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Thermodynamic uncertainty relation for energy transport in a transient regime: A model study
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We investigate a transient version of the recently discovered thermodynamic uncertainty relation (TUR) which
provides a precision-cost trade-off relation for certain out-of-equilibrium thermodynamic observables in terms
of net entropy production. We explore this relation in the context of energy transport in a bipartite setting for
three exactly solvable toy model systems (two coupled harmonic oscillators, two coupled qubits, and a hybrid
coupled oscillator-qubit system) and analyze the role played by the underlying statistics of the transport carriers
in the TUR. Interestingly, for all these models, depending on the statistics, the TUR ratio can be expressed as a
sum or a difference of a universal term which is always greater than or equal to 2 and a corresponding entropy
production term. We find that the generalized version of the TUR, originating from the universal fluctuation
symmetry, is always satisfied. However, interestingly, the specialized TUR, a tighter bound, is always satisfied
for the coupled harmonic oscillator system obeying Bose-Einstein statistics. Whereas, for both the coupled qubit,
obeying Fermi-like statistics, and the hybrid qubit-oscillator system with mixed Fermi-Bose statistics, violation
of the tighter bound is observed in certain parameter regimes. We have provided conditions for such violations.
We also provide a rigorous proof following the nonequilibrium Green’s function approach that the tighter bound
is always satisfied in the weak-coupling regime for generic bipartite systems.
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I. INTRODUCTION

Small scale systems are prone to fluctuations [1]. Char-
acterizing and quantifying thermal and quantum fluctuations
for small scale systems are therefore important both from the
fundamental and as well as practical points of view [2,3]. The
last two decades have seen a plethora of interesting works
in this direction. In particular, the discovery of nonequilib-
rium universal fluctuation relations [4–14], concerning the
microscopic description of systems, have provided a deeper
understanding about nonequilibrium thermodynamics and
have greatly contributed in establishing the rapidly growing
field of stochastic and quantum thermodynamics [15–18].

Along this direction, very recently an interesting trade-off
relation involving relative fluctuations of certain nonequilib-
rium observables has been put forward, providing a lower
bound on these fluctuations in terms of the associated entropy
production. Various versions of this relation, now collec-
tively referred to as the thermodynamic uncertainty relations
(TURs), have been proposed and furthermore its generality
has been examined in many different contexts, such as for
steady-state systems following classical Markovian dynam-
ics, periodically driven systems, quantum transport problems,
molecular motors, finite-time statistics, first-passage times,
etc. [19–68]. Parallel to these theoretical developments, ex-
perimental studies of TURs for classical and quantum systems
have also been reported very recently [68–71].

Here we are interested in understanding the transient
version of the TUR in the context of energy exchange
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that takes place between two quantum systems which are
initially equilibrated at different temperatures. For such trans-
port, a nonuniversal tighter version of the TUR bound
(T-TUR) [19–22], is given as (we set kB = 1)

〈Q2〉c

〈Q〉2
� 2

〈�〉 , (1)

where Q, a stochastic variable, is the integrated energy current
over a certain time duration. 〈Q〉 and 〈Q2〉c represent the
average energy exchange and the corresponding noise, respec-
tively. 〈�〉 � 0 represents the average entropy production in
the energy exchange process and further characterizes how far
the composite system is driven away from the initial condi-
tion. This bound was first put forward for steady-state systems
driven by multiple affinities [19] in the linear response regime
and later a rigorous proof was given for systems following
continuous-time Markov jump processes [20].

A loose but a generalized version of the bound (G-TUR1)
compared to Eq. (1) [42] was recently derived following the
fundamental energy exchange fluctuation theorem (XFT) re-
lation [9], where the right-hand side of Eq. (1) was modified
to

〈Q2〉c

〈Q〉2
� 2

exp 〈�〉 − 1
. (2)

In fact, a tighter version [still loose compared to Eq. (1)] of
the generalized bound in Eq. (2) was obtained by Timpanaro
et al. [56] (G-TUR2), given as

〈Q2〉c

〈Q〉2
� f (〈�〉), (3)
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where f (x) = csch2(g(x/2)) and g(x) is the inverse function
of x tanh(x).

Of course, it is clear that systems satisfying the XFT
will follow the G-TUR1 and G-TUR2. However, it is still
an interesting question to ask under what conditions the
tighter version, i.e., the T-TUR bound in Eq. (1), will be
preserved. Very recently, the usefulness of the T-TUR bound
was proposed to infer the net entropy production for complex
nonequilibrium systems [72].

In this work, we analyze TUR bounds for quantum energy
transport by focusing on three different model systems char-
acterized by different quantum statistics: bosonic, fermionic,
and hybrid Fermi-Bose statistics for the transport carriers.
Since it is well known that quantum statistics plays a key
role in the transport properties, we ask, how does it affect
the transient TUR bounds? Interestingly, we find that when
energy exchange takes place between two simple quantum
harmonic oscillators, obeying Bose-Einstein statistics, the T-
TUR in Eq. (1) is always satisfied, whereas in the other
extreme scenario, i.e., when each system consists of a single
qubit, following Fermi-like statistics, violation for the T-TUR
is observed in certain parameter regimes. As a final interesting
example, we consider a hybrid setup consisting of a single
quantum harmonic oscillator and a qubit and analyze the
impact of hybrid statistics on the TUR. We also show that
for a general bipartite setup, the T-TUR is always satisfied in
the weak-coupling regime. Expectedly, in all these setups, the
generalized version of TUR is satisfied due to the underlying
XFT for energy exchange.

The paper is organized as follows: We start in Sec. II with a
brief introduction about obtaining the characteristic function
(CF) for the energy exchange following the two-time mea-
surement protocol and describe the associated XFT. In Sec. III
we introduce three toy models, provide derivation for the
exact CFs, and analyze the corresponding TUR. In Sec. IV we
provide a proof for the T-TUR in the weak-coupling regime
in both transient and steady-state limits. We summarize our
main findings in Sec. V. We delegate certain details to the
Appendixes.

II. ENERGY EXCHANGE STATISTICS AND THE
CHARACTERISTIC FUNCTION

In this section we briefly outline the theory behind ob-
taining the quantum energy exchange statistics for a generic
out-of-equilibrium bipartite setup. Under this setting, one
considers two systems with Hamiltonians H1 and H2 that
are initially (t = 0−) decoupled with composite density ma-
trix given by a product state, ρ(0) = ρ1 ⊗ ρ2, with ρi =
exp [−βiHi]/Zi, i = 1, 2, being the initial Gibbs thermal state
with inverse temperature βi = 1/Ti (we set kB = h̄ = 1) and
Zi = Tr[e−βiHi ] is the corresponding canonical partition func-
tion. To allow energy exchange, an interaction term between
the two systems, denoted as V , is suddenly switched on at
t = 0 and suddenly switched off after a duration of t = T .
The composite system in this interval evolves unitarily with
the total Hamiltonian H = H1 + H2 + V.

