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Synchronization in asymmetrically coupled networks with homogeneous oscillators
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Synchronization among coupled oscillators is a common feature of symmetrically coupled networks with
homogeneous, i.e., identical, oscillators. Recently, it was reported [T. Nishikawa and A. Motter, Phys. Rev. Lett.
117, 114101 (2016) and Y. Zhang, T. Nishikawa, and A. E. Motter, Phys. Rev. E 95, 062215 (2017)], however,
that in networks with asymmetrically coupled oscillators, synchronization can only be found to be stable
when the oscillators are heterogenous or nonidentical. In this manuscript, it is proven, mathematically, that
the conclusions in those works are incorrect, and that stable synchronization states can, and do, exist in
asymmetrically coupled homogeneous oscillators. Theoretical results are confirmed with numerical simulations.
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I. INTRODUCTION

Complex networks have gained considerable interest, es-
pecially over the past two decades, through the development
of interdisciplinary methods to model and analyze collec-
tive behavior [1–10]. The complexity arises from the fact
that individual units or cells cannot exhibit on their own
the collective behavior of the entire network. Examples in-
clude: laser arrays [11,12], digital communication [13,14],
microbiology [15–18], neuroanatomy [19], Josephson junc-
tions [20–23], central pattern generators in biological systems
[24–26], coupled laser systems [27,28], chaotic oscillators
[29,30], collective behavior of bubbles in fluidization [31], the
flocking of birds [32], and even psychology [33–35]. Multiple
overviews of the subject have been written [36–42].

In most cases, three factors are normally considered when
studying the collective behavior of a complex system: the
internal dynamics of each individual unit or cell; the topology
of cell connections, i.e., which cells communicate with each
other; and the type of coupling. More recently, a fourth factor
has gained further attention—Symmetry. It is well known that
symmetry alone can restrict the type of solutions of systems
of ordinary- and partial-differential equations, which often
serve as models of complex networks. So it is reasonable
to expect that certain features of the collective behavior of
a complex network can be inferred from the presence of
symmetry alone. One of those features of great interest is
synchronization. Typically, synchronization states are found
in symmetrically coupled networks, with homogeneous units,
i.e., identical units. However, a recent set of papers [43,44],
claimed an opposite situation to be true: synchronization (be-
ing the symmetric state) can only be found to be stable in
asymmetrically coupled networks with heterogeneous oscilla-
tors. Specifically, the claims (on page 3) include: “the stability
of the synchronous state can only be supported by noniden-
tical oscillators”, also, “no homogeneous oscillators can be
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stably synchronized”, and, “significant differences between
the oscillators are required to achieve stable synchronization”
[43].

In this manuscript, it is demonstrated that these claims
are incorrect. They are incorrect, because, from a mathemat-
ics standpoint, showing the existence of a certain type of
behavior—in this case, stable synchronization in networks of
asymmetrically coupled heterogeneous oscillators—does not
necessarily exclude the existence of the same type of behavior
but with the opposite type of oscillators. In fact, it is proven,
analytically and computationally, that stable synchronization
states can, and do, occur in asymmetrically coupled networks
of homogeneous oscillators. To do that, ideas and methods
from perturbation analysis and equivariant bifurcation theory
are employed. From the stand point of view of equivariant
bifurcation theory, bifurcation problems have been, typically,
studied under the assumption that the state variables of a
model exhibit spontaneous symmetry-breaking. This means
that solutions of such bifurcation problems lose symmetry as
some parameters are varied, even though the equations that
such solutions satisfy retain the full symmetry of the system.
A less common perspective of equivariant bifurcation theory
is when the bifurcation equations possess less symmetry when
some parameters are nonzero. This less common scenario
is known as forced symmetry breaking. In this manuscript,
it is also shown that the existence and stability of the syn-
chronization state, in asymmetrically coupled networks of
homogeneous oscillators, falls, and can be studied, under the
category of equivariant bifurcation problems with parameter
symmetry [45].

The manuscript is organized as follows. In Sec. II, a review
of the main findings in Refs. [43,44] is provided. Mainly,
computer simulations of a network of N = 7 oscillators are
reproduced to show the emergence of unstable synchroniza-
tion in a network with homogeneous oscillators, while stable
synchronization are shown to appear with heterogenous oscil-
lators. But, then, additional computer simulations reveal that
the same network can also support stable synchronization with
homogeneous oscillators, thus contradicting the findings in
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FIG. 1. Asymmetrically coupled network of N nonlinear oscilla-
tors. When δ = 0, the network is, however, symmetrically, coupled
and its geometry possesses DN symmetry, where DN is the orthogonal
group of symmetries of an N-gon.

Refs. [43,44]. In Sec. III, a perturbation analysis is carried
out to unravel the source of the stability (or instability for
that matter) of the synchronization state. The main results
lead to a Hopf bifurcation, which determines the existence
and stability of the synchronization state for both types of
networks, with homogeneous and heterogenous oscillators.
In Sec. IV, ideas and methods from equivariant bifurcation
theory are employed to study the force symmetry-breaking
bifurcations, with parameter symmetry, which serve to explain
the observations of synchronization states in asymmetrically
coupled networks.

II. BACKGROUND AND EVIDENCE THAT
HOMOGENEOUS OSCILLATORS CAN BE STABLY

SYNCHRONIZED

The network considered by Nishikawa et al. [43,44] con-
sists of N heterogeneous oscillators, coupled asymmetrically
in a ring configuration, as is shown in Fig. 1.

