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Vector solitons in nonlocal optical media with pseudo spin-orbit-coupling
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We numerically investigate the existence and stability of nonlocal vector solitons with pseudo spin-orbit-
coupling (SOC). The pseudo SOC is realized by a framework based on the spatial-domain copropagation of two
beams with mutually orthogonal polarizations and opposite transverse components of the carrier wave vectors in
nonlocal optical media. The numerical results show that there are two kinds of solutions for vector solitons, one
is central symmetric, and the other is noncentral symmetric. The solitons may exist below a certain threshold
value of the effective SOC strength in the system.
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I. INTRODUCTION

Ultracold boson gases provide a common platform for sim-
ulating many fundamental phenomena in quantum optics and
condensed matter physics [1,2]. SOC is one of the important
causes of many physical phenomena, but in real physics, the
strength of SOC mainly depends on the material parameters,
and its tunability is very small or not at all. In 2011, the NIST
research team experimentally achieved SOC in Bose-Einstein
condensate (BEC) [3], this discovery provides a new exper-
imental platform for regulating SOC and its related physical
phenomena [4–9]. Moreover, it is extremely important to carry
out related research in other systems to expand the research
universality in the field of SOC.

The field of photonics offers a wide variety of options to
simulate basic effects known in other areas of physics. In
recent years, the study of pseudo SOC in the field of optics
has also been reported. The spatiotemporal light bullets were
studied in dual-core optical waveguides with the intrinsic
self-focusing [10], which is based on the remarkable mech-
anism of the stabilization of two-dimensional (2D) solitons
in BEC with the attractive intrinsic nonlinearity [11]. SOC is
well known because it resembles intermodal dispersion (also
known as dispersion coupling) in optics [12–15]. However,
the Gross-Pitaevskii equation in BEC with SOC is very differ-
ent from the transmission equation in Ref. [10]. The nonlinear
part of Gross-Pitaevskii equation in BEC is similar to the
Manakov system in nonlinear optics [16,17], and the corre-
sponding physical model can be optical fiber arrays [16] or
birefringence fibers [17]. However, the experimental method
to realize the adjustable intermodal dispersion in optical fiber
is more complicated.

Based on the similarity of laser transmission in space and
optical fiber, studies have also been reported to simulate SOC
in BEC by laser transmission in space [18]. In the frame-
work based on the spatial-domain copropagation of two light
beams with mutually orthogonal polarizations and opposite
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transverse components of carrier wave vectors in the local
nonlinear media with randomly varying birefringence, the
solitons were gained with pseudo SOC [18]. And this research
results from the similarity between fundamental dynamical
equations governing the excitation of matter waves in BEC
(the Gross-Pitaevskii equation) and the propagation of waves
in optics (the nonlinear Schrödinger equation). Some relevant
theoretical research results in BEC can be experimentally veri-
fied in optics. In the experimental frame, only basic diffraction
is considered for laser transmission in space, which is dif-
ferent from that in optical fiber. In other words, vanishing
coupling or higher-order dispersion coupling in the vector
system can be reasonably ignored. Next, linear polarized light
can be decomposed into linear superposition of left-polarized
light and right-polarized light, which is the basis for realizing
pseudo SOC in this kind of Manakov system [18,19]. Though
SOC cannot be realized in vector systems in optics as of
now though the term has been already introduced in systems
such as fiber couplers, the original motivation is of emulation
of SOC in Manakov-like systems theoretically here. When
circularly polarized component beams describe cross prop-
agation of orthogonal polarized vector beams, linear terms
similar to spin orbit coupling effects in mathematical form are
derived from the equations. Of course, how to implement it in
experiments remains to be studied.

Compared with the local nonlinear optical medium,
the nonlocal nonlinear optical medium has many remark-
able characteristics. For example, the nonlocal nonlinear
Schrödinger equation (NNLS) is approximated as a linear
model under the strong nonlocal condition [20], and the non-
local nonlinear medium can avoid the two-dimensional beam
collapse [21]. Nonlocal nonlinear media have been playing
an important role in the field of nonlinear optics after more
than 20 years’ development. People have also found some
interesting phenomena, such as 2D accessible solutions in
parity-time symmetric potentials [22], modular installation
[23], and modulation instability in nonlocal Kerr media [24],
nonlocal surface wave solutions [25], and stabilization of
vector soliton complexes [26], etc. More fortunately, in most
isotropic nonlocal media, the nonlinear effect is similar to
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that of Manakov system for the transmission of orthogonal
polarization vector beams [26], so the random birefringence
medium required by local nonlinear medium is avoided, and
it is a real natural physical system that can be easily obtained.
The huge class of parametric nonlinearities, such as quadratic
nonlinear materials, whose nonlinearity is also nonlocal [27],
which has, e.g., enabled the prediction of good regimes for
quadratic soliton pulse compression [28,29]. The nonlocal
nature of the quadratic nonlinearity in fact also explains the
existence of the beautiful X wave [30]. Very appropriately the
response function of parametric interaction is also exponential
[31–34] as the model we use here. For a more detailed discus-
sion of wide applications of nonlocality, see Ref. [35] for a
review.