It is now a well known fact that for quantum systems
quantities such as integrated energy current, work, or the
associated entropy production are not direct observables but

rather depend on the measurements of relevant Hamiltonians
at the initial and final times of the process. Therefore, to con-
struct the probability distribution function (PDF) [10,11,14]
for energy exchange, projective measurements of the system
Hamiltonians H1 and H2 should be carried out simultaneously
in the beginning and at the end of the process. Following this,
the joint PDF, pT (�E1,�E2), corresponding to the energy
change (�Ei, i = 1, 2) of both the systems can be constructed
as

pT (�E1,�E2)=
∑
m,n

(
2∏

i=1

δ
(
�Ei − (

εi
m − εi

n

)))
pT

m|n p0
n,

(4)
where p0

n = ∏2
i=1 e−βiε

i
n/Zi corresponds to the probability to

find the system initially in the common energy eigenstate
|n〉 = |n1, n2〉 of the composite system where |ni〉 and εi

n are
energy eigenstate and eigenvalue, respectively, of system i
after the first projective measurement. The second projective
measurement at the final time (t = T ) leads to the collapse
of the state of the composite system to another common
energy eigenstate |m〉 = |m1, m2〉. The transition probability
between these states is given by pT

m|n = |〈m|U (T, 0)|n〉|2 with
U (t, 0) = e−iHt being the global unitary propagator with the
total Hamiltonian H . Now one can show that for autonomous
and time-reversal invariant quantum systems evolving unitar-
ily pT

m|n = pT
n|m. This condition is also known as the principle

of microreversibility in the literature [10,11]. Using this
condition in Eq. (4) one receives the following universal sym-
metry for this joint PDF:

pT (�E1,�E2) = eβ1�E1+β2�E2 pT (−�E1,−�E2). (5)

At this junction, it is important to point out that under the
general coupling scenario the energy change of an individual
system cannot be interpreted as heat, as a part of the energy
change may be used in turning on and off the interaction
(V ) between the two systems. However, in the weak-coupling
limit (V � H1,2), it is safe to interpret this energy change as
heat. One can then define heat as Q = −�E1 ≈ �E2 which
following Eq. (5) then leads to a heat exchange fluctuation
relation (XFT)

pT (Q) = e�βQ pT (−Q), (6)

where �β = β2 − β1. As per our convention, heat flowing out
from system 1 to system 2 is considered positive.

The central object of interest in our work is the CF corre-
sponding to the PDF for energy exchange which is obtained
by performing a Fourier transformation (FT) of the probability
distribution:

χT (u) =
∫

dQ eiuQ pT (Q)

= Tr[U†(T, 0)(e−iuH1 ⊗ 12)U (T, 0)(eiuH1 ⊗ 12)ρ(0)].

(7)

Here u is a variable conjugate to Q. In terms of CF, the
XFT for heat in Eq. (6) translates to χT (u) = χT ( − u +
i�β ) [9,73–77].

It is important to note that, for a special choice of the
coupling Hamiltonian V, satisfying the commutation relation
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(a)

(b)

(c)

FIG. 1. Schematic for three different toy models that we inves-
tigate in this paper: (a) the coupled two-oscillator system, (b) the
coupled two-qubit system, and (c) the coupled hybrid qubit-oscillator
system. Each system is prepared initially in equilibrium at a partic-
ular inverse temperature βi = 1/kBTi. A finite thermal coupling with
coupling strength J allows energy exchange between the systems.

[V, H1 + H2] = 0, the total internal energy H1 + H2 is a con-
stant of motion which implies that the change of energy for
one system is exactly compensated by the other one. In other
words, there is no energy cost involved in turning on and off
the interaction between the systems. Such a type of coupling
is known as the thermal coupling. Therefore, under this sym-
metry condition the definition for heat, Q = −�E1 = �E2,
becomes exact for arbitrary coupling strength. More gener-
ally, the XFT for heat is preserved exactly in this limit (see
Appendix A for the details of the proof following the CF of
heat).

In what follows, we study three different toy models with
different underlying quantum statistics in the thermal coupling
limit, thus getting rid of any ambiguity with the definition
for heat. We derive exact analytical expressions for the CF
and then analyze the impact of quantum statistics on the TUR
bounds.

III. MODELS AND TUR

A. Two-oscillator system

As a first example, we consider a bipartite setup where each
system consists of a single quantum harmonic oscillator [see
Fig. 1(a)]. The total Hamiltonian is given as

Hosc = ω0a†
1a1 ⊗ 12 + 11 ⊗ ω0a†

2a2

+ J (a†
1 ⊗ a2 + a†

2 ⊗ a1), (8)

where the first two terms (H1 = ω0 a†
1a1 ⊗ 12 and H2 = 11 ⊗

ω0a†
2a2) correspond to two noninteracting quantum harmonic

oscillators with ai (a†
i ) being the bosonic annihilation (cre-

ation) operator for the ith oscillator. The last term, denoted
here as V , represents a bilinear interaction between the oscilla-
tors with coupling strength J . Note that the frequency of both
the oscillators (ω0) is chosen to be identical which ensures
the thermal coupling condition, i.e., [V, H1 + H2] = 0. Recall
that, before turning on the interaction V , each oscillator is
thermalized independently at a particular temperature which
can be achieved by placing the system in weak contact with a
thermal bath. After that, the oscillators are separated from the
bath and the interaction between them is turned on to allow
energy exchange for a certain duration T . The corresponding
cumulant generating function (CGF) Gosc

T (u) = ln χosc
T (u) can

be obtained exactly and is given as

Gosc
T (u) = − ln[1 − sin2(JT ){n1(ω0) (1 + n2(ω0))(eiuω0 − 1)

+ n2(ω0)(1 + n1(ω0))(e−iuω0 − 1)}], (9)

where ni(ω0) = (eβiω0 − 1)−1, i = 1, 2, is the Bose-Einstein
distribution function. We provide the derivation of Eq. (9)
in Appendix C by employing the Keldysh nonequilibrium
Green’s function (NEGF) approach [78–82]. Note that a sim-
ilar model was previously studied in the context of fluctuation
symmetry where the CGF was obtained only in the weak-
coupling regime [83]. Very recently, this model was studied in
the context of quantum heat engines [62]. It is easy to verify
that the above CGF expression preserves the XFT for arbitrary
T , J , β1, and β2.

To analyze the TUR bound, we now get the expressions
for the average energy change and the associated noise. These
are easily obtained by taking successive derivatives of Gosc

T (u)
with respect to iu. We receive, (for notational compactness,
below we denote ni(ω0) as ni)

〈Q〉osc = ω0TT (J )[n1 − n2], (10)

〈Q2〉osc
c = ω2

0[TT (J )(n1(1 + n2) + n2(1 + n1))

+ T 2
T (J ) (n1 − n2)2], (11)

where we define TT (J ) = sin2 (JT ). Since the second term
in Eq. (11) is always positive, we receive the following
inequality,

〈Q2〉osc
c � ω2

0TT (J )(n1(1 + n2) + n2(1 + n1)), (12)

where the equality sign corresponds to an equilibrium sit-
uation, i.e., β1 = β2. We now make use of the following
important relation involving the Bose-Einstein distribution
function,

n1(1 + n2) + n2(1 + n1) = coth
�βω0

2
(n1 − n2) (13)

� 2

�βω0
(n1 − n2), (14)

where in the second line we have used the inequality
x coth(x) � 1. Substituting this in Eq. (12) and using Eq. (10),

it is easy to see that �β
〈Q2〉osc

c
〈Q〉osc � 2, which implies that for

the coupled quantum harmonic oscillator setup displaying
bosonic statistics the T-TUR is always satisfied.
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FIG. 2. (a) Plot for average energy change 〈Q〉osc (solid line), fluctuation 〈Q2〉osc
c (dashed line), and the corresponding TUR ratio

�β〈Q2〉osc
c /〈Q〉osc (dash-dotted line) as a function of JT . For reference a line is drawn at the value 2. The parameters are β1ω0 = 0.5, β2ω0 = 1.