The time evolution of the network is measured by the am-
plitude, r j (t ), and phase, θ j (t ), variables, which are governed
by a model of the form

ṙ j = b jr j (1 − r j ) + εr j

N∑
k=1

Ajk sin(θk − θ j ),

(1)

θ̇ j = ω + r j − 1 − γ r j

N∑
k=1

sin(θk − θ j ),

where, b j are the growth rate for each individual jth oscillator,
ω is a common oscillating frequency, ε and γ are coupling
strengths for radial and azimuthal coupling, respectively, and
A is an N × N matrix of coupling connectivity. In this work it
is assumed that bj > 0. Observe that the coupling topology
between the phase dynamics is all-to-all, while that of the
radial elements is determined by the entries in the matrix A.
For the case of Fig. 1, with bidirectional coupling, the matrix
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FIG. 2. Amplitude and phase evolution of an asymmetrically
coupled network with N = 7 oscillators. Parameters are: ω = 1.0,
ε = 2.0, δ = 0.3, and γ = 0.1. (Left) When the oscillators are ho-
mogeneous, with bj = 1.868, j = 1, . . . , 7, the synchronization state
r j = 1 is unstable. (Right) For a heterogeneous network, with b1 =
1.187, b2 = 7.229, b3 = 1.467, b4 = 0.787, b5 = 4.062, b6 = 3.041,
b7 = 1.204, the synchronization state is, however, stable.

A can be expressed as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 + δ 0 0 . . . 1 − δ

1 − δ 0 1 + δ 0 . . . 0
...

...
. . .

. . . . . .
...

... . . .
. . .

. . . 0
1 − δ . . . . . . 0 1 + δ

1 + δ 0 . . . 1 − δ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The network Eq. (1) has a trivial equilibrium r j = 0 and
a symmetric equilibrium r j = 1, j = 1, . . . , N , which corre-
sponds to synchronous oscillations with amplitude one, and
phase θ j = θ0 + ωt . The primary interest in this manuscript is
in the synchronous state.

Computer simulations with a network of N = 7 oscillators,
were reported in Ref. [43]. The simulations revealed that when
the oscillators are homogeneous, i.e., identical values of the
b j parameters, the synchronous state, r j = 1, j = 1, . . . , 7,
is unstable. But when heterogeneity is introduced into the
oscillators, i.e., nonidentical values of the parameter bj , the
synchronous state becomes stable. For completeness pur-
poses, computer simulations, see Fig. 2, have been conducted
to reproduce the transition from unstable to stable synchro-
nization, as it was just described in Ref. [43].

Subsequently, the authors of Ref. [43] claim that “the
stability of the synchronous state can only be supported
by nonidentical oscillators”. However, additional computer
simulations (carried out with a slight change in one of the pa-
rameters), show otherwise. Indeed, Fig. 3 shows that a stable
synchronous state can also be supported by the same network
of N = 7 homogeneous oscillators, which had previously led
to an unstable synchronous state in Fig. 2(left).

One is then left to wonder about the source of the discrep-
ancy. Here is a hint. All parameter values used in Fig. 3 are the
same as those used in Fig. 2(left), except for a slightly lower
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FIG. 3. Opposite behavior, i.e., stable synchronization, to the
one observed in Fig. 2(left). Same asymmetrically coupled network
with N = 7 homogeneous oscillators and same parameters, as the
one used to produce Fig. 2(left), except for a lower value of the
phase coupling strength, γ = 0.07. This shows that an asymmetri-
cally coupled network of homogeneous oscillators can support stable
synchronization.

value of the phase coupling strength, e.g., γ = 0.07, instead of
γ = 0.1. This provides a clue for the source of discrepancies,
which are investigated in more detail in the next section.

III. SYNCHRONIZATION WITH HOMOGENEOUS
AND HETEROGENEOUS OSCILLATORS

In this section, a perturbation analysis of the synchroniza-
tion state in a network of N oscillators is conducted. Both
type of oscillators, heterogeneous and homogeneous, are con-
sidered. In both cases, the analysis shows that the stability
properties of the synchronous state are related to a simple
Hopf bifurcation. The analysis yields a threshold value of
the phase-coupling strength, γc, which is associated with the
Hopf bifurcation point. When γ < γc, the synchronous state
is stable. At γ = γc, a Hopf bifurcation occurs, which leads
to periodic orbits in the amplitude dynamics. These periodic
orbits correspond to quasiperiodic oscillations in Cartesian
coordinates. Past the Hopf bifurcation point, the synchronous
state becomes unstable. When the growth rate parameters, bj ,
become all equal, the critical Hopf bifurcation parameter, γc,
for a network with heterogenous oscillators reduces to that of
homogenous oscillators.

A. Perturbation Analysis

As a case study, a network with N = 3 heterogenous os-
cillators is considered first. In this case, the matrix, A, of
coupling connectivity is a circular matrix given by

A =

⎡
⎢⎣

0 1 + δ 1 − δ

1 − δ 0 1 + δ

1 + δ 1 − δ 0

⎤
⎥⎦.

Let φ12 = θ2 − θ1, φ13 = θ3 − θ1, and φ23 = θ3 − θ2 repre-
sent the phase differences among all three oscillators. In these
coordinates, the original model Eq. (1) (after substituting A)
can be written as

ṙ1 = b1r1(1 − r1) + εr1[(1 + δ)s12 + (1 − δ)s13],

ṙ2 = b2r2(1 − r2) + εr2[(1 + δ)s23 − (1 − δ)s12],

ṙ3 = b3r3(1 − r3) − εr3[(1 + δ)s13 + (1 − δ)s23],

φ̇12 = r2 − r1 − γ r2(s23 − s12) + γ r1(s12 + s13),

φ̇13 = r3 − r1 + γ r3(s13 + s23) + γ r1(s12 + s13),

φ̇23 = r3 − r2 + γ r2(s13 + s23) + γ r2(s23 − s12), (2)

where, for brevity, the notation s jk = sin φ jk is used. When
r j = 0, the right-hand side of Eq. (2) vanishes identically.
Consequently, r j = 0, φ jk = φ∗

jk is an equilibrium, where the
phase differences, φ∗

jk , are all arbitrary constants, which can
be set by initial conditions. Regardless of the actual values,
the system does not oscillate since the amplitudes are all equal
to zero. For simplicity, we can choose r j = 0, φ jk = 0 as the
trivial equilibrium.