Intermodal dispersion exists in fiber couplers [12–15], but
it has little influence on the switching characteristics of fiber
couplers [13], and the realization of optical switching phe-
nomenon mainly depends on the linear coupling coefficient
[19]. The cross-transmission physical framework of orthogo-
nal polarization vector beam in Ref. [18] can obviously realize
the optical switching phenomenon, but the realization of the
optical switching phenomenon mainly depends on the pseudo
SOC, rather than the linear coupling coefficient or the Rabi
coupling. Therefore, the optical switching phenomenon can
also be realized when the nonlocal medium adopts cross trans-
mission of orthogonal polarization vector beam, and there is

no linear coupling coefficient or the Rabi coupling because the
isotropic medium is adopted.

II. THEORY MODEL AND NUMERICAL RESULTS

This work aims to simulate SOC effects by designing an
optical development framework in a nonlocal optical medium.
We consider copropagation of optical beams with orthogonal
linear polarizations in the isotropic nonlocal medium. Thus,
the electric constituent of the electromagnetic field can be
taken as

E(x, z, t ) = 1
2 [exEx(x, z, t ) + eyEy(x, z, t )] + c.c. (1)

where ex,y denotes unit vectors transverse to the propagation
axis z, Ex, and Ey being complex amplitudes of the respective
field components, while x is the transverse coordinate, and c.c.
indicates the complex-conjugate contribution. Further, we can
write the field components in Eq. (1) as

Ex = Axeikzz+ikxx−iωt , Ey = Ayeikzz−ikxx−iωt , (2)

assuming opposite signs of the x components of their
wave vectors, which are related to the carrier wavelength,√

k2
x + k2

z = 2πn0/λ, ω and n0 being the respective frequency
and the background refractive index, respectively. In the usual
paraxial approximation [36], the coupled NNLS equations for
slowly varying amplitudes from Eqs. (1) and (2) are gotten
[26],

2ikz
dAx

dz
+ 2ikx

∂Ax

∂x
+ ∂2Ax

∂x2
+ 2k2

0n0n2Ax

∫ ∞

−∞
R(x − τ )[|Ax(τ )|2 + |Ay(τ )|2]dτ = 0,

2ikz
dAy

dz
− 2ikx

∂Ay

∂x
+ ∂2Ay

∂x2
+ 2k2

0n0n2Ay

∫ ∞

−∞
R(x − τ )[|Ax(τ )|2 + |Ay(τ )|2]dτ = 0. (3)

Here, the nonlocality of the materials is supposed to be ruled with an exponential response function R(x) =
1/(2d1/2) exp(−|x|/d1/2), where d is the degree of the nonlocality.

Assuming Q+ = (Ax + iAy)/
√

2, Q− = (Ax − iAy)/
√

2, Eq. (3) is transformed into a system with linear couplings, denoted
by the field variables and their first x derivatives:

2ikz
dQ+

dz
+ 2ikx

∂Q−

∂x
+ ∂2Q+

∂x2
+ 2k2

0n0n2Q+
∫ ∞

−∞
R(x − τ )[|Q+(τ )|2 + |Q−(τ )|2]dτ = 0,

2ikz
dQ−

dz
+ 2ikx

∂Q+

∂x
+ ∂2Q−

∂x2
+ 2k2

0n0n2Q+
∫ ∞

−∞
R(x − τ )[|Q+(τ )|2 + |Q−(τ )|2]dτ = 0. (4)

Then, when we introduce some normalized variables, q+ = w0k0
√

n0n2Q+, q− = w0k0
√

n0n2Q−, ξ = x/w0, ζ = z/(kzw
2
0 ),

where w0 is a scale factor, we can get the final form of the NNLS system,

i
dq+

dζ
+ iα

∂q−

∂ξ
+ 1

2

∂2q+

∂ξ 2
+ q+

∫ ∞

−∞
R(ξ − s)[|q+(s)|2 + |q−(s)|2]ds = 0,

i
dq−

dζ
+ iα

∂q+

∂ξ
+ 1

2

∂2q−

∂ξ 2
+ q−

∫ ∞

−∞
R(ξ − s)[|q+(s)|2 + |q−(s)|2]ds = 0, (5)