(b) Two-dimensional plot for TUR ratio (�β
〈Q2〉osc

c
〈Q〉osc ) as a function of JT and β2ω0. We set β1ω0 = 0.1.

In fact, an interesting observation can be made by arrang-

ing the TUR ratio (�β
〈Q2〉osc

c
〈Q〉osc ) using the expressions for the

cumulants [Eqs. (10) and (11)] and Eq. (13). One receives

�β
〈Q2〉osc

c

〈Q〉osc
= �βω0 coth

�βω0

2
+ 〈�〉osc � 2. (15)

Interestingly, the first term here is independent of the coupling
information between the systems and is always greater than
or equal to 2 (equality holds in equilibrium). In contrast,
the second term is exactly the average entropy production
〈�〉osc = �β〈Q〉osc for the oscillator system which along with
the temperature difference also importantly depends on the di-
mensionless coupling JT . As the average entropy production
always remains positive, 〈�〉osc � 0, once again we arrive at
the same conclusion that the T-TUR for this setup is always
satisfied. Also note that the validity of T-TUR immediately
implies that the G-TUR1 [Eq. (2)] and G-TUR2 [Eq. (3)]
are also trivially obeyed. Note that the meaning of entropy
production should be understood here as the entropy that gets
produced in the heat baths when we couple each subsys-
tem with their respective heat baths after switching off the
interaction V at the end of the energy exchange process at
time T .

In Fig. 2(a) we plot the first two cumulants and the
corresponding TUR ratio as a function of JT . Figure 2(b)
corresponds to a two-dimensional plot for the TUR ratio as a
function of JT and β2ω0. We set β1ω0 = 0.1 in the simulation.
The cumulants as well as the TUR ratio oscillate with JT
with periodicity π . The value for the TUR ratio is always
larger than 2 and matches with the theoretical prediction. For
a fixed value of JT , the TUR ratio increases monotonically
with increasing �β.

B. Two-qubit system

We next consider another toy model, which we refer here
as the XY model, consisting of two qubits [see Fig. 1(b)]. We

write the total Hamiltonian as

HXY = ω0

2
σ z

1 ⊗ 12 + 11 ⊗ ω0

2
σ z

2

+J

2

(
σ x

1 ⊗ σ
y
2 − σ

y
1 ⊗ σ x

2

)
, (16)

where σi, i = x, y, z, are the standard Pauli matrices. Once
again, this model satisfies the thermal coupling condition.
Very recently, this model was experimentally realized by some
of us in the nuclear magnetic resonance (NMR) setup to assess
the validity of the transient TUR by obtaining the cumulants
of energy exchange following the quantum state tomography
technique [69]. The same model was also used earlier to
examine the XFT by measuring the CF for heat exchange em-
ploying the ancilla-based interferometric technique [84–87].
We therefore keep some of our discussion here brief and
request the readers to see Ref. [69] for the details about the
model.

One can analytically compute the CGF of the energy ex-
change following Eq. (7) by performing simple algebraic
manipulations of the Pauli matrices, which yields [87]

Gspin
T (u) = ln[1 + sin2(JT ){ f1(ω0) (1 − f2(ω0))(eiuω0 − 1)

+ f2(ω0)(1 − f1(ω0))(e−iuω0 − 1)}], (17)

where fi(ω0) = (eβiω0 + 1)−1, i = 1, 2, is the Fermi-like dis-
tribution function. Once again the XFT is obeyed for arbitrary
J , T , β1, and β2 due to the thermal coupling symmetry. At
this point, it is important to compare the CGF in Eq. (17) with
the CGF for the coupled oscillator in Eq. (9). First of all, for
both these models, interestingly the JT dependence appears
in the same functional form TT (J ) = sin2 (JT ). In fact, in this
context it is simply the transition probability between states
|01〉 and |10〉, i.e., TT (J ) = |〈10|U (T, 0)|01〉|2 [|0〉 (|1〉) refers
to the ground (excited) state for the qubit]. Second and most
importantly, there are crucial sign differences in terms of the
Bose and Fermi-like functions, reflecting the key difference
between a two-level spin system and an infinite-level har-
monic oscillator system. In fact, because of this crucial sign
change for the qubit setup, a looser bound for TUR appears,
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as we show below. We once again write down the first two
cumulants following the CGF as

〈Q〉spin = ω0TT (J )[ f1 − f2], (18)

〈Q2〉spin
c = ω2

0[TT (J )( f1(1 − f2) + f2(1 − f1))

− T 2
T (J ) ( f1 − f2)2]. (19)

Interestingly, for a Fermi-like function also a relation similar
to Eq. (13) exists, given as

f1(1 − f2) + f2(1 − f1) = coth
�βω0

2
( f1 − f2). (20)

This helps us to organize the cumulants and to receive the
TUR ratio as

�β
〈Q2〉spin

c

〈Q〉spin
= �βω0 coth

[
�βω0

2

]
− 〈�〉spin. (21)

Once again this expression should be compared with Eq. (15).
The first term is the same as before. However, the apparent
sign differences between the two models reflect in the second
term where the average entropy production term appears as
a negative contribution to the TUR ratio. It is therefore not
immediately obvious that this coupled two-qubit model will
satisfy the T-TUR bound. In what follows we therefore first
get an upper bound on the average entropy production and
thereby provide a lower bound for the TUR. Interestingly, this
helps us to find a condition on TT (J ) for which the T-TUR is
respected.

We first note that the Fermi-like function can be alterna-
tively written as

fi = 1

eβiω0 + 1
= 1

2

(
1 − tanh

βiω0

2

)
. (22)

With the help of this expression, we write down the net en-
tropy production as

〈�〉spin = �βω0TT (J )

2

[
tanh

β2ω0

2
− tanh

β1ω0

2

]

= �βω0TT (J )

2

[(
tanh

�βω0

2

)

×
(

1 − tanh
β1ω0

2
tanh

β2ω0

2

)]
. (23)

Now since βi is always positive and tanh x is a bounded func-
tion between (0,1) for x > 0, the second term in the product
in the above equation is always <1, which gives us

tanh
�βω0

2
� tanh

β2ω0

2
− tanh

β1ω0

2
, (24)

and therefore, we receive an upper bound for the average
entropy production,

〈�〉spin � �βω0TT (J )

2
tanh

�βω0

2
, (25)

which finally translates to a lower bound on the TUR ratio for
this model as

�β
〈Q2〉spin

c

〈Q〉spin
� �βω0

[
coth

�βω0

2
− TT (J )

2
tanh

�βω0

2

]
.

(26)

The equality sign here holds for β1 = 0 or β2 = 0 or �β = 0.
Since the TUR ratio is periodic as a function of JT , we focus
our attention within the first period [0, π ]. The obtained bound
indicates that, in the weak-coupling limit, i.e., JT � 1 which
implies TT (J ) � 1, the second term in the above expression
can be ignored and the T-TUR will be satisfied. In fact, it is
easy to check that the T-TUR will remain valid for TT (J ) <

2/3, which gives an allowed range for JT (JT � 0.95 and
JT � 2.19, within the first period). Therefore, to observe a
violation for the T-TUR, a necessary condition is to tune the
value of JT such that TT (J ) > 2/3. However, note that this
condition is not a sufficient one. This can be seen as follows:
following the right-hand side of Eq. (26), the minimum value
for the TUR bound corresponds to TT (J ) = 1. Now for large
�β (�β ω0 � 1), both coth and tanh functions saturate to
value unity (�β ω0 ≈ 6) which implies that the TUR bound
scales as �βω0/2 and the T-TUR will be satisfied. Therefore,
along with the condition TT (J ) > 2/3, the violation of T-TUR
in this case requires a careful tuning of β1, β2, and ω0.