The linearization of Eq. (2) about the trivial equilibrium,
(r j = 0, φ jk = 0), leads to a 6 × 6 Jacobian matrix, where
three of its eigenvalues are zero, while the other three eigen-
values are equal to b j . It follows that the trivial solution is
stable when b j < 0 and unstable when b j > 0. Since the inter-
est is in the synchronization state, the growth rate parameters
are assumed to be bj > 0. The synchronous state is r j = 1,
j = 1, 2, 3, φ12 = φ13 = φ23 = 0.

To study the stability properties of the synchronized so-
lution, (r j, φ jk ) = (1, 0), small perturbations of amplitudes
and phase differences are considered through r j = 1 + ηr j

and φ jk = 0 + ηφ jk , where ηr j � 1 and ηφ jk � 1. Substituting
into Eq. (2), the dynamics for the amplitude components is
given by

η̇r1 = −b1(1 + ηr1 )ηr1 + ε[(1 + δ)sη12 + (1 − δ)sη13 ]ηr1

× ε[(1 + δ)sη12 + (1 − δ)sη13 ],

η̇r2 = −b2(1 + ηr2 )ηr2 + ε[(1 + δ)sη23 − (1 − δ)sη12 ]ηr2

× ε[(1 + δ)sη23 − (1 − δ)sη12 ],

η̇r3 = −b3(1 + ηr3 )ηr3 + ε[(1 + δ)sη13 + (1 − δ)sη23 ]ηr3

× ε[(1 + δ)sη13 + (1 − δ)sη23 ],

where sη jk = sin ηφ jk . Observe that the last term in each
of the equations above is bounded because the sine func-
tions are bounded. Thus, the coefficients of the amplitudes,
ηr j , can be compared directly, and conclude that if bj �
ε[±(1 + δ)sη jk ± (1 − δ)sηlm ], where jk, lm ∈ {12, 13, 23},
then the system is significantly damped. The term in brackets
is bounded by 2δ, so that the damping condition becomes
bj � 2εδ. When this condition is satisfied, it can be assumed
that η̇r j = 0, then we can solve for ηr j , up to first order, to get

ηr1 = ε

b1
[(1 + δ)ηφ12 + (1 − δ)ηφ13 ],

ηr2 = ε

b2
[(1 + δ)ηφ23 − (1 − δ)ηφ12 ],

ηr3 = ε

b3
[(1 + δ)ηφ13 + (1 − δ)ηφ23 ],

where the fact that sin φ jk ≈ φ jk was used. Substituting ηr j

back into Eq. (2), yields a set of equations in which the per-
turbations, ηφ jk , of the phase difference, decouple from those
of the radial components. Up to first-order, the amplitude
equations are

η̇r1 = −b1ηr1 + ε[(1 + δ)ηφ12 + (1 − δ)ηφ13 ],

η̇r2 = −b2ηr2 + ε[(1 + δ)ηφ23 − (1 − δ)ηφ12 ], (3)

η̇r3 = −b3ηr3 + ε[−(1 + δ)ηφ13 − (1 − δ)ηφ23 ],
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while the phase dynamics can be written in matrix form⎡
⎢⎣

η̇φ12

η̇φ13

η̇φ23

⎤
⎥⎦ = Jηφ

⎡
⎢⎣

ηφ12

ηφ13

ηφ23

⎤
⎥⎦, (4)

where the matrix Jηφ
is a 3 × 3 matrix with components

J11 = 2γ − ε

b1
(1 + δ) − ε

b2
(1 + δ),

J12 = γ − ε

b1
(1 − δ),

J13 = −γ + ε

b2
(1 + δ),

J21 = γ − ε

b1
(1 + δ),

J22 = 2γ − ε

b1
(1 − δ) − ε

b3
(1 + δ)

J23 = γ − ε

b3
(1 − δ)

J31 = −γ + ε

b2
(1 − δ)

J32 = γ − ε

b3
(1 + δ)

J33 = 2γ − ε

b2
(1 + δ) − ε

b3
(1 − δ).

Observe that Eq. (4) represents a linear system of differen-
tial equations. Direct calculations show that the eigenvalues of
the matrix Jηφ

are

σ1 = 0, σ23 = 3γ −
(

1

b1
+ 1

b2
+ 1

b3

)
ε ±

√(
1

b2
1

+ 1

b2
2

+ 1

b2
3

)
−

(
1

b2b3
+ 1

b1b3
+ 1

b1b2

)
(1 + δ2) ε.

The zero eigenvalue corresponds to a neutrally stable di-
rection, while the remaining two eigenvalues are the ones that
determine the stability properties of the synchronization state
(r j, φ jk ) = (1, 0). Indeed, for sufficiently large δ, so that


 =
(

1

b2
1

+ 1

b2
2

+ 1

b2
3

)

−
(

1

b2b3
+ 1

b1b3
+ 1

b1b2

)
(1 + δ2) < 0,

the eigenvalues σ2,3 are the complex conjugate of the form
σ23 = p ± qi, where p = 3γ − (1/b1 + 1/b2 + 1/b3)ε and
q = √−
. When p < 0, the perturbations of the phase dif-
ferences, ηφ jk , decay towards zero, which imply that the zero
phase differences, φ jk = 0, form a stable equilibrium. A stable
zero phase difference, in turn, implies that the dynamics of the
perturbations of the amplitude components simplifies to

η̇r j = −b jηr j .