where α = kxw0 is a free parameter, which measures the effective SOC strength in the system [18,37].
We search for stationary soliton solutions of Eq. (5) in the form of q±(ξ, ζ ) = u±(ξ )eibζ , where b is a real propagation

constant, and complex functions u± satisfy equations

−bu+ + iα
∂u−

∂ξ
+ 1

2

∂2u+

∂ξ 2
+ u+

∫ ∞

−∞
R(ξ − s)[|u+(s)|2 + |u−(s)|2]ds = 0,

−bu− + iα
∂u+

∂ξ
+ 1

2

∂2u−

∂ξ 2
+ u−

∫ ∞

−∞
R(ξ − s)[|u+(s)|2 + |u−(s)|2]ds = 0. (6)
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FIG. 1. Complex functions (a) u+ and (b) u−, obtained as a
numerical solution of Eq. (6) with α = 1.2, d = 1, and b = 1.3.
(c) and (d): the same for b = 4. Red dashed, blue dashed-dotted, and
black solid lines display, respectively, the real part, imaginary part,
and squared absolute value of solutions. All quantities are plotted in
arbitrary dimensionless units.

To find soliton solutions of Eq. (6), we used the known
squared-operator method [38]. There will be a balance be-
tween the pure real solution and the pure imaginary solution
for u+ and u− in Eq. (6), respectively. That is, u+ and i∂u−/∂x
are the pure real solution, u− and i∂u+/∂x are the pure imag-
inary solution, and vice versa. And the typical solutions are
shown in Figs. 1(a)–1(d). We can see that u+ is the pure real
solution and u− is the pure imaginary solution. When the
propagation constant b is smaller, there will be some small
peaks at the edge of the beam, to see Figs. 1(a) and 1(b).

The curve of the soliton’s total power P = P+ + P− (P± =∫ ∞
−∞ |u±|2dξ ) versus the propagation constant b, represents a

monotonously increasing function, see Fig. 2(a). The differ-
ence between power P+ and P− increases with the increase of
propagation constant b.

We further carry out stability analysis for the solitons
against small perturbations by means of the linearization pro-
cedure. For a given stationary soliton, q±(ξ, ζ ) = u±(ξ )eibζ ,
small perturbations are added as q±(ξ, ζ ) = [u± + εF±eδζ +
ε(G±)∗eδ∗ζ ]eibζ with infinitesimal amplitude ε, where F± and
G± are perturbation eigenfunctions, δ is the corresponding
growth rate, and “∗” stands for the complex conjugation. If
there is at least one solution with Re(δ) > 0, the soliton is
unstable. The following linearized equations are thus gotten
from Eq. (5):

−iδF+ = LF+ + iα
∂F−

∂x
+ ρF− + gu+�n,

−iδG+ = −LG+ + iα
∂G−

∂x
− ρG− − g(u+)∗�n,
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FIG. 2. (a) The powers of each component, P+, P−, and the total
power, P (cyan solid, green dashed, and magenta dashed-dotted lines,
respectively) and (b) the stability parameter Re(δ) versus propagation
constant b for α = 1.2 and d = 1 in Eq. (6). The blue and red
circles correspond to the solitons shown in Figs. 1(a), 1(b) and 1(c),
1(d), respectively. (c)–(f) Results of direct simulations, displayed
by means of the spatiotemporal distribution of the density of the
evolution of the soliton with random-noise perturbations added at the
5% amplitude level. (c) and (d) correspond to Figs. 1(a) and 1(b), re-
spectively; (e) and (f) correspond to Figs. 1(c) and 1(d), respectively.
All quantities are plotted in arbitrary dimensionless units.

−iδF− = LF− + iα
∂F+

∂x
+ ρF+ + gu−�n,

−iδG− = −LG− + iα
∂G+

∂x
− ρG+ − g(u−)∗�n, (7)

where L = (1/2)∂2/∂ξ 2 − b + g
∫ ∞
−∞ R(ξ − s)(|u+(s)|2 +

|u−(s)|2)ds, �n = ∫ ∞
−∞ R(ξ − s){[u+(s)]∗F+(s) + u+(s)

G+(s) + [u−(s)]∗F−(s) + u−(s)G−(s)}ds. The Fourier
collocation method can be used to solve Eq. (7) numerically
[39]. Numerical results demonstrates that the solitons can
be stable, see Fig. 2(b). In the numerical simulation, the
window range is 10π , the number of points is 512, and
the transmission step is 5 × 10−4. In order to check the
robustness of this soliton species, we carry out simulating its
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FIG. 3. (a)–(c) The powers of each component, P+, P−, and the
total power, P, versus the SOC strength α and the degree of the
nonlocality d , respectively. (d) The stability parameter Re(δ) versus
versus the SOC strength α and the degree of the nonlocality d . Other
parameter: b = 4. All quantities are plotted in arbitrary dimension-
less units.

