraction index [10]). In this equation
we have implied that the group-velocity dispersion is anoma-
lous. Parameter γ takes into account the effect of the IRS in
the simplest quasi-instantaneous description. In this case there
has been applied a linear approximation to the frequency-
domain Raman response function [51–54]. Such a description
of the IRS is valid for pulses shorter than 1 ps but wide enough
to contain many optical cycles (pulse width �100 fs) [6].
Equation (1) considers a frame of reference moving with the
pulse. Equation (1) is basically a phenomenological model,
but it has proved to be a good qualitative model for the real
mode-locked lasers. It has been proposed as a master equation
for solid-state lasers with fast saturable absorber [1–3] as
well as for the mode-locked fiber lasers [55,56]. The relations
between the physical parameters describing a ring fiber laser
mode locking through nonlinear polarization rotation and the
coefficients of CCQGLE have been derived in Ref. [57].

For the numerical solution of Eq. (1), we have used
Agrawal’s split-step Fourier method with two iterations
[58,59]. The numerical parameters for this calculation
are as follows: time resolution: 0.0002–0.002 44, num-
ber of samples: 215–217, a constant propagation step (but
case dependent)—with size between 10–3 and 10–5 or
adaptive step size. The following numerical quantities
have been calculated numerically solving Eq. (1): mean
frequency: ω(x) = ∫ +∞

−∞ ω|U (x, ω)|2dω/
∫ +∞
−∞ |U (x, ω)|2dω,

peak amplitude: η(x) = max |U (x, t )|,∀t , velocity: v(x) =
(
∫ +∞
−∞ t |U (x, t )|2dt/

∫ +∞
−∞ |U (x, t )|2dt )/x and identical to the

model (3) time width: σ (x) = (τ (x)/τ (0))/η(0), where
τ (x) = ∫ +∞

−∞ |U (x, t )|2/η(x)2dt . We also use the quantity
full width at half maximum: FWHM = 2.6339σ (x). Because
of the internal properties of the fast Fourier transforma-
tion, the initial condition used for the direct calculation of
(1) contrary to (2) has a negative phase sign: U (0, t ) =
η sec h[ηt] exp[−iωt] . That is why, in the results, the sign of
the frequency obtained by (3) is the same as the frequency sign
obtained by Eq. (1) which corresponds to the physical reality.

III. DYNAMIC MODEL AND APPROXIMATED
FIXED POINTS

To derive the dynamic system, we use the trial function in
the following form [18,19,20,44]:

U (x, t ) = η(x)sech

[
t − k(x)

σ (x)

]
exp[iω(x)(t − k(x))

+ ic(x)(t − k(x))2], (2)

where η(x), σ (x), and k(x) are, respectively, the amplitude,
width, and position of the pulse maximum, ω(x) is the fre-
quency, and c(x) is the chirp parameter. Applying the method
of moments of Ref. [18] we obtain the following set of ordi-
nary differential equations for the parameters η(x), σ (x), k(x),

ω(x), and c(x) [44]:

dη

dx
= (δ − c)η + β

(
η(−60 − 5π2 + 3π4c2σ 4)

15π2σ 2
− ηω2

)

+ ε
2(3 + π2)

3π2
η3 + μ

2

15

(
4 + 15

π2

)
η5

dω

dx
= −4β

(1 + π2c2σ 4)ω

3σ 2
+ 8

15
γ

η2

σ 2
,

dk

dx
= ω − 2π2

3
βcωσ 2

dσ

dx
= 2cσ + β

(
8

π2σ
− 16

15
π2c2σ 3

)
− 4

π2
εση2 − 4

π2
μση4

dc

dx
=

(
−2c2 + 2

π2σ 4
− 2η2

π2σ 2

)
− β

4(3 + π2)c

3π2σ 2
−ν

32η4

15π2σ 2

(3)

Dynamic system (3) allows the study of the influence
of the IRS on the localized solutions of the CCQGLE. We
also use the quantity full width at half maximum: FWHM =
2.6339σ (x). System (3) for the cases of δ �= 0, ν �= 0, has
been first derived and studied in Ref. [18]. The essential point
in the derivation of this equation is the relation between the
width and chirp of the pulse [18]. A simpler form of Eq. (3)
has been studied where δ �= 0, β �= 0, ν �= 0, ε �= 0, μ �= 0
with γ = 0 [19,20]. The position k(x) is not involved in the
first, second, fourth, and fifth equations, so it will not be
involved in the search for the fixed points of DM (3). It has
been shown that at β > 0 and for x− > ∞, the frequency ω

tends to zero and the pulse position k tends to a constant value
which has allowed the authors to obtain a three-dimensional
system of ordinary differential equations for the amplitude
η(x), width σ (x), and chirp of the pulse c(x). The velocity
v corresponds to k(xmax)/xmax while the FWHM corresponds
to 2 ln(2 + √