Since b j > 0, for j = 1, 2, 3, it follows that ηr j → 0 as
t → ∞. In summary, when p < 0, the synchronization state
(r j, φ jk ) = (1, 0) is locally asymptotically stable. When p =
0, the synchronous oscillations undergo a Hopf bifurcation at
the critical point

γc =
(

1

b1
+ 1

b2
+ 1

b3

)
ε

3
. (5)

To confirm these results, computer simulations of the orig-
inal network Eq. (1) are carried out with ω = 1. Growth
rates are set to: b1 = 2.5, b2 = 2.5, b3 = 4.5, and ε = 1.0
and δ = 0.5 so that the damping condition b j � 2εδ is sat-
isfied. This combination of parameter values yields σ23 =
3γ − 1.022 ± 0.223i, with the critical Hopf bifurcation point
being γc = 0.3407. Figure 4(left) shows simulations when γ

is slightly smaller than γc. Since Re{σ23 < 0}, the common
equilibrium r j = 1 is stable and, as expected, all amplitudes
converge towards this common nontrivial equilibrium point,

which corresponds to periodic oscillations in Cartesian coor-
dinates, (x j, y j ), where x j = r j cos θ j and y j = r j sin θ j . The
right plot shows the simulations exactly at the Hopf bifur-
cation point γ = γc. As it can be observed, three distinct
periodic orbits in (r j, θ j − 〈θ j〉) phase space emerge. Now,
these periodic orbits correspond to three distinct branches of
quasiperiodic oscillations in Cartesian (x j, y j ) phase space.

When all of the growth rate coefficients, bj , are identical,
i.e., b j = b, for j = 1, 2, 3, the eigenvalues of the matrix Jηφ

become

σ1 = 0, σ2,3 = 3
(
γ − ε

b

)
± ε

δ

b

√
3i.

The critical value for the Hopf bifurcation of an asymmet-
rically coupled network with N = 3 homogeneous oscillators
becomes

γc = ε

b
, (6)
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FIG. 4. Amplitude-phase portraits of an asymmetrically cou-
pled, heterogenous, network with N = 3 oscillators. Parameters are:
b1 = 2.5, b2 = 2.5, b3 = 4.5, ω = 1.0, ε = 1.0, δ = 0.5. With these
parameters, a Hopf bifurcation occurs at γc = 0.34. (Left) When
γ = 0.32 < γc, solution trajectories converge towards a stable equi-
librium r j = 1, θ j = 0, which corresponds to stable synchronized
oscillations in Cartesian space. (Right) At the Hopf bifurcation point,
γ = γc, the synchronization state loses stability and three distinct
periodic orbits in (r j, θ j ) phase space emerge. These periodic orbits
correspond to quasiperiodic oscillations in Cartesian phase-space,
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which can also be obtained by setting b j = b in Eq. (5). It
follows that when γ < γc then Re{σ23} < 0, which indicates
that synchronized oscillations (r j, φ jk ) = (1, 0) are stable.

In the case of heterogenous oscillators, the region of
parameters space (b1, b2, b3) where γ < (1/b1 + 1/b2 +
1/b3)ε/3, corresponds to the blue region of stability of the
synchronization state, as it was shown in Fig. 2(b) in Ref. [43].
The shape of the blue region reflects the fact that under the
dihedral D3 symmetry, the network equation remains invariant
under cyclic rotations of state variables and parameters. In the
case of homogeneous oscillators, that region reduces to the
diagonal b1 = b2 = b3 where γ < ε/b can be satisfied.

A similar perturbation analysis for a network with N = 4
oscillators was performed. Since the phase dynamics, θ j , j =
1, . . . , 4, are all-to-all coupled, the following phase differ-
ences can be set: φ12 = θ2 − θ1, φ13 = θ3 − θ1, φ14 = θ4 − θ1,
φ23 = θ3 − θ2, φ24 = θ4 − θ2, and φ34 = θ4 − θ3. The proce-
dure is essentially the same as in the case of N = 3 oscillators,
so details are skipped, while the main results are presented.
In this case, the Jacobian matrix of the phase perturbations,
Jηφ

, has three zero eigenvalues, σ j = 0, j = 1, 2, 3, one real-
valued eigenvalue (which must be negative for stability), σ4 =
4(γ − ε

b ), and eigenvalues σ5,6, which can lead to a critical
Hopf bifurcation point

γc =
(

1

b1
+ 1

b2
+ 1

b3
+ 1

b4

)
ε

8
.

For a network with four homogeneous oscillators, the crit-
ical coupling strength for the Hopf bifurcation reduces to

γc = ε

2b
. (7)

Thus, if γ < γc, which also satisfies γ < ε/b, so that σ4 <

0, then the synchronization state (r j, θ j ) = (1, 0) is stable.
Computer simulations (not shown for brevity) show results
similar to those of the N = 3 case. For instance, consider
heterogenous oscillators, with growth rates set to: b1 = 2.5,
b2 = 3.5, b3 = 5.5, b4 = 6.5, and ε = 1, δ = 0.5, and ω = 1.
The simulations reveal that when γ < γc = 0.132 then the so-
lution trajectories converge towards the synchronization state
(r j, θ j ) = (1, 0). At γ = γc, the synchronization state loses
stability and four distinct periodic orbits emerge. The plots
are very similar to those of Fig. 4.