evolution with the addition of 5% random-noise perturbations
The additional random perturbation of the initial beam
is q+′ = q+[1 + 0.05δ(ξ )] and q−′ = q−[1 + 0.05δ(ξ )],
where δ(ξ ) is the random function, which is a homogeneous
distributed random recurrence of a real and imaginary part.
The beam can be fully described by amplitude and phase,
and the formula for additional noise shows that the amplitude
and phase of the beam are added to the noise, which can
represent all the noise sources, and of course, the quantum
noise and amplitude noise are included [40]. The results,
shown in Figs. 2(c)–2(f), corroborate the stability predicted
by the linear-stability analysis.

We calculate the dependence of the soliton power on
the SOC strength α and the degree of the nonlocality d
as shown in Figs. 3(a)–3(c), which shows that the soli-
ton exists below a certain threshold value α ≈ 2.2. And
the threshold value increases slowly with the decrease of
the degree of the nonlocality d . Above the threshold, the
nonlocal nonlinear self-focusing effect can not balance the
walk away effect, which are driven by SOC and diffraction
effect. We have performed the linear-stability analysis for
the solitons, and the results presented in Fig. 3(d) demon-
strate that the solitons are stable in the region where they
exist.
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FIG. 4. Complex functions (a) u+ and (b) u− obeying the cross-
symmetry relation, obtained as a numerical solution of Eq. (6) with
α = 1.2, d = 1, and b = 4. Red dashed, blue dashed-dotted, and
black solid lines display, respectively, the real part, imaginary part,
and squared absolute value of solutions. (c) The powers of each
component, P+, P−, and the total power, P (black solid, red dashed,
and magenta dashed-dotted lines, respectively) and (d) the stabil-
ity parameter Re(δ) versus propagation constant b for α = 1.2 and
d = 1. The red circles correspond to the soliton shown in (a) and
(b). (e) and (f) Results of direct simulations, displayed by means of
the spatiotemporal distribution of the density of the evolution of the
soliton with random-noise perturbations added at the 5% amplitude
level. (e) and (f) correspond to (a) and (b), respectively. All quantities
are plotted in arbitrary dimensionless units.

Next, we address solitons with pure real and imaginary
components obeying the cross-symmetry relation [18,37]. The
typical solitons are shown in Figs. 4(a) and 4(b), and u+ is the
pure real solution and u− is the pure imaginary solution. The
curve of the power P± versus propagation constant b is shown
that P+ ≈ P−, to see Fig. 4(c). We have performed the linear-
stability analysis for the solitons, and the results presented in
Fig. 4(d) demonstrate that the solitons are stable in the region
where they exist. We have also checked the robustness of this
soliton species by simulating its evolution with the addition
of 5% random-noise perturbations. The results, illustrated by
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FIG. 5. (a)–(c) The powers of pure real and imaginary compo-
nents obeying the cross-symmetry relation, P+, P−, and the total
power, P, versus the SOC strength α and the degree of the nonlocality
d , respectively. (d) The stability parameter Re(δ) versus versus the
SOC strength α and the degree of the nonlocality d . Other parameter:
b = 4. All quantities are plotted in arbitrary dimensionless units.

Figs. 4(e) and 4(f), corroborate the stability predicted by the
linear-stability analysis.

Figures 5(a)–5(c) shows the dependence of the power of
the soliton with pure real and imaginary components obey-
ing the cross-symmetry relation on the SOC strength α and
the degree of the nonlocality d . Comparing Figs. 5(b) and
5(c) with Figs. 3(b) and 3(c), they are clearly different. In
Figs. 3(b) and 3(c), P+ and P− change differently when α

and d change. However, we can see that P+ and P− remain
approximately equal when α and d change in Figs. 5(b) and
5(c). Moreover, the soliton may also exist below a certain
threshold value (α ≈ 2.2), which increases slowly with the
decrease of the degree of the nonlocality d . By doing the
linear-stability analysis for the solitons, we have found that the
solitons are also stable if they exist, as presented in Fig. 5(d).

III. CONCLUSION

In conclusion, we have obtained the vector solitons in
nonlocal optical media with pseudo spin-orbit-coupling. The
effective SOC interaction between two copropagating beams
is induced by opposite transverse components of their wave
vectors. Numerical results demonstrate the existence of fam-
ilies of stable solitons in this optical system. As an extension
of the work, it will be interesting to develop it for the spatial-
domain propagation in the bulk medium, which may help to
emulate two-dimensional nonlocal matter-wave solitons in the
optical settings.
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