3)σ (xmax). It has been found that there exists a
correspondence between the attractors of the model and the
localized solutions of the CCGLE, namely, that the stationary
solutions of the CCGLE correspond to fixed points, while the
pulsating solutions are related to stable limit cycles [19,20].
However, it is well known that the IRS leads to changes in
the pulse frequency, pulse shape, and pulse spectrum. So,
the frequency ω(x) becomes a function of the distance of
propagation and should not be neglected.

In the case of the CCGLE perturbed with IRS, we have
found approximated fixed points for three of the parameters in
dynamic model (3): amplitude, frequency, and width. To get
these fixed points we have assumed that the chirp is zero and
have neglected the fifth equation for the chirp. It has turned
out that this assumption is not an obstacle for obtaining useful
results. We have introduced the pulse energy as Q = η2σ .
Solving the reduced system of three equations for identifying
the stationary solutions (η, ω, σ ), we have found four differ-
ent fixed points of which only one has a physical meaning:

Q = (2
√

10β )/(εq); η = (2
√

5β )/(q
√

ε);

ω = (5βε2 + p)/(8βγ ε); σ = q/
√

10; , where

p =
√

βε2(64γ 2δ + 25βε2); q =
√

(−5βε2 + p)/δε2.

(4)
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(a) (b)

FIG. 1. Results obtained by direct numerical solution of (1) (solid circles) and the numerical solution of DM (3) (empty circles) for (a)
the peak amplitude (solid lines) and FWHM (dashed lines); (b) mean frequency (solid lines) and velocity (dashed lines) as functions of
ε ⊂ [0.22; 0.32] at parameters δ = −0.012 ; β = 0.6 ; γ = 0.05; η(0) = 10; σ (0) = 1/η(0); c(0) = 0; ω(0) = 0. The propagation distance
is xmax = 200.

It turned out that this fixed point correctly describes our
numerical observations in the case of the CCGLE perturbed
with IRS.

The principal question for the applicability of dynamic
model (3) is whether during its propagation the numerical
localized solutions are close to the sech-like form of Eq. (2).
In this work we focus our attention on solitonlike numerical
solutions, so we have chosen a set of values for the physical
parameters used in the solving of Eq. (1) which will satisfy the
requirements for achieving those solutions. In the process of
our study this question of the preservation of the time shape of
numerical solutions will be analyzed. The numerical solution
of DM (3) presented here has been obtained by means of
WOLFRAM MATHEMATICA [60] and MATLAB.

IV. CCGLE: THE INFLUENCE OF THE NONLINEAR GAIN
ON THE SELF-FREQUENCY SHIFT

In nonlinear optics the influence of bandwidth-limited am-
plification characterized by δ, β on the IRS characterized by
γ has been in the focus of some earlier studies [61–65]. It
has been shown that in the presence of bandwidth-limited
amplification, the soliton self-frequency shift due to the IRS
decreases. It is well known that the parameter ε which de-
scribes the nonlinear gain of absorption plays a key role in the
analysis of the properties of the solutions of CCGLE [14–16].
It has been shown that using narrow-band filtering and non-
linear gain, there can be achieved stable soliton propagation
over long distances in the presence of IRS [38]. In order to
describe the properties of the self-frequency shift of RDS in
the perturbed with IRS CCGLE, we need two dependencies.
The first one is the dependence of the parameters describing
the RDS on ε for fixed γ and the second one, the depen-
dence of the parameters describing the RDS on γ for fixed ε.
We study here the first one, namely the influence of ε on all
the parameters describing the RDS for fixed δ, β, and γ . The
following values of the physical parameters have been used:,
δ = −0.012, β = 0.6, ε = 0.3 μ = 0, ν = 0. The important
question is how to choose the values of the physical param-
eters. It is well known from the soliton perturbation theory

that the soliton is stable provided that δ > 0 and ε < β/2
[13,14]. The relation between β and ε (“curve S”), namely,

εS = β
3
√

1+4β2−1
4+18β2 on the plane (β, ε) divides it in such a

way that in order to get “solutions with fixed amplitudes”
we should have values of δ > 0 below curve S and δ < 0
above it [12,14]. On this line the solution with fixed amplitude
becomes singular (its amplitude tends to infinity, while the
width vanishes). In the case of β � 1 the β ≈ 2ε [12,14]. In
the case of δ = 0 the solutions on the curve S are “solutions
with arbitrary amplitude” [12,14]. In our case β = 0.6 so
εS = 0.21, and as ε = 0.3 > εS and δ = −0.012 is small and
d = 0.4 what we get is slightly above the curve S so we
could expect a solution with fixed amplitude, which, however,
is close to the curve S, or to the solutions with arbitrary
amplitudes [12,14].