B. Simulations with Homogeneous Oscillators

It should be emphasized that the results above imply that
synchronization can occur in spite of the growth rate param-
eters, b j , being identical, i.e., in spite of the oscillators being
homogeneous. This is a critical observation because it contra-
dicts the results published in Ref. [43]. In there, the authors
note: “Along the diagonal line b1 = · · · = bn = b no homoge-
neous oscillators can be stably synchronized”. Furthermore,
they also write “significant differences between the oscillators
are required to achieve stable synchronization.” Next, com-
puter simulations are shown in support of the existence and
stability of stable synchronization states in asymmetrically
coupled homogeneous oscillators.

Figure 5 shows results of computer simulations of Eq. (1)
for an asymmetrically coupled network with N = 3 homo-
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FIG. 5. Synchronization in an asymmetrically coupled network
with N = 3 homogeneous oscillators. All solution (amplitude and
phase) trajectories converge to the synchronization state (r j, θ j ) =
(1, 0). Parameters are: b1 = b2 = b3 = 3.0, ω = 1.0, ε = 1.0, δ =
0.3, γ = 0.31.

geneous oscillators. Growth rates are set to: b j = 3.0, j =
1, 2, 3, and additional parameters are: ε = 1.0 and δ = 0.3,
so that the damping condition, bj � 2εδ, is, again, satisfied.
The Hopf bifurcation point is now γc = 1/3. For γ slightly
smaller than γc, it can be seen in Fig. 5 that the amplitude and
phase dynamics converge towards the synchronized oscilla-
tions (r j = 1, θ j = 0).

At γ = γc, the synchronized solution loses stability and
three distinct periodic orbits in (r j, θ j ) phase space emerge,
as is shown in Fig. 6. These periodic orbits correspond to
quasiperiodic oscillations in cartesian (x j, y j ) phase space.

Similar results follow for a network with N = 4 homoge-
neous oscillators. For instance, set bj = 4, ω = 1.0, ε = 1.0,
and δ = 0.5. Then the critical Hopf bifurcation point becomes
γc = 0.125. For γ < γc the synchronization state is stable,
and for γ > γc, it becomes unstable. The plots are similar
to those shown in Figs. 5 and 6, but they are not shown for
brevity.

A few words are now in order for what can be expected
for larger networks. The results presented so far suggest that
as the size, N , of a network increases, the critical value of
γc for the Hopf bifurcation that leads to stable synchroniza-
tion decreases towards zero. In the limit, as N → ∞, the
phase-coupling strength, γ , that is required to achieve sta-
ble synchronization is zero. In fact, we can observe from
the model equations that when γ = 0, the phase dynamics
completely decouples from one another. Furthermore, the real
part of the complex eigenvalues associated with the Hopf
bifurcation become negative, i.e., p < 0, regardless of the
actual values of the growth coefficients bj , so long as they are
positive. This means, interestingly, that the synchronization
state is always stable, regardless of whether the oscillators are
identical or not, i.e., independently of the actual values of the
growth coefficients bj . These observations can also be verified
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FIG. 6. Amplitude and phase dynamics of an asymmetrically
coupled network with N = 3 homogeneous oscillators. From top
to bottom (respectively): amplitude and phase dynamics, and
amplitude-phase portrait. At the critical Hopf bifurcation point,
both amplitude and phase oscillate. These oscillations correspond
to quasiperiodic solutions in Cartesian coordinates. Parameters are:
b1 = b2 = b3 = 3.0, ω = 1.0, ε = 1.0, δ = 0.3, γ = 0.33.

with numerical simulations. In the next section, the stability of
the synchronization state is studied from the geometrical point
of view of symmetry. An important result is that this approach
allows us to find the critical value of the coupling strength
that leads to stable synchronization in networks of arbitrary
size and with homogeneous oscillators.

IV. THE SYMMETRY APPROACH

In this section, the stability properties of the synchro-
nization state in a network of asymmetrically coupled
homogeneous oscillators, are studied from the equivariant,
symmetry-breaking, bifurcation point of view. As a case
study, the same networks that were investigated in the pre-
vious section are now considered, i.e., networks with N = 3
and 4 oscillators. The analysis provides additional insight into
the symmetry-breaking bifurcations that lead to the existence
and stability of the synchronization state. Additionally, the
symmetry-based approach confirms the results from the per-
turbation analysis, including the findings of the critical Hopf
bifurcation parameter.

A. Case Study: Three Cells

The network of N = 3 asymmetrically coupled oscillators,
which was studied in Sec. III, is considered again. But, now,
it is assumed that the network is made up of homogeneous os-
cillators. The model equations can be written in the following
form:

ṙ1 = br1(1 − r1) + εr1[(1 + δ)s21 + (1 − δ)s31],

θ̇1 = ω + r1 − 1 − γ r1(s21 + s31),

ṙ2 = br2(1 − r2) + εr2[(1 + δ)s32 + (1 − δ)s12],

θ̇2 = ω + r2 − 1 − r1 − γ r2(s32 + s12),

ṙ3 = br3(1 − r3) + εr3[(1 + δ)s13 + (1 − δ)s23],

θ̇3 = ω + r3 − 1 − γ r3(s13 + s23), (8)

where, for brevity, the notation s jk = sin(θ j − θk ) is used. Let
z j = [r j, θ j]T , where j = 1, . . . , 3, and Z = [z1, z2, z3]T , so
that Eq. (8) can be rewritten as

Ż = F (Z, μ, α), (9)

where μ = (γ , δ) are the main bifurcation parameters and
α = (b, ω, ε), and F is of the form

F (z1, z2, z3, μ, α) =
⎡
⎣ f (z1, z2, z3, μ, α)

f (z2, z3, z1, μ, α)
f (z3, z1, z2, μ, α)

⎤
⎦,

where

f (z1, z2, z3, μ, α)

=
[

b1r1(1 − r1) + εr1
∑N

k=1 A1k sin(θk − θ1)

ω + r1 − 1 − γ r1
∑N

k=1 sin(θk − θ1)

]
.