In Fig. 3(a) we display a two-dimensional plot for TUR as
a function of β2ω0 and JT . We set β1ω0 = 0. Figure 3(b) is
the corresponding binary plot differentiating the validity (dark
red) and the violation regimes (blue) of the T-TUR. We clearly
observe a regime for which T-TUR is not valid and the results
nicely match with our theoretical predictions. As mentioned
earlier, for sufficiently large �β (�βω0 > 3.2), the T-TUR
bound is always satisfied. In contrast, the minimum value
of the TUR bound is found to be ≈ 1.86 which occurs for
a maximum transition probability TT (J ) = 1, i.e, J T = π/2
and �βω0 ≈ 2.01.

In Fig. 4 we show that the TUR bound obtained in Eq. (26)
is in fact a tighter one compared to the generalized bound
[Eqs. (2) and (3)]. More importantly, we observe that the gen-
eralized bound obtained from fluctuation symmetry becomes
loose with increasing �β whereas the obtained bound closely
follow the actual TUR trend. In fact, for large �β, the net
entropy production 〈�〉 scales as �β; hence the G-TUR1
behaves as 2〈�〉/e〈�〉, which tends to zero, whereas the TUR
bound obtained in Eq. (26) scales as �βω0/2. As expected,
G-TUR2 performs a bit better than G-TUR1.

C. Hybrid spin-oscillator system

As a final toy model example we consider a hybrid system
consisting of a single qubit and a single quantum harmonic
oscillator [see Fig. 1(c)], once again interacting via a thermal
coupling term. The total Hamiltonian is given as

HJC = ω0

2
σz ⊗ 11 + 12 ⊗ ω0 a†a + J (a† ⊗ σ− + a ⊗ σ+).

(27)

where σ± = σx ± iσy are the spin ladder operators. This
model is in fact the famous Jaynes-Cummings (JC) model and
is one of the most well-studied setups in quantum optics. We
are interested here to analyze the quantum thermodynamics
properties for this model and compute the exact CGF for
the energy exchange. We provide here a brief outline of the
derivation.

Starting from Eq. (7) we switch to the interaction picture
with respect to the bare part of the Hamiltonian [the first two
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FIG. 3. (a) Two-dimensional plot for TUR ratio (�β
〈Q2〉spin

c
〈Q〉spin ) for the coupled two-qubit system as a function of JT and β2ω0. We set β1 = 0.

(b) Corresponding binary plot of TUR. The violation regime of the T-TUR bound is colored by blue (darker shed in grey scale) and the validity
regime is colored by dark red.

terms of Eq. (27)] and compute the total unitary propagator in
the qubit basis. We receive [88]

UI (t ) = e−iV t =
⎡
⎣ cos(

√
aa†Jt ) −i sin(

√
aa†Jt )√
aa†

a

−i sin(
√

a†aJt )√
a†a

a† cos(
√

a†a Jt )

⎤
⎦, (28)

where we have used the convention that [UI (t )]11 =
〈e|UI (t )|e〉, [UI (t )]12 = 〈e|UI (t )|g〉, [UI (t )]21 = 〈g|UI (t )|e〉,
and [UI (t )]22 = 〈g|UI (t )|g〉. Note that because of the com-
mutable coupling condition, in the interaction picture, the
time-ordered operator in the unitary propagator does not play
any role. With the help of this exact unitary operator and
carrying out the calculation in the qubit basis, the exact CGF

1 2 3 4
1.5

2

2.5

FIG. 4. Comparison between the TUR bounds obtained in
Eq. (26) (blue dashed line), denoted here by h(J, T, ω0; �β ) =
�βω0[coth �βω0

2 − TT (J )
2 tanh �βω0

2 ], the generalized bounds,
GTUR-1 (red dash-dotted line) in Eq. (2), and GTUR-2 (magenta
dotted line) in Eq. (3) with the actual TUR value (black solid line).
For reference a line is drawn at the value 2. The parameters are
β1ω0 = 0.1 and JT = π/2. The bound in Eq. (26) closely follows
the actual TUR trend.

can be written down as

GJC
T (u)= ln[1+Q

{
f1

n2
(eiuω0 − 1) + (1 − f1)

(1 + n2)
(e−iuω0 − 1)

}]
,

(29)

where we define the function Q = Q(J, T, ω0; β2) as

Q(J, T, ω0; β2) =
∞∑

n=0

e−β2nω0 sin2(
√

nJT ). (30)

We make the following observations here:
(i) Unlike the coupled oscillator or the coupled qubit

model, for this hybrid setup the transition probability is
weighted by the oscillator temperature β2 as captured by the
Q function.

(ii) Because of the hybrid nature of the setup both
the Fermi-like and the Bose functions appear in the CGF
expression.

Once again, it is easy to check the validity of the XFT for
arbitrary J , T and the initial temperatures β1, β2. Note that in
the low-temperature limit of the oscillator, i.e., β2ω0 � 1, it is
expected that the above result should reproduce the two-qubit
CGF. This can be seen as follows: for β2ω0 � 1 only the
n = 1 term contributes to Eq. (30). Therefore, the Q func-
tion simplifies to Q ≈ e−β2ω0 sin2(Jt ) and correspondingly
the Bose functions simplify to n2 ≈ e−β2ω0 (1 + e−β2ω0 ) and
1 + n2 ≈ 1 + e−β2ω0 which gives Q/n2 = (1 − f2) sin2(JT )
and Q/(1 + n2) = f2 sin2(JT ) and thus one correctly recov-
ers the two-qubit model CGF, given in Eq. (17).

We now investigate the TUR bound and write down the
cumulants as

〈Q〉JC =ω0 Q
(

f1

n2
− 1 − f1

1 + n2

)
=ω0 Q

f1

1 + n2
(eβ2ω0 −eβ1ω0 ),

(31)

〈Q2〉JC
c =ω2

0 Q
[(

f1

n2
+ 1 − f1

1 + n2

)
−Q

(
f1

n2
− 1 − f1

1 + n2

)2]
.

(32)

As expected, the energy exchange in Eq. (31) vanishes when
both the spin and the oscillator are initially kept at the same
temperature. Interestingly, we once again receive a similar
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FIG. 5. Two-dimensional plots for the JC model: (a) average energy change 〈Q〉JC, (b) corresponding noise 〈Q2〉JC
c , (c) the TUR ratio

�β
〈Q2〉JC

c
〈Q〉JC , and (d) binary plot of the same TUR data where the violation regime of the T-TUR bound is colored by blue (darker shed in grey

scale) and the validity regime is colored by dark red, as a function of JT and β2ω0. We set β1 = 0.

identity as in Eq. (14) but now involving both the Fermi and
Bose functions,

f1(1 + n2) + n2(1 − f1)

= coth

[
�βω0

2

]
( f1(1 + n2) − n2(1 − f1)), (33)

which helps us to write the TUR ratio as

�β
〈Q2〉JC

c

〈Q〉JC
= �βω0 coth

�βω0

2
− 〈�〉JC. (34)

This expression once again should be compared with Eq. (15)
and Eq. (21). Interestingly, analogous to the previous cases,
the first term remains the same, whereas the average entropy
production term for the hybrid case produces a negative con-
tribution to the TUR ratio, as was the case for the two-qubit
model. Therefore, the breakdown of the T-TUR bound can be
expected even for this setup. However, note that, in the limit
when Q � 1, i.e., in the weak-coupling limit, the T-TUR is
once again preserved. In Sec. IV we provide a general proof
for the T-TUR bound for any two weakly coupled systems and
extend the general analysis to the steady-state regime as well.