Applying our dynamical model (3) we have established
that for fixed values of δ, β, and parameter γ which char-
acterizes IRS, by increasing the value of the nonlinear gain
ε, the values of the amplitude and frequency of the stationary
pulses also increase, so the self-frequency shift of the RDS
is increased. These model predictions are verified in Fig. 1
below where the results from the numerical solution of the
basic Eq. (1) are compared with the results of our model given
in Eq. (3).

The numerical region for the change of the parameters
describing the nonlinear gain ε ∈ [0.22, 0.32] is chosen in
the following way. After the numerical calculation of Eq. (1)
we have found that for values of ε < 0.22, the numerical
solutions are unstable ones: the amplitudes decrease and fi-
nally disappear. Next, for values of ε > 0.32, we have not
obtained a stationary solution. For the calculation of the cases
of ε = 0.31, 0.32 a step size of order 10−5 has been used.
Figure 1 shows two ways of calculation: (a) direct numerical
solution of Eq. (1); and (b) numerical solution by means of the
dynamic model (3). As can be seen in Fig. 1, if we increase
the value of the nonlinear gain ε, the values of the amplitude
[Fig. 1(a)] and frequency [Fig. 1(b)] of the RDS also in-
crease. Moreover, the pulse width decreases [Fig. 1(a)] while
the velocity of the solutions [Fig. 1(b)] increases [Fig. 2(a)].
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(a) (b)

FIG. 2. Results obtained by direct numerical solution of (1) (solid circles) and the numerical solution of DM (3) (empty circles) for
(a) the peak amplitude (solid lines) and FWHM (dashed lines); (b) mean frequency (solid lines) and velocity (dashed lines) as functions
of μ ⊂ [−0.1; 0] (the ordinates are logarithmic) at parameters δ = −0.012 ; β = 0.6 ; ε = 0.3; γ = 0.01. The initial condition is η(0) =
1; σ (0) = 1/η(0); c(0) = 0; ω(0) = 0.

From these results we can draw the conclusion that the self-
frequency shift of the RDS increases with the increase of the
value of the nonlinear gain ε. The pulse amplitude increases
and its width decreases, i.e., solutions compress. Figure 1
represents the dynamic model (3) and correctly describes all
the observed dependencies.

The second dependence of the parameters describing the
RDS on γ for fixed ε has been studied earlier [38,47]. It has
been emphasized that the existence of a stable RDS in CCGLE
is possible due to the IRS [38]. In a recent study the role of
IRS for the existence of stable propagating dissipative solitons
in the CCGLE has been studied and it has been shown that
the limit of the vanishing magnitude of the IRS coefficient is
singular [47].

V. CCQGLE: THE INFLUENCE OF THE HIGHER-ORDER
CORRECTION TERM TO THE NONLINEAR

AMPLIFICATION ON THE SELF-FREQUENCY SHIFT

It is well known that the introduction of the saturation of
the nonlinear gain μ < 0 in CCGLE leads to the restriction of
the increase of the amplitudes of solutions due to the nonlinear
gain [7]. As a result of intensive numerical investigation of
CCQGLE, some areas in the space of the physical parameters
δ, β, ε, μ have been established, in which there have been
found stable localized solutions of the CCQGLE [7]. It is
shown that if δ < 0, β > 0, ε > 0, and μ < 0 the background
instability is avoided [7,20]. In order to describe the prop-
erties of the self-frequency shift of RDS in the CCQGLE
perturbed with IRS, we need two dependencies. The first one
is the dependence of magnitudes describing the RDS on μ for
fixed values of ε, γ and the second one—the dependence of
magnitudes describing the RDS on γ for fixed values of ε, μ.
Recently, the first dependence comparing two values of μ < 0
has been studied by dynamical model [37–39] and it has been
shown that the increase in the absolute value of the saturation
of the nonlinear gain μ leads to the reduction of the amplitude
of the high-amplitude RDS [42].