When δ = 0, the network geometry has D3 symmetry,
where D3 is the group of symmetries of a triangle. D3 has two
generators: a cyclic rotation of the oscillators, β1 · (1, 2, 3) →
(2, 3, 1), and a reflection across the midedge of the triangle,
β2 · (1, 2, 3) → (1, 3, 2). This means that the model Eq. (9) is
equivariant under the action of D3. That is, F (βZ ) = βF (Z ),
where β = {β1, β2}. When δ �= 0, however, the network is no
longer D3 symmetric, since it only retains rotational equivari-
ance under β1 but not under the reflection β2. Observe that,
however, f has a combined (Z, μ, α) symmetry:

f (z1, z3, z2, γ , δ, α) = f (z1, z2, z3, γ ,−δ, α).

This implies that F (β2Z, γ , δ, α) = β2F (Z, γ ,−δ, α).
Now, the linearization of Eq. (9) about the synchronization
state, (r j, θk − θ j ) = (1, 0), is

(dF )(1,0) =
⎡
⎣A B D

D A B
B D A

⎤
⎦,

where

A =
[−b −2ε

1 2γ

]
, B =

[
0 ε(1 + δ)
0 −γ

]
,

D =
[

0 ε(1 − δ)
0 −γ

]
.

We choose to label the third matrix in the linearization,
(dF )(1,0), as D, for consistency purposes with the analysis that
will be conducted later on with networks of larger size.

The eigenvalues of (dF )(1,0) are those of

A + B + D with eigenvector V1 = [v, v, v]T ,

A + ξB + ξ 2D with eigenvector V2 = [v, ξv, ξ 2v]T ,

A + ξ 2B + ξD with eigenvector V3 = [v, ξ 2v, ξv]T ,
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where ξ = e2π i/3 = − 1
2 +

√
3

2 i, for some v ∈ R. The matrices,
A + ξB + ξ 2D and A + ξ 2B + ξD, become

A + ξB + ξ 2D = A − 1

2
(B + D) +

√
3

2
i(B − D),

A + ξ 2B + ξD = A − 1

2
(B + D) −

√
3

2
i(B − D).

Since both B and D are odd in δ then symmetry-breaking
can occur at δ = 0. Indeed, when δ = 0, it can be seen that
B = D, and the spectrum of eigenvalues is given by

σ ((dF )(1,0)) = σ (A + 2B) ∪ σ (A − B)(twice).

Generically, in order to get a two-dimensional kernel with
the required D3 symmetry, the synchronization state, (1, 0),
must lose stability through a (double) zero eigenvalue of A −
B. Now, the characteristic polynomial associated with A − B
is

σ 2 − (3γ − b)σ + (−3γ b + 3ε) = 0.

It follows that when

γ = ε

b
,

then one of the eigenvalues is exactly zero, σ1 = 0, while the
second one is σ2 = 3γ − b. Actually, these eigenvalues are
double since the matrix A − B occurs twice in the diagonaliza-
tion of (dF )(1,0). The condition γ = ε/b is the same critical
value, see Eq. (6), of the coupling-phase parameter that was
found earlier on (through the perturbation analysis). Observe
that it was not required for the zero eigenvalue to be purely
imaginary and for it to cross the imaginary axis to the right,
as it is commonly needed for a Hopf bifurcation to occur. The
reason is that the state variable in the model Eq. (9) is in polar
coordinates, (r j, θ ). Thus a steady-state symmetry-breaking
bifurcation is necessary and sufficient, and it is associated with
a Hopf bifurcation in Cartesian coordinates (x j, y j ).

B. Case Study: Four Cells

The case of a network with N = 4 homogeneous oscillators
is considered next. The model for this network is still of the
form given by Eq. (9), except that now Z = [z1, z2, z3, z4]T .
This time, when δ = 0, the network geometry has D4 sym-
metry, where D4 is the group of symmetries of a square.
D4 has two generators: a midedge symmetry, represented by
the permutation β1 · (1, 2, 3, 4) → (2, 1, 4, 3), and a diagonal
symmetry, given by β2 · (1, 2, 3, 4) → (3, 2, 1, 4). The gen-
erators are not unique, so a cyclic rotation could have also
being used. Nevertheless, the results are the same. Observe
that when δ �= 0 the network loses D4 symmetry. Further-
more, the network topology suggests that it can be assumed
that the symmetry breaking occurs with the nearest-neighbor
interactions equal only on opposite pairs of edges. Under this
assumption, when δ �= 0, it can be expected for the represen-
tation Z2 ⊕ Z2 (symmetry of a rectangle) to occur generically.
This representation is generated by 〈β1, β2β1β2〉. Equivari-
ance of F under these two generators, i.e., F (βZ ) = βF (Z ),

where β = {β1, β2}, leads to the following form for F :

F (z1, z2, z3, z4, μ, α) =

⎡
⎢⎣

f (z1, z2, z3, z4, μ, α)
f (z2, z1, z4, z3, μ, α)
f (z3, z4, z1, z2, μ, α)
f (z4, z3, z2, z1, μ, α)

⎤
⎥⎦,

where f (z1, z2, z3, z4, γ , δ, α) = f (z1, z4, z3, z2, γ ,−δ, α) is
defined in the same way as in the previous case of N = 3.
The linearization of Eq. (9) about the synchronization state,
(r j, θk − θ j ) = (1, 0), is

(dF )(1,0) =

⎡
⎢⎣

A B C D
D A B C
C D A B
B C D A

⎤
⎥⎦,

where

A =
[−b −2ε

1 3γ

]
, B =

[
0 ε(1 + δ)
0 −γ

]
,

C =
[

0 0
0 −γ

]
, D =

[
0 ε(1 − δ)
0 −γ

]
.