In Fig. 5 we display the two-dimensional plots for the
first and second cumulant and the corresponding TUR ratio.
Notice that the cumulants and the corresponding TUR ratio
are not entirely periodic as a function of JT , especially in
the high-temperature regime β2ω0 � 1. This is clear from

the expression for the function Q. The violation for the T-
TUR bound is clearly observed in the binary plot [Fig. 5(d)].
Expectedly, the low-temperature behavior for the TUR ratio
is found to be similar with the two-qubit case with clear
validity of the T-TUR bound beyond �βω0 ≈ 3.4. However,
in the high-temperature regime the violation regime for the
JC model is broader [comparing TUR ratio vs JT within the
first period in both Fig. 3(b) and Fig. 5(d)] in comparison to
the two-qubit case. This is because of the availability of many
states for the oscillator leading a significant contribution of
the average entropy production.

IV. PROOF OF T-TUR IN THE WEAK-COUPLING REGIME

In this section, we provide the key steps for the proof of
the tighter bound of TUR (T-TUR) [Eq. (1)] in the weak-
coupling regime for generic bipartite setups that are initially
equilibrated in their respective thermal state. The primary task
here is to obtain a general expression for the CGF in the
weak-coupling limit. In Appendix B, we provide a detailed
derivation for the same following the Keldysh nonequilibrium
Green’s function approach. Here we give out the main results.

Keeping the general situation in mind, we consider two
systems with arbitrary Hamiltonians H1 and H2 with each
system initially equilibrated to a thermal equilibrium state at a
particular temperature. The initial composite density matrix is
then given as, ρ(0) = ρ1 ⊗ ρ2 = e−β1H1

Z1
⊗ e−β2H2

Z2
. A coupling
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between the system is suddenly turned on and a general form
for the coupling is chosen as V = J A ⊗ B, where A (B) is
an Hermitian operator involving system 1 (system 2). In the
weak-coupling limit an analytical expression for the CGF can
be obtained (please see Appendix B for a rigorous derivation)
and is given as

χT (u) = −J2

2

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
F (ω1, ω2; T )

[g<
A (ω1)g>

B (ω2)(eiuω1 − 1) + g>
A (ω1)g<

B (ω2)(e−iuω1 − 1)],

(35)

where F (ω1, ω2; T ) = sin2 [ (ω1−ω2 )T
2 ]

(ω1−ω2 )2

4

, and g<,>
A,B are the lesser

(<) and the greater (>) components of the bare Green’s
function. In the time domain these functions are given as
g>

X (t1, t2) = −i 〈X (t1)X (t2)〉 and g<
X (t1, t2) = −i 〈X (t2)X (t1)〉,

X = A, B, with average taken over the respective equilibrium
canonical density operator. To arrive at Eq. (35) we have used
only a weak-coupling approximation. However, this does not
automatically ensure current conservation or the XFT as can
be seen from Eq. (35). In order to meet these criteria one needs
to further impose a resonant condition for energy exchange.
We therefore use many-body quantum state representation
for the individual system Hamiltonians H1 and H2, and write
the lesser and greater components of the Green’s functions
explicitly. For system 1,

g<
A (t ) = −i

∑
mn

e−β1Em

ZA
|Am,n|2eiωnmt ,

(36)

g>
A (t ) = −i

∑
mn

e−β1Em

ZA
|Am,n|2e−iωnmt ,

where ωnm = En − Em, |Amn|2 = |〈m|A|n〉|2 with |m〉, |n〉 be-
ing the energy eigenstates for system 1 with Hamiltonian H1

and Em, En are the corresponding eigenvalues. One receives a
similar expression for g<,>

B (t ) but with inverse temperature β2.
We denote the corresponding energy eigenstates with |p〉, |q〉.
Using a Fourier-transformed version of these Green’s func-
tions and taking first derivative with respect to iu of Eq. (35)
we receive the expression for the average energy change,

〈Q〉 = 2π2J2
∑
mn

∑
pq

ωmn F (ωmn, ωqp; T )|Amn|2 |Bpq|2

×[e−β1ωmn eβ2ωqp − 1]
e−β1Em

ZA

e−β2Ep

ZB
. (37)

We now impose the resonant energy exchange condition
between the two systems, which implies Em − En ≈ Eq −
Ep, i.e., ωmn ≈ ωqp leading to F (ωmn, ωqp; T ) ≈ T 2, and we
receive

〈Q〉 = 2π2J2T 2
∑
mn

∑
pq

ωmn |Amn|2 |Bpq|2

×[e�βωqp − 1]
e−β1Em

ZA

e−β2Ep

ZB
. (38)

Using the same resonant condition, we receive for the noise
from Eq. (35)

〈Q2〉c = 2π2J2T 2
∑
mn

∑
pq

ω2
mn |Amn|2 |Bpq|2 e−β1Em

ZA

e−β2Ep

ZB

×[e�βωqp + 1] (39)

= 2π2J2T 2
∑
mn

∑
pq

ωmn |Amn|2 |Bpq|2 e−β1Em

ZA

e−β2Ep

ZB

× ωqp coth

[
�βωqp

2

]
[e�βωqp − 1],

� 2

�β
〈Q〉, (40)

where going from the first to the third line we write ω2
mn ≈

ωmn ωqp by making use of the resonant condition. Notice the
important term ωqp coth [�βωqp

2 ] in the fourth line, which is
always greater than or equal to 2/�β, using which we re-
ceive the T-TUR bound. Also, note that the cumulants in this
limit scale with T 2 and the entire analysis remains valid for
JT � 1.

The another key importance of the expression in Eq. (35)
is that one can readily discuss results for the long-time limit
T → ∞. In fact, if a unique long-time limit of Eq. (35) exists
that supports a nonequilibrium steady state for the bipartite
setup (imagining each system to be macroscopic bath), in this
case all cumulants scale with T , as

lim
T →∞

sin2
[ (ω1−ω2 )T

2

]
(ω1−ω2 )2

4

= 2πT δ(ω1 − ω2), (41)

and one receives the following expressions for the cumulants
following Eq. (35):

〈Q〉
T

= −J2
∫ ∞

−∞

dω

4π
ω g>

A (ω)g<
B (ω)[e�βω − 1], (42)

〈Q2〉c

T
= −J2

∫ ∞

−∞

dω

4π
ω2 g>

A (ω)g<
B (ω)[e�βω + 1]

= −J2
∫ ∞

−∞

dω

4π
ω2 coth[�βω/2] g>

A (ω)g<
B (ω)

×[e�βω − 1],

� − 2

�β
J2

∫ ∞

−∞

dω

4π
ω g>

A (ω)g<
B (ω)[e�βω − 1]

� 2

�β

〈Q〉
T

, (43)

where once again, like in the previous case, in the third
line of the 〈Q2〉c/T expression we use the inequality
ω coth[�βω/2] � 2/�β. Therefore, for a weakly coupled
bipartite setup in the steady state the T-TUR is preserved. It
is crucial to note that both the G-TUR1 and G-TUR2 in this
long-time limit fail to predict any nontrivial bound for the
TUR ratio as the average entropy production 〈�〉 diverges as
T → ∞.
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V. SUMMARY

