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Ratchet universality in the bidirectional escape from a symmetric potential well
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The present work discusses symmetry-breaking-induced bidirectional escape from a symmetric metastable
potential well by the application of zero-average periodic forces in the presence of dissipation. We characterized
the interplay between heteroclinic instabilities leading to chaotic escape and breaking of a generalized parity
symmetry leading to directed ratchet escape to an attractor either at ∞ or at −∞. Optimal enhancement of
directed ratchet escape is found to occur when the wave form of the zero-average periodic force acting on
the damped driven oscillator matches as closely as possible to a universal wave form, as predicted by the
theory of ratchet universality. Specifically, the optimal approximation to the universal force triggers the almost
complete destruction of the nonescaping basin for driving amplitudes which are systematically lower than
those corresponding to a symmetric periodic force having the same period. We expect that this work could
be potentially useful in the control of elementary dynamic processes characterized by multidirectional escape
from a potential well, such as forced chaotic scattering and laser-induced dissociation of molecular systems,
among others.

DOI: 10.1103/PhysRevE.103.022203

I. INTRODUCTION

Obtaining full control of the escape from a potential well
is a problem of general interest in science, with broad techno-
logical implications in which the required energy to overcome
the potential barrier can be supplied by both periodic and
nonperiodic forces. Depending upon the force’s features, es-
cape can thus occur via the passage of the system over the
potential barrier which separates the local potential mini-
mum from one or several neighboring attracting domains.
The energy required to surmount the potential barrier can
be provided by different mechanisms, including the cases
of noise-assisted and chaotic escapes. Diverse examples are
known in distinct fields of chemical physics [1,2], electrical
transport [3], astronomy and astrophysics [4–6], hydrodynam-
ics [7–9], and quantum physics [10,11], among many others,
in which escape phenomena can often be well described by
a low-dimensional system of differential equations. Thus, a
deterministic case that has been extensively studied in both
dissipative and Hamiltonian systems is that where noise-free
one-way escape is induced by an escape-inducing periodic
force added to the low-dimensional model system, so that,
before escape, chaotic transients of unpredictable duration
(owing to the fractal character of the basin boundary) are
usually observed for orbits starting from chaotic generic phase

space regions (such as those surrounding separatrices). In this
scenario, the effectiveness of secondary escape-taming peri-
odic forces in suppressing one-way chaotic escape has been
theoretically demonstrated for the case of the main resonance
(between the two forces involved) in the context of dissipative
systems capable of being studied by Melnikov analysis (MA)
techniques [12,13], while its experimental effectiveness has
also been demonstrated [14]. Moreover, the suppression of
bidirectional chaotic escape from a symmetric quartic poten-
tial by secondary escape-taming forces has been demonstrated
in the context of a damped-driven one-well Duffing oscilla-
tor [15]. In the last decades, the interest in the escape of chains
of interacting oscillators out of metastable states [16–19] has
grown in diverse scientific areas, although most of these stud-
ies have focused on the Hamiltonian limiting case.

The case of bidirectional escape from a symmetric po-
tential well appears in diverse physical contexts, including
solid-state turbulence in anisotropic solids [20], oscillating
straight dislocation segments [21], and the boat capsize prob-
lem [22,23], and provides a natural scenario to explore the
control of ratchet escape (i.e., directed escape from a symmet-
ric potential well by symmetry breaking of zero-mean forces).
In this regard, the theory of ratchet universality [24–26]
predicts that there exists a universal force wave form which
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optimally enhances directed transport by symmetry breaking.
For deterministic ratchets, the effectiveness of the theory of
ratchet universality has been demonstrated in diverse phys-
ical contexts in which the driving forces are chosen to be
biharmonic, such as in the cases of cold atoms in opti-
cal lattices [27,28], topological solitons [29], Bose-Einstein
condensates exposed to a sawtoothlike optical lattice po-
tential [30], matter-wave solitons [31], and one-dimensional
granular chains [32]. Also, the interplay between thermal
noise and symmetry breaking in the directed ratchet trans-
port (DRT) of a Brownian particle moving on a periodic
substrate subjected to a homogeneous temporal biharmonic
force [33–35] as well as the cases of a driven Brownian par-
ticle subjected to a vibrating periodic potential [26], a driven
Brownian particle in the presence of non-Gaussian noise [36],
and coupled Brownian motors with stochastic interactions in
the crowded environment [37] have been explained quanti-
tatively in coherence with the degree-of-symmetry-breaking
(DSB) mechanism, as predicted by the theory of ratchet uni-
versality [24,25].

