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Statistical mechanics of dislocation pileups in two dimensions

Grace H. Zhang and David R. Nelson
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 30 September 2020; accepted 7 January 2021; published 24 February 2021)

Dislocation pileups directly impact the material properties of crystalline solids through the arrangement
and collective motion of interacting dislocations. We study the statistical mechanics of these ordered defect
structures embedded in two-dimensional crystals, where the dislocations themselves form one-dimensional
lattices. In particular, pileups exemplify a new class of inhomogeneous crystals characterized by spatially varying
lattice spacings. By analytically formulating key statistical quantities and comparing our theory to numerical
experiments using an intriguing mapping of dislocation positions onto the eigenvalues of recently studied random
matrix ensembles, we uncover two types of one-dimensional phase transitions in dislocation pileups: A thermal
depinning transition out of long-range translational order from the pinned-defect phase, due to a periodic Peierls
potential, to a floating-defect state, and finally the melting out of a quasi-long-range ordered floating-defect
solid phase to a defect liquid. We also find the set of transition temperatures at which these transitions can
be directly observed through the one-dimensional structure factor, where the delta function Bragg peaks, at
the pinned-defect to floating-defect transition, broaden into algebraically diverging Bragg peaks, which then
sequentially disappear as one approaches the two-dimensional melting transition of the host crystal. We calculate
a set of temperature-dependent critical exponents for the structure factor and radial distribution function, and
obtain their exact forms for both uniform and inhomogeneous pileups using random matrix theory.

DOI: 10.1103/PhysRevE.103.022139

I. INTRODUCTION

The structure and motion of dislocation assemblies di-
rectly alter the mechanical response of crystalline materials.
Although perfect single crystals and isolated defects (e.g., a
single dislocation, a pointlike interstitial, or vacancy) have
been well characterized, how defects behave in organized
substructures is less understood [1]. Dislocation pileups per-
meate plastically deformed materials, and are among the most
prevalent types of dislocation substructures and the building
block of more complex assemblies such as dislocation cell
walls [2].

We study here the statistical mechanics of dislocation pile-
ups embedded in two-dimensional (2D) slices of host crystals
(see Fig. 1), where defect structures can emerge through shear
stress loading, polygonization, and residual stress when the
host crystal exhibits nonzero curvature. In 2D host crystals,
dislocation pileups exist as one-dimensional (1D) queues of
edge dislocations aligned in the same glide plane with Burgers
vectors of identical magnitude b. Such dislocation arrays are
remarkable because of the strong repulsive interactions—they
are only energetically stable if we forbid climb motion out of
the glide plane [3]. They are distinct from other defect struc-
tures, such as the Abrikosov flux lattice [4] and the domain
walls that characterize the commensurate-incommensurate
transition [5], in that they exemplify a new class of inhomoge-
neous crystals, with a set of lattice constants D(x) that vary
smoothly in space [Fig. 1(a)]. Understanding the statistical
mechanics of pileups thus helps elucidate the more general
physics associated with higher-dimensional inhomogeneous

crystals, which describe a wide variety of systems including
plasmas [6–8], foams [9], ionic gases [10], and colloidal par-
ticles [11].

Our results are summarized by the phase diagram in Fig. 2.
We map a continuum model of dislocation pileups onto a 1D
Coulomb gas of like-magnitude charges, and consider effects
of the host lattice by mapping our problem onto a model of
quantum Brownian motion [12]. By analytically formulating
key statistical quantities and renormalization group recursion
relations, and numerically testing our theory using mathemat-
ical connections with random matrix theory, we uncover a
series of one-dimensional defect phase transitions as a func-
tion of temperature.