We examined the TUR bound for energy exchange for
three simple model systems characterized by different under-
lying statistics for the transport carriers. We obtained exact
analytical expressions for the heat exchange characteristic
function for all three cases which hands over the cumulants
to analyze the TUR. One of the interesting observations was
the similarity in the expressions for the CGF for the two-
qubit and two-oscillator model where they differ by crucial
sign differences arising from the underlying Fermi-like and
the Bose statistics. We found that, in general, the TUR ratio
is sensitive to the statistics and the validity or violation of
the T-TUR is critically dependent on this. In all three cases,
interestingly, the TUR ratio was organized in terms of a uni-
versal term which is always greater than or equal to 2 and a
net entropy production term. The deviation from the T-TUR
bound largely depends on the contribution of this average
entropy production to the TUR ratio. For a coupled oscillator
system, displaying pure bosonic statistics, this contribution
turned out to be always positive and thus the tighter bound
is always preserved. In contrast, the appearance of the Fermi-
like statistics for both the qubit and the hybrid model leads
to a negative contribution, leading to a lower bound (smaller
than the T-TUR) for the TUR. However, in the weak-coupling
regime, all these models satisfy the T-TUR bound. We provide
a rigorous proof for the T-TUR, in the weak-coupling regime,
by deriving a general expression for the CGF following the
NEGF approach. Future work will direct towards designing
finite-time heat engine cycles based on these toy models and
understanding the impact of the statistics on the engine effi-
ciency and the corresponding TUR bound.
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APPENDIX A: EXCHANGE FLUCTUATION THEOREM
(XFT) UNDER COMMUTABLE COUPLING CONDITION

In this Appendix we prove that for a bipartite setup un-
der the thermal coupling limit the XFT is valid for arbitrary
coupling strength between two systems and for arbitrary time
duration of energy exchange. The starting point here is the CF
for energy exchange, given in Eq. (7):

χT (u) = Tr[U†(T, 0)(e−iuH1 ⊗ 12)U (T, 0)(eiuH1 ⊗ 12)ρ(0)],

(A1)

where U (t, 0) = e−iHt is the global unitary operator with
H = H1 + H2 + V . To take advantage of the thermal coupling
limit, i.e., the commutable coupling condition [H1 + H2,V ] =
0, one can rewrite the above expression along with the con-
sideration that initially both the systems are in their respective
Gibbs thermal state, i.e., ρ(0) = e−β1H1

Z1
⊗ e−β2H2

Z2
, which further

implies [ρ(0), H1] = 0. One then receives

χT (u) = 1

Z1Z2
Tr[(eiuH1 ⊗ 12) e�βH1 e−β2(H1+H2 ) U†(T, 0)

×(e−iuH1 ⊗ 12)U (T, 0)], (A2)

where recall that �β = β2 − β1. The thermal coupling con-
dition allows swapping the third and fourth terms. Next,
performing cyclic permutation under the trace operation, we
receive

χT (u) = 1

Z1Z2
Tr[U (T, 0)(e−i(−u+i�β )H1 ⊗ 12)

×U†(T, 0)(ei(−u+i�β )H1 ⊗ 12) ρ(0)], (A3)

where �β = β2 − β1. This expression still does not give us
the XFT that we are looking for. In fact, at this point the above
expression satisfies a fluctuation relation given as χT (u) =
χ−T (−u + i�β ) connecting forward and reversed protocol.

In order to proceed, we now assume that the composite
and the individual systems are time-reversal invariant, which
is the case considered in this paper. We then have �U (T, 0) =
U†(T, 0) �, � e−iuH1 = eiu∗H1� and [�, H1,2] = 0. � is the
time-reversal operator. Now inserting �−1� inside the trace
and using Eq. (A2) we receive

χT (u) = 1

Z1Z2
Tr[�−1�U (T, 0)(e−i(−u+i�β )H1 ⊗ 12)

×U†(T, 0)(ei(−u+i�β )H1 ⊗ 12) ρ(0)],

= 1

Z1Z2
Tr[�−1U†(T, 0)(ei(−u∗−i�β )H1 ⊗ 12)

×U (T, 0)(e−i(−u∗−i�β )H1 ⊗ 12) ρ(0)�]. (A4)

Now due to the antilinear nature of � we have Tr[�−1 A �] =
Tr[A†][11]. Therefore, we finally receive

χT (u) = 1

Z1Z2
Tr[U†(T, 0)(e−i(−u+i�β )H1 ⊗ 12)

×U (T, 0)(ei(−u+i�β )H1 ⊗ 12) ρ(0)]

= χT (−u + i�β ) (A5)

for arbitrary time duration T and coupling strength.

APPENDIX B: DERIVATION OF THE CGF IN EQ. (35)
IN THE WEAK-COUPLING REGIME

In this Appendix we provide the derivation for the CGF
in Eq. (35) following the Keldysh nonequilibrium Green’s
function approach [78–80]. This method turned out to be
useful to receive bounds in transient as well as in the steady-
state regime, as shown in Sec. IV. We begin with Eq. (7)
and organize the characteristic function in the interaction
picture as

χT (u) =
∫

dQ eiuQ pT (Q),

= Tr[U†
I (T, 0)(e−iuH1 ⊗ 12)UI (T, 0)(eiuH1 ⊗ 12)ρ(0)],

where UI (t, 0) = T exp [ − i
∫ t

0 VI (t ′)dt ′] with T being the
time-ordered operator and VI (t ) = eiH0t V e−iH0t , H0 = H1 +
H2. Recall that the composite density matrix is decoupled at
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u/2

−u/2

t = 0

τ

FIG. 6. The complex time Keldysh contour with upper and lower
branch. The contour path begins from t = 0, goes to maximum time
t = T , and then comes back to t = 0 again. The upper (lower) branch
corresponds to a time-ordered forward (anti-time-ordered backward)
evolution propagator. For the energy counting statistics problem the
Hamiltonian is dressed differently in the upper (−u/2) and the lower
(+u/2) branches by the counting parameter u. τ is the contour-time
parameter.

the initial time t = 0 with each system in thermal equilibrium
at a particular temperature, i.e., ρ(0) = ρ1 ⊗ ρ2 = e−β1H1

Z1
⊗

e−β2H2

Z2
. This condition implies [ρ(0), H0] = 0. Then the above

equation can be organized as

χT (u) = Tr[ρ(0) [U †
I ]u/2(T, 0)U −u/2

I (T, 0)], (B1)

where now both the forward and backward evolution operators
are dressed by the counting field u. This expression can be
recast on a Keldysh contour as (see Fig. 6)

χT (u) = Tr
[
ρ(0)Tce−i

∫
c V x

I (τ )dτ
]
, (B2)

where Tc is the contour-ordered operator, which orders opera-
tors according to their contour time argument: an earlier (later)
contour time places the operator to the right (left). Therefore,
the upper (lower) branch corresponds to the forward (back-
ward) evolution. x(τ ) is a contour-time-dependent function
which can take two possible values depending on the loca-
tion of τ on the contour branch. Here x+(t ) = −u/2 for the
upper branch (denoted by the + sign) and x−(t ) = u/2 for the
lower branch (denoted by the − sign) within the measurement
time interval [0, τ ]. x±(t ) = 0 outside the measurement time.
Finally V x

I (τ ) = eixH1VI (τ )e−ixH1 is the modified contour-
time-dependent operator dressed by the counting field.