In this present paper, we show that optimum enhance-
ment of ratchet escape is achieved when maximal effective
(i.e., critical) symmetry breaking occurs, i.e., when the wave
form of the zero-average periodic force acting on the system
matches as closely as possible to the exact universal wave
form [24,25]. For the sake of clarity, we consider a simple
paradigmatic model to discuss the bidirectional ratchet es-
cape scenario: a damped-driven one-well Duffing oscillator
described by the equation

..
x + x − 4x3 = −δ

.
x + γ F (t ), (1)

where all the variables and parameters are dimensionless [20]
(δ, γ > 0), while F (t ) is a zero-average T -periodic external
force. When the external force presents the shift symmetry,
i.e., F (t + T/2) = −F (t ), as in the case of a harmonic force
for example, the damped-driven oscillator presents the gener-
alized parity symmetry

S : x → −x, t → t + T/2, (2)

i.e., if [x(t ),
.
x(t )] is a solution of Eq. (1), then so is

[−x(t + T/2),− .
x(t + T/2)]. This means that nonsymmetric

stationary solutions always occur in pairs, including those
escaping to the attractors at ±∞. Here, we deliberately choose
an external force breaking such a generalized parity symmetry
to investigate the directed ratchet escape (DRE) scenario:

F (t ) = Fellip(t ) ≡ sn (�t ; m) cn (�t ; m), (3)

where cn (·; m) and sn (·; m) are Jacobian elliptic func-
tions [37] of parameter m, and � ≡ 2K (m)/T , with K (m)
being the complete elliptic integral of the first kind [38].
Fixing T , the wave form of Fellip(t ) ≡ Fellip(t ; T, m) changes
as the shape parameter m varies from 0 to 1 (see Fig. 1). Phys-
ically, the motivation for this choice is that Fellip(t ; T, m =
0) = sin (2πt/T )/2 and that Fellip(t ; T, m = 1) vanishes; i.e.,
in these two limits DRE is not possible, while it is expected
for 0 < m < 1. Thus, one may expect that the strength of DRE
to exhibit a maximum at a certain critical value m = mc as
the shape parameter m is varied, the remaining parameters
being held constant. The DSB mechanism implies that such a

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.2

0.0

0.2

0.4

t T

F
el
lip

FIG. 1. Elliptic force Fellip(t ) [cf. Eq. (3)] vs t for three values
of the shape parameter: m = 0, 0.984, and 0.9999 (solid curves
of respectively decreasing thickness). The quantities plotted are
dimensionless.

value mc corresponds to a particular force wave form which
optimally enhances the ratchet effect. Furthermore, ratchet
universality requires that such an optimal wave form should
be closely related to that deduced for the case of a biharmonic
force, in the sense of its Fourier series. Indeed, by using the
Fourier series

Fellip(t ) =
∞∑

n=1

nπ2 sech
[ nπK (1−m)

K (m)

]
sin (2nπt/T )

mK2(m)
, (4)

one could expect the critical value mc to be near m = 0.984
since the optimal values for the biharmonic approximation of
the elliptic function are recovered at m = 0.984 (see Ref. [24]
for additional details).

The rest of the paper is organized as follows. In the next
section we obtain analytical estimates of the regions of the
parameter space where chaotic escape events prompted by
heteroclinic bifurcations can occur by using MA. The analysis
of the interplay between such heteroclinic instabilities leading
to chaotic escape and the breaking of the generalized parity
symmetry leading to DRE to an attractor either at ∞ or at
−∞ is provided in Sec. III. Finally, Sec. IV is devoted to a
discussion of the major findings and of some open problems.