The eigenvalues of (dF )(1,0) are those of

A + B + C + D,

A + ξB + ξ 2C + ξ 3D,

A + ξ 2B + C + ξ 2D,

A + ξ 3B + ξ 2C + ξD,

with eigenvectors

V1 = [v, v, v, v]T ,

V2 = [v, ξv, ξ 2v, ξ 3v]T ,

V3 = [v, ξ 2v, v, ξ 2v]T ,

V4 = [v, ξ 3v, ξ 2v, ξv]T ,

respectively, where ξ = e2π i/4 = i, for some v ∈ R. The last
three matrices of the eigenvalues become

A + ξB + ξ 2C + ξ 3D = A − C + (B − D)i,

A + ξ 2B + C + ξ 2D = A + C − (B + D),

A + ξ 3B + ξ 2C + ξD = A − C − (B − D)i.

Since both B and D are odd in δ, then symmetry-breaking
can occur at δ = 0. Indeed, when δ = 0, it can be seen that
B = D, and the spectrum of eigenvalues is given by

σ ((dF )(1,0)) = σ (A + C + 2B) ∪ σ (A + C − 2B)

∪ σ (A − C)(twice).

Generically, in order to get a two-dimensional kernel with
the required D4 symmetry, the synchronization state, (1, 0),
must lose stability through a (double) zero eigenvalue of
A − C. Now, the characteristic polynomial associated with
A − C is

σ 2 − (4γ − b)σ + (−4γ b + 2ε) = 0.

It follows that when

γ = ε

2b
,
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then one of the eigenvalues is exactly zero, σ1 = 0, while
the second one is σ2 = 4γ − b. Again, these eigenvalues are
double since the matrix A − C appears twice in the diagonal-
ization of (dF )(1,0). Also, the condition γ = ε/(2b), is the
same critical value of the coupling-phase parameter that was
found earlier on in Eq. (7), through the perturbation analysis.

C. Generalization to Larger Networks

In this section the stability properties of the synchroniza-
tion state are investigated in networks of arbitrary size N . In
particular, networks of size N > 3 are considered. The model
for the network continues to be of the form given by Eq. (9),
except that now Z = [z1, z2, . . . , , zN ]T . Once again, when
δ = 0, the network geometry has DN symmetry, where DN is
the group of symmetries of an N-gon.

The dihedral group, DN , has two generators, the cyclic
permutation β1 = (1 2 . . . N ), which is defined by

β1 · Z = (
zβ−1

1 (1), . . . , zβ−1
1 (N )

)
,

and a transposition defined by

β2 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(1 2)(3 N ) · · · (3 + j, N − j) · · ·(
3 + (⌊

N
2

⌋ − 1
)
, N − (⌊

N
2

⌋ − 1
))

N odd,

(1 2)(3 N ) · · · (3 + j, N − j) · · ·(
3 + ⌊

N
2

⌋
, N − ⌊

N
2

⌋)
N even,

where �x� is the floor function. Together β1 and β2 act on the
phase space Z as

β1 · Z = (
zβ−1

1 (1), . . . , zβ−1
1 (N )

)
,

β2 · Z = (
zβ−1

2 (1), . . . , zβ−1
2 (N )

)
.

Since the model Eq. (9) is equivariant under this action
of DN , then F (βZ ) = βF (Z ), where β = {β1, β2}. As it was
discussed earlier with the special cases of N = 3 and N = 4,
when δ �= 0, however, the network is no longer DN symmetric,
since it only retains rotational equivariance under β1 but not
under the transposition β2. Nevertheless, the model equations
retain a combined (Z, μ, α) symmetry: F (β2Z, γ , δ, α) =
β2F (Z, γ ,−δ, α). The linearization of Eq. (9) about the syn-
chronization state, (r j, θk − θ j ) = (1, 0), is

(dF )(1,0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

A B C C . . . C D
D A B C . . . C C
C D A B C . . . C
...

...
...

. . .
. . .

. . .
...

C C . . . C D A B
B C C . . . C D A

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where

A =
[−b −2ε

1 (N − 1)γ

]
, B =

[
0 ε(1 + δ)
0 −γ

]
,

C =
[

0 0
0 −γ

]
, D =

[
0 ε(1 − δ)
0 −γ

]
.

Observe that the case of N = 3 is special since it does
not contain the matrix C in the linearization of the model
dynamics. The case N = 4, and beyond, do have, however,

the generalized structured of the linearization shown above.
Also, observe that the matrix A is the same as before except
that now the term with the coupling strength, γ , contains a
scaling factor of N − 1.