Often, instead of the CF, it is more convenient to work with
the logarithm of the characteristic function GT (u) ≡ ln χT (u)
which according to the linked-cluster theorem [81] contains
only the connected diagrams. Since our focus is on the weak-
coupling regime, we therefore expand the exponential and
collect terms up to the leading order in the coupling V that
produce nonzero contribution. It turns out that the first-order
contribution in V vanishes. This can be shown as follows: The
CGF in the first order, denoted by G (1)

T (u), is given as

G (1)
T (u) = −i

∫
dτ 〈V x

I (τ )〉=−i
∫ T

0
dt

[〈
V x+

I (t )
〉−〈

V x−
I (t )

〉]
,

(B3)

where in the second line we transform back to the real
time (t) from the contour time (τ ) using the Langreth
rule [80,82]. Note that in this order the contour-ordered

operator does not play any role. Now since V x±
I (t1) =

e∓iξ/2H1VI (t )e∓iξ/2H1 and furthermore because [ρ(0), H1] = 0,
the counting-field-dependent phase factors cancel out exactly,
leaving 〈V x+

I (t )〉 = 〈V x−
I (t )〉, i.e., independent of the branch

index, and thus the above contribution vanishes.
Next, the second-order contribution to the CGF is given as

G (2)
T (u) = (−i)2

2

∫
dτ1

∫
dτ2

〈
Tc V x

I (τ1)V x
I (τ2)

〉
c

=
∫

dτ1

∫
dτ2 G̃c(τ1, τ2), (B4)

where G̃c(τ1, τ2) indicates the connected part of the correla-
tion function with the tilde symbol referring to the counting
field dependence. Since the normalization condition demands
that G (2)

T (u = 0) = 0, one can explicitly enforce the normal-
ization in the above expression as

G (2)
T (u) =

∫
dτ1

∫
dτ2 [G̃c(τ1, τ2) − Gc(τ1, τ2)], (B5)

where recall that Green’s functions without the tilde symbol
refer to u = 0. We once again transform back to the real time
following the same procedure as mentioned earlier and obtain

G (2)
T (u) =

∫ T

0
dt1

∫ T

0
dt2 [G<

c (t1, t2) + G>
c (t1, t2)

−G̃<
c (t1, t2) − G̃>

c (t1, t2)], (B6)

where < (>) corresponds to the lesser (greater) component
of the Green’s function. In order to proceed from here, we
choose a generic form for the coupling, given as V = J A ⊗ B,
where A (B) corresponds to the Hermitian operator involving
system 1 (system 2). For simplicity, we consider a single de-
gree of freedom and systems with bosonic degree of freedom.
However, the calculation can be straightforwardly extended
for fermionic as well as for hybrid systems. Now since the
average in the Green’s functions is taken over ρ(0), i.e., a
decoupled initial state, the connected part of the correlation
function in the contour time reduces to

G̃c(τ1, τ2) = J2

2
g̃A(τ1, τ2) gB(τ2, τ1), (B7)

where g̃A(τ1, τ2) = −i 〈TcAx(τ1)Ax(τ2)〉 is the bare but
counting-field-dependent correlation function for system 1
with average taken over the equilibrium density operator ρ1 =
e−β1H1

Z1
and similarly gB(τ1, τ2) = −i 〈TcB(τ1)B(τ2)〉 with aver-

age taken over the equilibrium density operator ρ2 = e−β2H2

Z2
.

Following Eq. (B5), in real time we are interested only in the
lesser and the greater components, which are given as

G̃<
c (t1, t2) = J2

2
g<

A (t1 − t2 − u) g>
B (t2 − t1),

G̃>
c (t1, t2) = J2

2
g>

A (t1 − t2 + u) g<
B (t2 − t1). (B8)

Since each of the bare Green’s functions are time-translational
invariant, we can work in the frequency domain by performing
Fourier transformation, which gives
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χT (u) = −J2

2

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π

sin2
[ (ω1−ω2 )T

2

]
(ω1−ω2 )2

4

[g<
A (ω1)g>

B (ω2)(eiuω1 − 1) + g>
A (ω1)g<

B (ω2)(e−iuω1 − 1)]. (B9)

Notice that since bare Green’s functions are computed with
respect to their respective equilibrium state, they follow the
standard Kubo-Martin-Schwinger boundary condition [82]
given as g>

A (ω) = eβ1ωg<
A (ω) and, similarly for the system 2

Green’s function, g>
B (ω) = eβ2ωg<

B (ω). Using this condition,
one can rewrite the expressions for first and second cumulant
by taking the derivative of Eq. (B9) with respect to iu and
receiving

〈Q〉 = −J2

2

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
ω1 F (ω1, ω2; T )

× g>
A (ω1)g<

B (ω2)[e−β1ω1 eβ2ω2 − 1], (B10)

〈Q2〉c = −J2

2

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π
ω2

1 F (ω1, ω2; T )

×g>
A (ω1)g<

B (ω2)[e−β1ω1 eβ2ω2 + 1], (B11)

where we define F (ω1, ω2; T ) = sin2 [ (ω1−ω2 )T
2 ]

(ω1−ω2 )2

4

. We use the

above expressions to receive the T-TUR bound.

APPENDIX C: DERIVATION OF THE EXACT CGF
FOR THE TWO-OSCILLATOR SYSTEM

In this Appendix we provide the derivation for the exact
CGF given in Eq. (9). We once again employ the Keldysh
nonequilibrium Green’s function approach to derive the CGF.
Note that this powerful approach can be extended to study
bilinear systems with arbitrary complexity (see Ref. [74] for
details). As before, we map the CF on the Keldysh contour in
the interaction picture with respect to the bare part of the total
Hamiltonian Hosc

0 = h̄ω0a†
1a1 ⊗ 12 + 11 ⊗ h̄ω0a†

2a2 as

χT (u) = Tr
[
ρ(0)Tce−i

∫
c V x (τ ) dτ

]
, (C1)

where the interaction Hamiltonian in this case is dressed
as V x = eixH1Ve−ixH1 = J (ax †

1 a2 + H.c.), x = ±u/2, affect-
ing only the system 1 operators. Note that the operator V x

is time independent even in the interaction picture due to the
commutable coupling symmetry. However, in Eq. (C1) we
explicitly write the contour-ordered operator to keep track
of the forward and the backward evolution. Recall that the
contour-time variable τ runs from [0, T ]. Invoking the linked-
cluster theorem for the CGF Gosc

T (u) = ln χT (u) we receive a
formal exact expression for the model in contour time τ as

Gosc
T (u) = −Trτ ln

[
1 − g22 �x

11

]
. (C2)

Here the Green’s functions are understood as matrices in
discretized contour time. In the continuous-time version the
trace operation means Trτ [A B] = ∫

dτ
∫

dτ ′A(τ, τ ′)B(τ ′, τ ).
In the above expression, following the standard notations for
the Green’s functions, we define

gii(τ, τ
′) = −i〈Tcai(τ ) a†

i (τ ′)〉, i = 1, 2, (C3)

gx
ii(τ, τ

′) = −i〈Tcax
i (τ ) ax′†

i (τ ′)〉, i = 1, 2 (C4)

as the bare [Eq. (C3)] and the counting-field-dependent
[Eq. (C4)] Green’s function, respectively. Recall that the
counting field appears only for system 1 operators. The self-
energy term is then given as �x

11(τ, τ ′) = J2gx
11(τ, τ ′) with

J being the coupling strength between the oscillators. Since
ax

1(τ ) = eixH1 a1(τ )e−ixH1 = a1(τ + x(τ )), it is thus clear that
the effect of measuring or counting energy leads to a shift in
contour time and correspondingly the self-energy is shifted as

�x
11(τ, τ ′) = �11(τ + x(τ ), τ ′ + x(τ ′)). (C5)

Equation (C2) does not explicitly satisfy the normalization
conduction Gosc

T (u = 0) = 0. To enforce this condition, one
can further simplify the above expression and write

1 − g22�
x
11 = g22

(
g−1

22 − �x
11

)
= g22

(
g−1

22 − � − �A
11

)
= g22

(
G−1

22 − �A
11

)
= g22 G−1

22

(
1 − G22 �A

11

)
= (1 − g22�11)

(
1 − G22 �A

11

)
, (C6)

where in the second line we define a useful quantity �A
11 =

�x
11 − �11 which is zero in the absence of the counting field.