II. CHAOTIC ESCAPE THRESHOLD

We assume that the complete system (1) satisfies the
MA requirements, i.e., the dissipation and excitation terms
are small-amplitude perturbations (0 < δ, γ � 1) of the
underlying conservative Duffing oscillator

..
x + x − 4x3 = 0

(see Refs. [39,40] for general background). It should be
emphasized that the criterion for a homoclinic (or hete-
roclinic) tangency—accurately predicted by MA in diverse
systems [7,15,41]—is coincident with the change from a
smooth to an irregular, fractal-looking, basin boundary [42].
It is worth noting that these results connect MA predictions
with those concerning the erosion of the basin boundary in
phase space.
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Straightforward application of MA to Eqs. (1) and (4)
yields the Melnikov function corresponding to the elliptic
force:

M±
ellip(t0) = −D ±

√
2γ

∞∑
n=1

an(m)bn(T ) sin

(
2nπt0

T

)
, (5)

D ≡
√

2δ

6
, (6)

an(m) ≡ nπ2

mK2(m)
sech

[
nπK (1 − m)

K (m)

]
, (7)

bn(T ) ≡ nπ2

T
csch

[√
2nπ2

T

]
, (8)

where the positive (negative) sign refers to the top (bot-
tom) heteroclinic orbit of the underlying conservative Duffing
oscillator:

x0(t ) = ±1

2
tanh(

√
2t/2),

.
x0(t ) = ±

√
2

4
sech2(

√
2t/2).

(9)
If M±

ellip(t0) has a simple zero, i.e., there exists a value t0 such
that M±

ellip(t0) = 0 and ∂M±
ellip(t0)/∂t0 �= 0, then a heteroclinic

bifurcation occurs, signifying the possibility of bidirectional
chaotic escape. From Eq. (5) one sees that a heteroclinic
bifurcation is guaranteed if

δ

γ
< Uellip(m, T ), (10)

where the chaotic threshold function is

Uellip(m, T ) ≡ 6
∞∑

n=1

an(m)bn(T ). (11)

It is worth noting that condition (10) is the same for DRE
to an attractor either at +∞ or at −∞. In other words,
the chaotic threshold condition [Eq. (10)] does not provide
information relating to the effective scape direction for a
given set of parameters and initial conditions. Clearly, this is
because condition (10) is the same for the two heteroclinic
orbits of the underlying conservative Duffing oscillator. From
Eq. (11) one readily obtains Uellip(m, T → 0) = Uellip(m →
1, T ) = 0; i.e., in such limits chaotic escape is not expected
(see Fig. 2).

Let us consider the chaotic threshold as a function of
m, holding T constant. Plots of Uellip(m, T = const) show
that each curve presents a single maximum mmax = mmax(T )
such that mmax(T ) increases as T is increased whenever T is
larger than a certain value T ∗, while Uellip(m, T = const) is
a monotonically decreasing function of m whenever T < T ∗
[see Figs. 2(a) and 2(c)]. Therefore, if one considers fixing the
parameters (δ, γ , T > T ∗) for the system to lie at a periodic
state (i.e., inside the well), then as m is increased a window
of chaotic escape will appear provided the initial periodic
state is sufficiently near the chaotic regime. We now study the
chaotic threshold as a function of T , holding m constant. Plots
of Uellip(m = const, T ) show that each curve asymptotically
tends to a constant value which depends on m:

Uellip(m = const, T → ∞) ∼ 6√
2

∞∑
n=1

an(m) � π (12)

(a)

(b)

(c)

FIG. 2. (a) Contour plot of the chaotic threshold function associ-
ated with the elliptic force Uellip ≡ Uellip(m, T ) [cf. Eq. (11)] vs the
shape parameter m and the driving period T . (b) Chaotic threshold
function Uellip ≡ Uellip(m, T ) [cf. Eq. (11)] vs the driving period T
for m = 0.8 (dashed line), m = 0.99 (dotted line), and m = 1 − 10−8

(solid line). (c) Chaotic threshold function Uellip ≡ Uellip(m, T ) [cf.
Eq. (11)] vs the shape parameter m for T = 4 (dashed line), T = 10
(dotted line), and T = 20 (solid line). The quantities plotted are
dimensionless.

see Fig. 2(b). This means that chaotic escape is facilitated
(i.e., one needs smaller values of the amplitude) when the
driving period is relatively large, holding δ and m constant
[cf. Eq. (10)].
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III. SYMMETRY-BREAKING-INDUCED ESCAPE