To study the linearized matrix (dF )(1,0), we employ the
well-known isotypic decomposition of CN by DN , which is
given by

CN = V0 ⊕ V1 ⊕ · · · ⊕ VN−1,

where Vj = C{v j}, with

v j = (v, ξ jv, ξ 2 jv, . . . , ξ (N−1) jv)T ,

j = 0, . . . , N − 1, and ξ = exp (2π i/N ), for some v ∈ R. Us-
ing coordinates along the isotypic components, we find the
eigenvalues of (dF )(1,0) to be those of Lj , where

Lj = A + ξ jB + ξ 2 jC + ξ 3 jC + . . . + ξ (N−1) jD,

where j = 0, 1, . . . , N − 1. Since both B and D are odd in δ,
then symmetry-breaking can occur when δ = 0, which leads
to B = D. Using the fact that ξ n− j = ξ j , we get

Lj = A + (ξ j + ξ j )B + (ξ 2 j + ξ 2 j )C + (ξ 3 j + ξ 3 j )C +
. . . + (

ξ
N−1

2 j + ξ
N−1

2 j
)
C, (N > 3 odd)

Lj = A + (ξ j + ξ j )B + (ξ 2 j + ξ 2 j )C + (ξ 3 j + ξ 3 j )C

. . . + (
ξ

N−2
2 j + ξ

N−2
2 j

)
C + ξ

N
2 jC, (N > 2 even).

These expressions can be rewritten as

Lj = A + p jB + q jC (N > 3 odd),

Lj = A + p jB + q jC + (−1) jC, (N > 2 even),

where pj = 2 cos ( 2π
N j), and

q j = 2 cos

(
2π

N
2 j

)
+ . . . + 2 cos

(
2π

N

N − 1

2
j

)
,

(N > 3 odd)m

qj = 2 cos

(
2π

N
2 j

)
+ . . . + 2 cos

(
2π

N

N − 2

2
j

)
,

(N > 2 even),

with the assumption that when N = 4, then qj = 0. The char-
acteristic polynomial associated with the linearized matrices,
Lj , for N > 3 (odd), is

σ 2
j − [(N − 1 − (p j + q j ))γ − b]σ j

− b(N − 1 − (p j + q j ))γ + (2 − p j )ε = 0, (10)

and for N > 2 (even), we get

σ 2
j − [(N − 1 − (−1) j − (p j + q j ))γ − b]σ j−
− b(N − 1 − (−1) j − (p j + q j ))γ + (2 − p j )ε = 0.

(11)

Since the coefficients q j can be rewritten as

q j = p2 j + p3 j + · · · + p N−1
2 j (N > 3 odd),

q j = p2 j + p3 j + · · · + p N−2
2 j, (N > 2 even),
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then direct calculations reveal that when N > 3 (odd) we get

p j + q j =
{

N − 1, j = 0

−1, j = 1, . . . , N − 1,

while in the N > 2 (even) case we have

pj + q j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N − 2, j = 0,

−2 + 2
(

N mod 4
2

)
, j = N

2 ,

0, j odd,

−2, j even, j �= 0, N/2.

Then, the full spectrum of eigenvalues can be obtained
by substituting pi + qi into Eq. (10) and Eq. (11), and then
solving for σ j . However, since cos ( − 2π

N j) = cos ( 2π
N j), then

the matrices, Lj , appear in pairs, i.e., Lj = LN− j , except for
j = 0, (N odd) and j = 0, N/2, (N even). Thus, to get the
eigenvalues of multiplicity two (especially the zero eigen-
value), we need to focus only on j = 1, . . . , �N/2� for N odd,
and j = 1, . . . , N

2 − 1 for N even. In both cases, N odd and
even, the characteristic polynomial associated with multiple
eigenvalues reduces to

σ 2
j − (Nγ − b)σ j − Nbγ + (2 − p j )ε = 0. (12)

The condition of having a double zero eigenvalue leads to
the following critical values of the coupling strength:

γc = 2 − p j

Nb
ε, (13)

which is valid for all values of N > 3. The actual value
of p j depends on the representation of the dihedral group
DN . The analysis that was presented earlier for the cases
N = 3 and N = 4 assumes the standard representation in
which j = 1, with generators (β1, β2), where β1 is the cyclic
rotation generator, while β2 is the transposition generator.
Thus, if we continue to assume the standard representation
of DN , then p j = p1 and the critical value of the coupling
strength associated with the Hopf bifurcation that leads to
stable synchronization in asymmetrically connected networks
with homogeneous oscillators becomes

γc = 1

Nb

(
2 − cos

(
2π

N

))
ε. (14)

Observe that substituting N = 4 into Eq. (14) yields the
previously found critical value of γc = ε/(2b). For the case
of N = 7 oscillators, which was explored (at the beginning
of the manuscript in Sec. II) through numerical simulations,
see Fig. 3, we get γc ≈ 0.1ε/b. In those simulations, we con-
sidered ε = 2.0 and b = 1.868, which yield γc ≈ 0.1. Then,
γ = 0.07 was used to generate Fig. 3.

V. DISCUSSION

In this manuscript, it has been proved that networks of
asymmetrically coupled homogeneous oscillators can support
symmetric states, such as stable synchronization. These re-
sults contradict previous findings [43], where a network with
homogeneous oscillators produced unstable synchronization,
and, subsequently, used those findings to conclude that such
states can only be found to be stable in asymmetrically cou-
pled networks with heterogeneous oscillators. Perturbation
analysis and equivariant bifurcation theory have been used to
show that synchronization states can, and do, exist in both
types of networks. The analysis also shows that the stability
of this symmetric state is governed by a Hopf bifurcation.
A critical parameter for the Hopf bifurcation was found for
asymmetrically coupled networks, with nonhomogeneous and
homogeneous oscillators. In the latter case, the results have
been generalized to networks of arbitrary size. The generaliza-
tion reveals that in the limit, as N → ∞, the phase-coupling
strength, γc, required for achieving stable synchronization is
zero. It follows that when γ = 0 the synchronization state is
stable regardless of whether the network contains homoge-
neous or heterogeneous oscillators.
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