Our first aim in this section is to analyze the dependence
of the parameter describing the RDS on μ for fixed values of

ε, γ for a region of values of μ ⊂ [−0.1; 0], which allows us
to discuss the properties of stationary solutions with arbitrary
amplitudes. Next, we fix the value of the nonlinear gain ε and
the value of the saturation of the nonlinear gain μ and change
the value of parameter γ which describes the IRS. Finally, we
study the properties of the RDS in the case of μ > 0 fixing
the values of the nonlinear gain ε and the saturation of the
nonlinear gain μ and changing the value of γ .

First, we fix the value of the nonlinear gain ε and change
the value of the saturation of the nonlinear gain μ in the
presence of fixed IRS for γ = 0.01. A detailed comparison
between the predictions of dynamic model (3) and the results
obtained from the numerical simulation of Eq. (1) is presented
in the next Fig. 2.

All the obtained dependencies of the magnitudes of the
RDS on the value of the nonlinear gain μ presented in Fig. 2
have a monotonic character. The results presented in Fig. 2(a)
clearly show that by reducing the absolute value of the sat-
uration of the nonlinear gain μ, the amplitude of the RDS
increases as should be expected from the existing singularity
of solutions of CCQGLE for μ− → 0 [13,14]. As has been
mentioned, the singularity in respect to the coefficient de-
scribing the saturation of the nonlinear gain μ− → 0 [13,14]
no longer exists in the presence of IRS [42]. It is clearly
seen from Fig. 2(a) that for μ = 0 the peak amplitude is
approximately 45.2. With the increase of the absolute value
of the saturation of the nonlinear gain μ, the amplitude of the
dissipative solution greatly decreases (until approximately 1
for μ = −0.062), the time width increases [Fig. 2(a)], and the
mean frequency steadily decreases [Fig. 2(b)]. The velocity
also decreases [Fig. 2(b)]. Comparing Fig. 2(a) with Fig. 1(a),
however, we can see that just contrary to the case of the
nonlinear gain ε when the absolute value of its saturation
increases, the amplitude of the RDS decreases and the fre-
quency also decreases. In other words, the saturation of the
nonlinear gain acts against the self-frequency shift caused by
the nonlinear gain. As can be seen from Figs. 2(a) and 2(b),
the predictions of dynamic model (3) for all the parameters of
the RDS are in a very good agreement with the corresponding
results from the numerical solution of Eq. (1).
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(a) (b)

(c) (d)

FIG. 3. Results obtained by the direct numerical solution of (1) (solid circles, triangles, squares) and the numerical solution of DM (3)
(empty circles, triangles, squares) for (a) the peak amplitude (solid lines) and FWHM (dashed lines); (b) mean frequency (solid lines) and
velocity (dashed lines) as functions of γ ⊂ [0; 0.07] at parameters ε = 0.3 μ = −0.0001; (c) mean frequency: μ = −0.001 (solid lines)
and μ = −0.0001 (dashed lines) as functions of γ ⊂ [0; 0.1] at parameters ε = 0.3; and (d) mean frequencies: ε = 0.27 (triangles), ε = 0.3
(squares), and ε = 0.33 (circles) as functions of γ at parameters μ = −0.0001. In all cases δ = −0.012 ; β = 0.6 and c(0) = 0; ω(0) = 0

Now, we fix the value of the nonlinear gain ε = 0.3 and
the value of the saturation of the nonlinear gain μ = −1 ×
10−4 and change the value of parameter γ in the range γ ⊂
[0; 0.07].

As can be seen from Fig. 3(a) the dependencies of the
amplitude and FWHM on γ with the increase of the value
of the γ have a monotonic character: the amplitude decreases,
while the pulse width increases. Due to the presence of μ =
−1 × 10−4, the maximum value of the amplitude decreases.
In Fig. 3(b) we can observe, however, a different type of
behavior of the frequency shift and the velocity of RDS as
a function of γ . In fact, the frequency shift has a very well-
expressed minimum (or a maximum of the absolute value of
the frequency shift), while the velocity has a well-expressed
maximum in the region of γ . The minimum of the frequency
shift and the maximum of the velocity are for the same value
of γ ∼ 0.015. In other words, with the increase of the value
of γ , the absolute value of the frequency at first increases
until approximately γ ∼ 0.015 and then the absolute value
of the frequency steadily decreases. So, it turns out that we
have obtained a nonlinear dependence of the absolute value of
the frequency shift on γ in the presence of saturation of the

nonlinear gain (μ = −1 × 10−4). Obviously, the behavior of
the self-frequency shift and that of velocity are related.