We explore in this section the effectiveness of the force
Fellip(t ) [Eq. (3)] at controlling the strength of DRE in Eq. (1).
It is worth recalling that the existence of a universal wave form
for optimal enhancement of DRT is a direct consequence of
the DSB mechanism: It is possible to consider a quantitative
measure of the DSB on which the strength of directed trans-
port by symmetry breaking must depend. This mechanism has
led to the unveiling of a criticality scenario for DRT. Indeed, it
has been shown that optimal enhancement of DRT is achieved
when maximal effective (i.e., critical) symmetry breaking oc-
curs, which is in turn a consequence of two reshaping-induced
competing effects: the increase of the DSB and the decrease
of the (normalized) maximal transmitted impulse over a half-
period (I[ f ] ≡ | ∫T/2 f (t )dt |; see Refs. [24,25] for additional
details), thus implying the existence of a particular force wave
form which optimally enhances DRT. The definitions of the
DSB of the symmetries of a T -periodic zero-mean ac force
f (t ) are included here for the sake of completeness:

Ds[ f ] ≡
〈− f (t + T/2)

f (t )

〉
T

≡ 1

T

∫ T

0

− f (t + T/2)

f (t )
dt,

D+[ f ] ≡
〈

f (−t )

f (t )

〉
T

≡ 1

T

∫ T

0

f (−t )

f (t )
dt, (13)

D−[ f ] ≡ −D+[ f ],

where increasing deviation of Ds,+,−[ f ] from 1 (unbroken
shift and reversal symmetries, respectively) indicates an in-
crease in the DSB (see Refs. [24,25] for additional details). In
the case of the elliptic force Fellip(t ), such reshaping-induced
competing effects are clearly operating when m varies be-
tween 0 and 1, while the optimal enhancement of the ratchet
effect is expected to occur at the critical value mc 
 0.984, as
already explained in Sec. I. Indeed, we found that the impulse
transmitted by the elliptic force per unit of period over a
half-period

I ≡ 1

T

∫ T/2

0
Fellip(t )dt = [2K (m)(1 + √

1 − m)]−1 (14)

is a monotonously decreasing function of the shape parame-
ter, while the quantifier of the DSB associated with its shift
symmetry is a monotonously increasing function of the shape
parameter [cf. Eq. (13)]:

Ds[Fellip] = 2E (m)√
1 − mK (m)

, (15)

where E (m) is the complete elliptic integral of the second
kind [38] (see Fig. 3).

For the bidirectional escape model (1), the initial condi-
tions will determine, for a fixed set of its parameters, whether
the system escapes to an attractor at ±∞ or settles into
a bounded oscillation. Similarly to the case of noise-free
one-way escape [7], there can exist a rapid and dramatic
erosion of the safe basin (union of the basins of the bounded
attractors) due to encroachment by the basins of the attrac-
tors at ±∞ (escaping basins). The basins of attraction were
computed using a fourth-order Runge-Kutta algorithm with
time steps in the range �t = 0.005–0.01. To numerically
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FIG. 3. Quantifier of the DSB associated with the shift symmetry
Ds [cf. Eq. (15); solid line] and impulse transmitted by the elliptic
force per unit of period over a half-period [cf. Eq. (14); dashed line]
vs the shape parameter m. The quantities plotted are dimensionless.

generate the basins of attraction, we considered a grid of
(uniformly distributed) 401 × 401 starting points in the re-
gion of phase space x(t = 0) ∈ [−0.5, 0.5] and

.
x(t = 0) ∈

[−0.3535, 0.3535], and we selected those initial conditions
inside the region bounded by the separatrix formed by the
two heteroclinic orbits [Eq. (9)]. From this selected set of
initial conditions, each integration is continued until either
x (−x) exceeds 5, at which point the system is deemed to
have escaped to the attractor at ∞ (−∞), or the maximum
allowable number of cycles, here 20, is reached. To provide
a quantitative measure of the DRE strength, we calculated
the escape probabilities P± associated with escape to the at-
tractors at ±∞, respectively, and the total escape probability
PT = P+ + P− versus the shape parameter m. The escape
probability is P± ≡ N±/Nsep, where N± is the (corresponding)
number of starting points from which the system is deemed
to have escaped and Nsep = 106 673 is the number of starting
points inside the separatrix according to the aforementioned
criterion.