We first identify an intermediate floating-defect solid phase
which exhibits quasi-long-range order in one dimension.
Upon increasing the temperature in the floating-defect solid
phase, we identify a remarkable defect melting phase transi-
tion to the disordered defect liquid at finite temperature. This
transition proceeds sequentially, as power-law divergences
at ever-smaller Bragg peaks {Gm} are eliminated, until only
the final peak at G1 remains. Upon decreasing the tempera-
ture, we discover a floating-defect to pinned-defect transition,
where translational correlations in dislocation positions trans-
form from quasi-long-range order to true long-range order. A
similar depinning transition was found by Kolomeisky and
Straley in a model of a zipperlike interface between two
crystalline solids [13]. There, however, thermal excitations
produce approximately equal numbers of oppositely signed
dislocation charges.
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FIG. 1. Schematic of conditions under which one-dimensional
dislocation pileups, consisting of (orange) short edge dislocation
lines (these become pointlike when the y dimension is extremely nar-
row) with Burgers vectors aligned with a glide direction (turquoise
strips), embedded in a two-dimensional surface (gray). (a) When
a thin two-dimensional crystalline slab experiences applied shear
stress σ (x), short dislocation lines pile up along the direction of
the shear stress. The spatial profile of the applied stress σ (x) di-
rectly determines the density distribution of the dislocations via
Eq. (8). (b) When a two-dimensional crystal is curved, residual
stresses due to the Gaussian curvature leads to dislocation pileups
that wrap around the spherical cap. Schematic in (b) adapted from
Refs. [21,22].

While topological defects such as dislocations and discli-
nations can be crucial in mediating melting transitions of
2D solids [14], we find in our defect melting transition that
the dislocations themselves actually undergo a rare case of
1D phase transition out of quasi-long-range order, somewhat
similar to the melting transition of 2D Abrikosov flux lattices
in type II superconductors [15]. Similarly, while it is known
that 2D monolayers adsorbed onto periodic substrates can un-
dergo an incommensurate-commensurate transition [15] and
that dislocations can be pinned by material impurities [2], here
we find that the defects can be trapped by the periodic Peierls
potential embodied in their own 2D host lattice at sufficiently
low temperatures. The intermediate “floating-defect solid” we
find in one dimension is reminiscent of the 2D floating solid
phase hypothesized for 2D monolayers absorbed onto periodic
substrates in Refs. [16,17].

Both transitions described above can be directly probed
through the structure factor S(q). Recall that the energy cost
of fluctuations for short-range interacting particles in 1D
is [18]

�E [u(q)] = 1

2

∫
dq B0q2|u(q)|2, (1)

where {u(q)} are the Fourier modes of particle displacements
and the bulk modulus B0 is a constant in the long wavelength
hydrodynamic limit. It is straightforward to show that the
structure factor of short-range interacting particles in 1D then
exhibits finite Gaussian Bragg peaks at the reciprocal lattice
vectors Gm = m2π/D, where D is the lattice spacing, indi-
cating real-space correlations that decay exponentially with

FIG. 2. (a) Phase diagram for dislocation pileups as a function
of temperature T . A pinned defect crystal with Delta function Bragg
peaks appears at low temperatures, with a floating-defect solid phase
that gradually melts at intermediate temperatures. (b) Melting of a
semicircular dislocation pileup in the floating-defect solid phase as
revealed by random matrix simulations of a semicircular density dis-
tribution of defects. Black downward arrow on the left side indicates
the direction of increasing temperature T . At each temperature, the
structure factor S(q) extracted from one random matrix simulation
of N = 5000 total dislocations is shown on the left, and snapshots of
the dislocations (with positions given by the eigenvalues of a random
matrix) near the lattice center and the dislocations closer to the lattice
edge (as indicated in the top schematic) are shown on the right. Here
n(x) denotes the 1D dislocation density profile and G1 is the location
of the first Bragg peak.

distance (see Appendix A for details). For defect crystals
such as pileups, however, different physics emerges from the
long-range interactions between the dislocations, leading to
different energetics at small wave vectors. Specifically, the
constant B0 in Eq. (1) becomes inversely proportional to the
wave vector (see Sec. III A),

B0 → B(q) = Y b2

8πD2

1

|q| , (2)

which drastically alters the long wavelength physics of 1D
dislocation assemblies (Y is the 2D Young’s modulus of the
host crystal and b is the magnitude of the Burgers vector
characterizing the dislocations).