In Fig. 3(c) we show how the observed nonlinear de-
pendence of the absolute value of the frequency shift on γ

depends on the value of the saturation of the nonlinear gain
μ. As can be seen from Fig. 3(c) with the increase of the
absolute value of the saturation of the nonlinear gain up to
|μ| = 0.001, the maximum absolute value of the frequency
shift reduces to |ω| ≈ 1.5 and its position moves to the larger
values of γ ≈ 0.05. If we further increase the absolute value
of the saturation of the nonlinear gain up to |μ| = 0.01, the
maximum of the absolute value of the frequency shift reduces
to |ω| ≈ 0.5 and its position moves to the larger values of
γ ≈ 0.15. In Fig. 3(d) we show how the observed nonlinear
dependence of the absolute value of the frequency shift on γ

depends on the value of the nonlinear gain ε. As can be seen
from Fig. 3(d), with the increase of the value of the nonlinear
gain ε, the maximum absolute value of the frequency shift
increases up to |ω| ≈ 6.5. However, the position of its maxi-
mum does not change. For the cases studied in Fig. 3(c) and
Fig. 3(d) we have observed numerically and by the dynamic
model (3) the expected reduction of the amplitude of the
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(a) (b)

FIG. 4. Results obtained by the direct numerical solution of (1) (solid circles) and the numerical solution of DM (3) (empty circles) for
(a) the peak amplitude (solid lines) and FWHM (dashed lines); (b) mean frequency (solid lines) and velocity (dashed lines) as functions of
γ ⊂ [0.0055; 0.07] at parameters δ = −0.012 ; β = 0.6 ; ε = 0.3; μ = +3 × 10−6.

solution with the increase of the value of γ . We have also
found that, as could be expected from Fig. 1, with the increase
of the value of the nonlinear gain ε the amplitudes at small γ

increase. The tendency for the decrease of the amplitude with
the increase the value of γ remains unchanged. (In order to
maintain conciseness, these results are not presented here.) In
all the examined cases, the dynamic model (3) qualitatively
well describes our numerical findings.

Although the negative sign of μ < 0 has a meaning of the
saturation of the nonlinear gain, there have also been studied
cases of μ > 0 [14,16]. Here we have also studied the proper-
ties of the self-frequency shift of the RDS for positive values
of μ. Figure 4 shows the evolution with γ of the parameters
of RDS for fixed values of the nonlinear gain ε = 0.3 and of
the saturation of the nonlinear gain μ = +3 × 10−6.

With the increase of the value of γ , the stationary peak
amplitude decreases [Fig. 4(a)], FWHM increases [Fig. 4(a)],
the velocity decreases [Fig. 4(b)], and the absolute value of
the frequency also decreases [Fig. 4(b)]. The dependences
of all the parameters describing the RDS as a function
on γ have a monotonic character. The results obtained
by DM (3) are fully consistent with those obtained by
Eq. (1). The results, presented in Fig. 4(b), for the depen-
dencies of the frequency and velocity on the value of γ

are very different from those shown in Fig. 3(b). The maxi-
mum absolute value of the frequency shift for small γ also
increases.

We can summarize the obtained results in this section in the
following way. We have observed numerically a nonlinear de-
pendence of the self-frequency shift of RDS on the parameter
γ describing IRS in the presence of the saturation of the non-
linear gain [Figs. 3(a) and 3(b)]. With the increase of the value
of the saturation of the nonlinear gain, the maximum absolute
value of the frequency shift decreases and its position moves
to the larger values of parameter γ describing IRS [Fig. 3(c)].
The increase in the value of the nonlinear gain leads to an
increase in the value of the maximum absolute value of the
frequency shift, without changing its position [Fig. 3(d)].
For positive values of μ, all the parameters characterizing
the dissipative solutions tend to change in a very similar
way to those of the CCGLE perturbed with IRS. All the

obtained numerical results are very well described by dynamic
model (3).

VI. CCQGLE: THE INFLUENCE OF THE HIGHER-ORDER
CORRECTION TERM TO THE NONLINEAR REFRACTIVE

INDEX ON THE SELF-FREQUENCY SHIFT

In this section we will study the influence of the higher-
order correction term on the nonlinear refractive index
[14–16] ν on the self-frequency shift of RDS for a fixed
value of the nonlinear gain. It has already been mentioned that
higher-order correction terms to the nonlinear refractive index
[14–16] ν when negative (ν < 0) correspond to the saturation
of the nonlinear refraction index [10].