In the case of a shift-symmetric (harmonic) force (m = 0),
we assume that the system presents a slight erosion of the
nonescaping basin for a fixed set of parameters (δ, γ , T )
satisfying the chaotic threshold condition [cf. Eq. (10)]. No-
tice that the escape probabilities P+(m = 0) and P−(m = 0)
are expected to be different because of the temporal shift
between the corresponding solutions escaping to ∞ and −∞
[cf. Eq. (2)]. Figure 4 shows an illustrative example com-
paring the cases corresponding to six values of the shape
parameter m = 0, 0.8443, 0.8665 ≈ mmax(T = 2π/0.5268),
0.984 ≈ mc, 0.9895, 0.998 [cf. Figs. 4(a) to 4(f), respectively]
for the parameters δ = 0.2, γ = 0.28, and T = 2π/0.5268.
Our numerical experiments have typically shown that the
escape probability P+ can present one or two maxima as
the shape parameter m is increased from 0, the remaining
parameters being held constant [see Fig. 5(a)]. The lower
local maximum, mchaos

max , which can exist or not depending
upon the particular value of T (cf. Sec. II), is systematically
associated with the corresponding maximum mmax = mmax(T )
of the chaotic threshold function [Eq. (11)]. Indeed, the wave
forms associated with the values m = 0.8443 ≈ mchaos

max and
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(f) m = 0.998

(a) m = 0

(b) m = 0.8443 (e) m = 0.9895

(c) m = 0.8665

FIG. 4. Escaping and nonescaping basins of the one-well Duffing oscillator subjected to the elliptic force Fellip(t ; T, m) [cf. Eqs. (1) and (3)]
for δ = 0.2, γ = 0.28, T = 2π/0.5268, and six values of the shape parameter: m = 0 (a), m = 0.8443 ≈ mnum

max (b), m = 0.8665 ≈ mmax(T =
2π/0.5268) (c), m = 0.984 ≈ mc (d), m = 0.9895 ≈ mratchet

max (e), and m = 0.998 (f). The color cyan (pale gray) represents the escaping basin
towards the attractor at −∞, the color blue (black) represents the escaping basin towards the attractor at ∞, and the blank regions represent
the nonescaping basin. The quantities plotted are dimensionless.
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FIG. 5. Escape probabilities P+ (a), P− (b), and PT (c) (see the text) vs the shape parameter m. Versions (d), (e), and (f) show enlargements
of the versions (a), (b), and (c) over the range 0.98 < m < 1, respectively. System parameters: δ = 0.2, γ = 0.28, and T = 2π/0.5268. The
quantities plotted are dimensionless.

0.8665 ≈ mmax(T = 2π/0.5268) are hardly distinguishable,
which is a consequence of the dependence of K (m) on m [38],
and thereby the respective escaping and nonescaping basins
are quite similar [compare Figs. 4(b) and 4(c)]. The fact that
the escape probability P− does not present a local maximum at
mchaos

max [cf. Fig. 5(b)] means that such a local maximum of P+
is a result of the conjoint effects of heteroclinic instabilities
and DRE. The absolute maximum of P+ is systematically
associated with the critical value mc (cf. Sec. I), as is shown in
Figs. 5(a) and 5(d). Similarly to the relative maximum mchaos

max ,
one finds that the absolute maximum is not associated with
a sharp peak of the escape probability, but rather it is nearly
a plateau over a certain short range of the shape parameters
which is very close to the value m = 0.984. Again, note
that the wave forms associated with the values 0.984 ≈ mc

and 0.9895 ≈ mratchet
max (absolute maximum) are hardly distin-

guishable for the same aforementioned reason, the respective
escaping and nonescaping basins being therefore quite similar
[compare Figs. 4(d) and 4(e)]. Figures 6(a) and 6(b) show
that the fractal-like fingers protruding into the nonescaping
basin are similar for these two m values. While the condi-
tion for the onset of heteroclinic instabilities [cf. Eqs. (10)
and (11) with δ = 0.2, γ = 0.28, T = 2π/0.5268], and hence
for the appearance of fractal basin boundaries, is satisfied
over a wide range of shape parameters containing the window
m ∈ [0, mratchet

max ], one finds that the large-scale destruction of
the nonescaping basin solely occurs around mratchet