The third line motivates one to introduce a new Green’s func-
tion G−1

22 = g−1
22 − �11 which in the continuous-contour-time

version satisfies the following Dyson equation:

G22(τ, τ ′) = g22(τ, τ ′) +
∫

c

∫
c

dτ1dτ2 g22(τ, τ1)�11(τ1, τ2)

×G22(τ2, τ
′). (C7)

Notice that this Green’s function is nothing but the dressed
Green’s function of system 2, taking into account the presence
of system 1 in terms of the self-energy �11. With the help of
Eq. (C6), Eq. (C2) then simplifies to

Gosc
T (u) = −Trτ ln

[
1 − G22 �A

11

]
(C8)

as Trτ ln[1 − g22�11] = 0 following Eq. (C2), ensuring the
normalization condition. The next important task from here
on is to go from the contour time to the real time following
the Langreth theorem. Furthermore, a more transparent and
simplified framework is obtained by performing an orthogonal
Keldysh rotation (rotation in the space of real time by 45◦)
which gives

Gosc
T (u) = −Trt,σ ln

[
1 − Ğ22 �̆A

11

]
. (C9)

The breve symbol indicates that the Green’s functions are
written in the rotated Keldysh frame. Also note that the or-
thogonal Keldysh rotation preserves the trace in the above
CGF expressions. In Eq. (C9) the meaning of trace is now
in terms of the real time and, as well as over the branch index,
denoted as σ . Explicitly, it means, for example, Trt,σ [Ă B̆] =

022141-11
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FIG. 7. Comparison between the exact CGF Gosc
T (u) in Eq. (9) and the quadratic CGF in Eq. (D1) for the two-oscillator problem for two

different values for the TUR ratio: (a) TUR ratio = 2 and (b) TUR ratio = 6.45.∫ T
0 dt1

∫ T
0 dt2Tr[Ă(t1, t2)B̆(t2, t1)]. We receive the Ğ22 as

Ğ22 =
[

Gr
22 Gk

22

0 Ga
22

]
, (C10)

where r, a, and k are the retarded, advanced, and the Keldysh
components for the Green’s function. These various compo-
nents can be obtained exactly and are given as follows:

Gr
22(t, t ′) = −i θ (t − t ′)e−iω0(t−t ′ ) cos(J (t − t ′)),

Ga
22(t, t ′) = i θ (t ′ − t )e−iω0(t−t ′ ) cos(J (t − t ′)),

G<
22(t, t ′) = −i [n2 cos(Jt ) cos(Jt ′) + n1 sin(Jt ) sin(Jt ′)],

G>
22(t, t ′) = −i [(1 + n2) cos(Jt ) cos(Jt ′) + (1 + n1)

× sin(Jt ) sin(Jt ′)], (C11)

and the Keldysh component is given as Gk
22 = G<

22 + G>
22.

Interestingly, the retarded and the advanced components are
time-translational invariant which is not the case for the
other components. It is easy to check that the lesser and

greater components satisfy the correct initial condition, given
as i G<

22(t = t ′ = 0) = 〈a†
2a2〉 = n2 and i G>

22(t = t ′ = 0) =
〈a2a†

2〉 = (1 + n2). Similarly we receive for the counting-
field-dependent self-energy

�̆A
11 = 1

2

[
a − b a + b

−(a + b) b − a

]
, (C12)

where

a = �>
11(t − t ′ + u) − �>

11(t, t ′),

b = �<
11(t − t ′ − u) − �<

11(t, t ′). (C13)

The calculation further simplifies upon performing a two-time
Fourier transformation, defined here as

Ğ22(ω1, ω2) =
∫ T

0
dt

∫ T

0
dt ′ eiω1t eiω2t ′

Ğ22(t, t ′). (C14)

One then finally obtains from Eq. (C9)

Gosc
T (u) = −ln det

[
1 − Ğ22(ω0,−ω0)�̆A

11(ω0)
]
. (C15)
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FIG. 8. Same as in Fig. 7 but for the two-qubit model with exact CGF for two different values for the TUR ratio: (a) TUR ratio = 2.62 and
(b) TUR ratio = 1.86.
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FIG. 9. Same as in Fig. 7 but for the hybrid spin-oscillator model for two different values for the TUR ratio: (a) TUR ratio = 2.62 and
(b) TUR ratio = 1.81.

Note that the above formula is exact for arbitrary coupling J .
This expression can be easily extended for a many-oscillator
setup also. One can now write down the Fourier version of the
Green’s function components, which are given as

Gr
22(ω0,−ω0) = − 2i

J2
sin2

(
JT

2

)
,

Ga
22(ω0,−ω0) = 2i

J2
sin2

(
JT

2

)
,

G<
22(ω0,−ω0) = − i

J2
[n2 sin2(JT ) + n1(1 − cos(JT ))2],

G>
22(ω0,−ω0) = − i

J2
[(1 + n2) sin2(J T ) + (1 + n1)

×(1 − cos(J T ))2], (C16)

and similarly for the self-energy components,

a = �>
11(ω0) (e−iuh̄ω0 − 1)

= −i J2 (1 + n1(ω0)) (e−iuh̄ω0 − 1), (C17)

b = �<
11(ω0) (eiuh̄ω0 − 1)=−i J2 n1(ω0)(eiuh̄ω0 − 1). (C18)

Knowing these analytical expressions for the Green’s func-
tions one can simply compute the determinant in Eq. (C15),
which finally gives the CGF expression in Eq. (9).

APPENDIX D: COMPARISON WITH QUADRATIC BOUND

In Ref. [22] based on extensive numerical simulation
a quadratic bound (lower bound) was proposed for a
scaled cumulant generating function for a multiaffinity time-
homogeneous discrete state continuous-time Markov process
in steady state. Later on, in Ref. [20], a rigorous proof
for the quadratic bound was given for systems following
continuous-time Markov jump processes in steady state.
For our single-affinity problem and transient dynamics, the
quadratic bound (QB) in terms of the CGF translates to

GQB(u) = 〈Q〉
[

u + u2 〈Q〉
〈�〉

]
, (D1)

where u is treated as a real variable (the CGFs obtained in the
main text should be analytically continued, iu → u).

Once any CGF satisfies the above quadratic bound one
can immediately prove the T-TUR in Eq. (1). Since we have
the exact expressions for the CGFs for three exactly solvable
model systems, we compare numerically the CGFs with the
quadratic bound in Eq. (D1). We found that, for the harmonic
oscillator problem since T-TUR is always valid, the above
quadratic bound is always respected as shown in Fig. 7 for
two different values of the TUR ratio. In contrast, for the
two-qubit and the hybrid spin-oscillator model we observe
that whenever the T-TUR is valid the above quadratic bound
is respected [Figs. 8(a) and 9(a)] and, expectedly, the violation
of the quadratic bound is observed whenever the T-TUR ratio
is smaller than 2, as shown in Figs. 8(b) and 9(b).
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