Our first aim in this section is to analyze the dependence
of the magnitudes describing the RDS on ν for fixed values
of ε, γ for a region of values of ν ⊂ [−3 × 10−5; 0.4], which
allows us to discuss the properties of stationary solutions with
arbitrary amplitudes. Second, we will fix the value of the non-
linear gain ε and the value of the saturation of the nonlinear
refractive index ν < 0 and change the value of parameter γ

which describes IRS. Finally, we will study the properties of
the RDS in the case of ν > 0 fixing the values of the nonlinear
gain ε and the saturation of the nonlinear refractive index
ν > 0 and changing the value of γ .

First, we fix the value of nonlinear gain ε and change the
value of the saturation of the nonlinear refractive index ν in
the presence of fixed IRS for γ = 0.01. A detailed comparison
between the predictions of dynamic model (3) and the results
obtained from the numerical simulation of Eq. (1) is presented
in Fig. 5 below.

In the presented region of ν ⊂ [−3 × 10−5; 0.4] we have
found stationary solutions. All dependencies of RDS on the
value of ν, presented in Fig. 5, have a monotonic character.
The obtained results show that by increasing the value of the
positive ν, the amplitude of the RDS decreases [Fig. 5(a)],
while the FWHM increases [Fig. 5(a)]. The frequency shift
and velocity greatly decrease [Fig. 5(b)]. Comparing Fig. 5(a)
with Fig. 1(a), however, we can see that just opposite to the
case of the nonlinear gain ε when the absolute value of the
higher-order correction terms to the nonlinear refractive index
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(a) (b)

FIG. 5. Results obtained by the direct numerical solution of (1) (solid circles) and the numerical solution of DM (3) (empty circles) for
(a) the peak amplitude (solid lines) and FWHM (dashed lines); (b) mean frequency (solid lines) and velocity (dashed lines) as functions of
ν ⊂ [−3 × 10−5; 0.4] at parameters δ = −0.012 ; β = 0.6 ; ε = 0.3; γ = 0.01.

increases, the amplitude of the dissipative solution decreases
and the frequency also decreases. In other words, the higher-
order correction terms to the nonlinear refractive index act
against the self-frequency shift caused by the nonlinear gain.
Both numerical simulations of Eq. (1) and dynamic model
(3) reveal the existence of high-amplitude solutions [see
Fig. 5(a)] for very small values of ν. Figure 5 also presents
the results obtained for negative values of ν (internal figures).
In particular, the parameters of RDS have been calculated for
three values of ν = (−1,−2,−3) × 10−5.

The presented results clearly show that by increasing the
value of γ , the amplitude of the RDS decreases [Fig. 6(a)],
while the FWHM increases [Fig. 6(a)]. The frequency shift
and the velocity greatly decrease [Fig. 6(b)] and the velocity
decreases. We can observe a good correlation between the
results from the numerical simulations of Eq. (1) and dynamic
model (3).

It has also been mentioned that we will consider the case
of ν > 0 studied in Refs. [14,16]. We present here our results
from the study of the properties of the self-frequency shift of
the RDS for positive values of ν. Figure 7 shows the evolution

with γ of the parameters of RDS for a fixed value of the
nonlinear gain ε = 0.3 and the following fixed values of the
saturation of the nonlinear gain: ν = 0.0001 and ν = 0.001.

We should mention that the logarithmic scale on the hor-
izontal axes in Fig. 7 is introduced for a better observation
of the obtained results. Our findings from Fig. 7 are as im-
portant as those in Fig. 3. In Fig. 7(a) we can see that if we
increase the value of the γ , the values of the amplitude of the
RDS decrease while the pulse width increases. In Fig. 7(b)
we can observe something very different in comparison with
Fig. 6(b) (case for negative ν). In fact, with the increase of
γ , the absolute value of the frequency of RDS increases up
to approximately γ ∼ 0.008. If we further increase the values
of γ , however, the absolute value of the frequency steadily
decreases. So, as can be seen in Fig. 7(b), it turns out that
due to the presence of the higher-order correction term to the
nonlinear refractive index ν = 0.0001, the monotonic increase
in the absolute value of the frequency shift from Fig. 2(b)
is replaced by the existence of maximum absolute value of
the frequency shift, after which the absolute value of the
frequency shift is reduced. This nonlinear dependence of the

(a) (b)

FIG. 6. Results obtained by the direct numerical solution of (1) (solid circles) and the numerical solution of DM (3) (empty circles) for
(a) the peak amplitude (solid lines) and FWHM (dashed lines); (b) mean frequency (solid lines) and velocity (dashed lines) as functions of
γ ⊂ [0.008 75; 0.07] at parameters δ = −0.012 ; β = 0.6 ; ε = 0.3; ν = −3 × 10−5.
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(a) (b)