max . Remark-
ably, the escape probability P− presents sharp local maxima
at values of m near the edges of the aforementioned plateau
[see Fig. 5(e)], while it presents an overall decreasing behavior
as a function of the shape parameter from m = 0 because of
the ratchet effect [see Fig. 5(b)]. Also, all the escape prob-
abilities P+, P−, and PT present a decreasing behavior as

m → 1 (see Fig. 5) because the impulse transmitted by the
elliptic force per unit of period over a half-period [Eq. (14)]
is a monotonously decreasing function of the shape param-
eter and Fellip(t ; T, m = 1) vanishes. It is worth mentioning
that we found similar results for other sets of parameters,
i.e., the enhancement of the dramatic erosion and stratifi-
cation of the nonescaping basin is a genuine feature of the
DRE scenario associated with the universal force wave form
[compare Figs. 4(a) and 4(d)]. Furthermore, we found that
the optimal ratcheting force Fellip(t ; T, m = mratchet

max ) triggers
the almost complete destruction of the nonescaping basin
for driving amplitudes which are systematically lower than
those corresponding to the shift-symmetric (harmonic) force
Fellip(t ; T, m = 0) [compare Figs. 4(e), 7(b), and 7(c)].

IV. CONCLUSIONS

In summary, we have investigated the effectiveness of zero-
average periodic forces at yielding directed ratchet escape
from a symmetric potential well by considering an asymmet-
ric external periodic force. Optimal enhancement of directed
ratchet escape is predicted to occur when the wave form of the
zero-average periodic force acting on a damped driven oscil-
lator matches as closely as possible to a biharmonic universal
wave form, as predicted by the theory of ratchet universality.
Our numerical experiments confirmed those findings, as well
as revealed the interplay between heteroclinic instabilities
leading to chaotic escape and breaking of a generalized parity
symmetry leading to directed ratchet escape to an attractor
either at ∞ or at −∞. Specifically, the optimal approximation
to the biharmonic universal force triggers the almost complete
destruction of the nonescaping basin for driving amplitudes
which are systematically lower than those corresponding to a
symmetric periodic force having the same period.
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FIG. 6. Detail of the escaping and nonescaping basins of the one-
well Duffing oscillator subjected to the elliptic force Fellip(t ; T, m)
[cf. Eqs. (1) and (3)] corresponding to the windows −0.03 � x �
0.03 and −0.12 � .

x � −0.06 for m = 0.984 ≈ mc (a) and m =
0.9895 (b) [cf. Figs. 4(d) and 4(e), respectively]. The color cyan (pale
gray) represents the escaping basin towards the attractor at −∞, the
color blue (black) represents the escaping basin towards the attractor
at ∞, and the blank regions represent the nonescaping basin. System
parameters: δ = 0.2, γ = 0.28, and T = 2π/0.5268. The quantities
plotted are dimensionless.

We should emphasize that the directed-ratchet-escape sce-
nario we have discussed is general enough to be applied
to many other dissipative nonautonomous systems. Specif-
ically, such a scenario can be readily tested experimentally
(for instance, in driven quantum Josephson circuits [11]) and
can find application for improving the control of elementary
dynamic processes characterized by multidirectional escape
from a potential well, such as forced chaotic scattering [43]
and transport phenomena in dissipative lattices as well as
diverse atomic and molecular processes [44]. Additionally,
a natural extension of this work would be to investigate the
directed ratchet escape of a chain of coupled driven oscillators
over the barriers of a metastable symmetric potential both in
the presence and in the absence of dissipation (Hamiltonian

(a) γ = 0.285

(b) γ = 0.2853

(c) γ = 0.28537

FIG. 7. Escaping and nonescaping basins of the one-well Duff-
ing oscillator subjected to the shift-symmetric (harmonic) force
Fellip(t ; T, m = 0) [cf. Eqs. (1) and (3)] for δ = 0.2, T = 2π/0.5268,
and three values of the driving amplitude: γ = 0.285 (a), γ = 0.2853
(b), and γ = 0.285 37 (c). The color cyan (pale gray) represents the
escaping basin towards the attractor at −∞, the color blue (black)
represents the escaping basin towards the attractor at ∞, and the
blank regions represent the nonescaping basin. The quantities plotted
are dimensionless.
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limiting case). We would like to investigate this issue in the
near future.
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