(c) (d)

FIG. 7. Results obtained by the direct numerical solution of (1) (solid circles) and the numerical solution of DM (3) (empty circles) for
(a) the peak amplitude (solid lines) and FWHM (dashed lines); (b) mean frequency (solid lines) and velocity (dashed lines) as functions of
γ ⊂ [0.001; 0.07] at parameters δ = −0.012 ; β = 0.6 ; ε = 0.3; ν = 0.0001; (c) mean frequency: ν = 0.001 (solid lines) and ν = 0.0001
(dashed lines) as functions of γ ⊂ [0.001; 0.07] at parameters δ = −0.012 ; β = 0.6 ; ε = 0.3; (d) ε = 0.27 (solid lines) and ε = 0.3 (dashed
lines) as functions of γ at parameters δ = −0.012 ; β = 0.6 ; ν = 0.0001.

absolute value of the frequency shift on γ in the presence of
the higher-order correction term to the nonlinear refractive
index is a new feature of the self-induced frequency shift.
The position at which the frequency reaches its minimum
value (or its absolute value reaches its maximum) γ ∼ 0.008
is lower than the corresponding value in Fig. 5(b) γ ∼ 0.015.
There is an interesting fact worth mentioning that at γ = 0.07
the calculated value of the self-frequency shift in Fig. 7(b) is
comparable with that in Fig. 3(b). The nonlinear dependence
of the velocity on γ can be observed in Fig. 7(b). Figure 7(c)
shows how the observed nonlinear dependence of the absolute
value of the frequency shift on γ depends on the value of
the higher-order correction term to the nonlinear refractive
index ν. As can be seen, with the increase of the value of the
higher-order correction term to the nonlinear refractive index
ν = 0.001, the maximum absolute value of the frequency shift
decreases to |ω| ≈ 2.98 and its position moves to larger values
of γ = 0.025. We can see that the absolute value of the self-
frequency shift could be reduced and controlled by increasing
the value of the higher-order correction term to the nonlinear
refractive index ν. Figure 7(d) shows that with the increase of
the value of the nonlinear gain ε, the maximum absolute value

of the frequency shift increases up to |ω| ≈ 9. However, the
position of the maximum frequency value does not change.

We have also found that (as could be expected from Fig. 1)
with the increase of the value of the nonlinear gain ε, the
amplitude at small γ increases. The tendency for reduction
of the amplitudes by increasing the value of γ (see Fig. 2)
remains unchanged. (In order to maintain conciseness, these
results are not presented here.) In all the considered cases, the
dynamic model (3) qualitatively well describes the observed
dependencies of the parameters describing the numerical so-
lution.

Finally, Fig. 8 below presents two examples for the com-
bined influence of the saturation of the nonlinear gain (μ < 0)
and the effect of the higher-order correction term ν > 0 and
ν < 0 to the nonlinear refractive index [14–16] ν on the self-
frequency shift of RDS.

In Fig. 8 we can observe a reduction of the maximum
value of the amplitude for positive values of ν and a reduction
of the maximum absolute value of the self-frequency shift.
We have found that there is a growth in the maximum value
of the amplitude for negative values of ν and a rise in the
maximum absolute value of the self-frequency shift. In both
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(a) (b)

FIG. 8. Results obtained by the direct numerical solution of (1) (solid lines, solid squares, circles, or triangles) and the numerical solution
of DM (3) (dashed lines, empty squares, circles, or triangles) for (a) peak amplitudes and (b) mean frequencies for the following cases: ν = 0
(circles), ν = 0.0001 (triangles), and ν = −0.000 03 (squares) as functions of γ ⊂ [0.001; 0.07] at parameters δ = −0.012 ; β = 0.6 ; μ =
−0.0001.

cases, however, the position of the minimum value of the
self-frequency shift remains unchanged.

We can summarize the obtained results in this section in the
following way. We have observed numerically the nonlinear
dependence of the absolute value of the frequency shift on the
parameter describing IRS in the presence of the higher-order
correction term to the nonlinear refractive index [Fig. 7(b)].
With the increase of the value of the higher-order correction
term to the nonlinear refractive index, the maximum absolute
value of the frequency shift decreases and its position moves
to larger values of parameter γ describing IRS [Fig. 7(c)].
The increase in the value of the nonlinear gain leads to an
increase in the value of the maximum absolute value of the
frequency shift, without changing its position [Fig. 7(d)]. In
all the phenomena considered, a very good agreement has
been identified between the results obtained by the numerical
solution of Eq. (1) and dynamic model (3) [44]. In the case
of the combined influence of the saturation of the nonlinear
gain μ < 0 and the effect of the higher-order correction term
to the nonlinear refractive index ν > 0, there has been found
a reduction of the maximum absolute value of self-frequency
shift.

VII. PERFORMANCE OF THE DYNAMIC MODEL

Our study presents material for discussion of the usefulness
of finite-dimensional dynamic models in the study of systems
with infinite number of degrees of freedom. First, we would
like to mention that the complete dynamic model of [44]
describes the CCQGLE perturbed with IRS, TOD, and SS.
Here we use the particular cases of the model for CCGLE
perturbed with IRS in Sec. IV and for the CCQGLE perturbed
with IRS in Secs. V and VI. In the case of the perturbed
with IRS CCGLE discussed in Sec. IV, there have been found
approximate fixed points. We believe that it has been clearly
shown in Secs. IV–VI that at least in the regions of the values
of the parameters discussed here, dynamic model (3) provides
reasonable results for all the parameters of the sech-like RDS

in all the considered phenomena. The main reason for the
observed good agreement between the results obtained by the
direct numerical solution of Eq. (1) and those obtained by
dynamic model (3) is the preservation of the sech-like form of
numerical solutions, which we have established in the process
of our study. The reason for the observed preservation of the
sech-like time shape of the numerical solutions is related to
the relatively small values of the nonlinear gain ε. As is well
known for large values of the nonlinear gain ε, there exists
a variety of new numerical solutions of the CCQGLE [9,10].
The application of the dynamic model (3) has helped us in
the obtaining of the proper initial conditions for the numerical
analysis and allowed us to save computational time for the
numerical simulations. Our study has also made it clear that
the dynamic model of Ref. [44] performs better than that of
Refs. [37–40]. An interesting question remains open: whether
the alternative dynamic model applied as ansatz function and
connected to the exact solution of the CCQGLE could lead to
more accurate results than those obtained here.

VIII. CONCLUSIONS

In this work we have presented a study of the influence of
the nonlinear gain (absorption), the influence of higher-order
correction terms to the nonlinear amplification (absorption),
and the influence of higher-order correction terms to the non-
linear refractive index on the self-frequency shift of Raman
dissipative solitons. In order to accomplish this aim, we have
applied two methods: the numerical solution of the basic
equation with the help of Agrawal’s split-step Fourier method
with two iterations [58], and the dynamic model obtained with
the method of moments [44].

We have shown that with the increase of the value of the
nonlinear gain ε, the pulses increase their amplitude and re-
duce their width, i.e., solutions compress. There is an increase
in the frequency and the velocity of the Raman dissipative
solitons.
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We have observed numerically a nonlinear dependence of
the self-frequency shift of Raman dissipative solitons on the
parameter γ describing IRS in the presence of the saturation
of the nonlinear gain. With the increase of the value of the
saturation of the nonlinear gain, the maximum absolute value
of the frequency shift decreases and its position moves to
larger values of parameter γ describing IRS. The increase
in the value of the nonlinear gain leads to an increase in
the maximum absolute value of the frequency shift, without
changing its position. We have also observed numerically the
nonlinear dependence of the absolute value of the frequency
shift on the parameter describing IRS in the presence of the
higher-order correction term to the nonlinear refractive index.
With the increase of the value of the higher-order correction
term to the nonlinear refractive index, the maximum absolute
value of the frequency shift decreases and its position moves
to larger values of parameter γ describing IRS. The increase
in the value of the nonlinear gain leads to an increase in

the maximum absolute value of the frequency shift, without
changing its position. In all the considered phenomena, a
very good agreement has been identified between the results
obtained by the numerical solution of Eq. (1) and those of
dynamic model (3) of Ref. [44]. In the case of the combined
influence of the saturation of the nonlinear gain μ < 0 and
the effect of the higher-order correction term to the nonlinear
refractive index ν > 0, a reduction in the maximum absolute
value of the self-frequency shift has been found.

We can conclude that the observed nonlinear dependences
of the self-frequency shift on the value of the saturation of
the nonlinear gain as well as on the value of the higher-order
correction term to the nonlinear refractive index can be used
for the better understanding and control of the spectral char-
acteristics of Raman dissipative solitons.

The influence of the other higher-order effects as well as
the noise on the phenomena observed here could be the topics
of further studies.
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