When the pileup is in the floating-defect solid phase,
the structure factor S(q) exhibits algebraically diverging
Bragg peaks, where each Bragg peak at q = Gm = 2π

D m, m =
1, 2, . . ., has a distinct temperature-dependent critical expo-
nent 1 − αm(T ),

lim
q→Gm

S(q) ∼ 1

|q − Gm|1−αm (T )
, (3)

with

αm(T ) = m2 16πkBT

Y b2
. (4)
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As the temperature increases, the Bragg peaks at q = Gm

disappear sequentially at temperatures above T (m)
c , where

kBT (m)
c = 1

m2

Y b2

16π
, m = 1, 2, . . ., (5)

with the higher order Bragg peaks further away from the
origin in momentum space q = 0 remaining finite about a
lower transition temperature. Remarkably, the spacing D be-
tween the dislocations in the pileup drops out of this formula.
Around the temperature at which the last remaining Bragg
peak (m = 1) disappears, the 2D host crystal (provided it does
not melt earlier due to a first-order transition) will also melt
due to a dislocation-unbinding transition (see discussion in
Sec. III) [16,17,19]. Thus, as the temperature reaches kBT (1)

c ,
the 1D pileup melts together with the 2D host solid. The
transition at lower temperatures, e.g., kBT (2)

c = 1
4

Y b2

16π
, might

be easier to observe experimentally.
At temperatures T below a characteristic pinning temper-

ature T < TP, pileups transition to the pinned-defect phase,
where quasi-long-range order gives way to true long-range
order, and the algebraically diverging Bragg peaks transform
into delta function Bragg peaks. We expect that the pin-
ning transition temperature TP is bounded from above by the
pinning temperature associated with a nearby “accidentally
commensurate” dislocation density:

kBT 0
P = 2

M2

Y b2

16π
, (6)

where M is an integer associated with a commensurate dislo-
cation spacing M = D

a and a is the host crystal lattice constant.
Since the dislocation spacing is typically much larger than
the host lattice constant M � 1, the pinning temperature
is significantly lower than the melting temperatures associ-
ated with the Bragg peaks of the floating solid phase, e.g.,
TP � T 0

P � T (2)
c = 1

4 Tm, where Tm = Y b2

16π
is the Kosterlitz-

Thouless melting temperature of the host crystal [14,16–18].
A simplified model for the statistical mechanics of symmet-
ric low angle grain boundaries (LAGBs), another type of
one-dimensional dislocation assembly (with Burgers vectors
aligned on average perpendicular instead of parallel to the
wall, as for pileups), was studied in Ref. [20]. Some aspects of
the commensurate-incommensurate/pinning transitions stud-
ied here for inhomogeneous pileups, leading to delta function
Bragg peaks in defect structure functions at low temperatures,
might be relevant for this problem as well. However, we ex-
pect that any modulating potential along the grain for LAGBs
is much weaker and more inhomogeneous than the Peierls
potential for transverse dislocation glide motions studied in
this paper.

In Sec. II we review the continuum theory of one-
dimensional dislocation pileups, consisting of edge disloca-
tions confined to the glide plane of a two-dimensional host
crystal, and introduce the random matrix models onto which
two types of dislocation pileups we discuss can be exactly
mapped. In Sec. III we identify the melting transitions from
quasi-long-range order in a floating solid phase through the se-
quential disappearance of algebraically diverging Bragg peaks
in the defect structure factor S(q). We first establish the theory
for uniform pileups with equally spaced dislocations, and

subsequently for inhomogeneous pileups. We also examine
the radial distribution function g(r) and find that correlations
as a function of interdislocation distance decay with a power-
law envelope, described by another temperature-dependent
critical exponent related to α1(T ). We then check our pre-
dictions numerically using random matrix simulations (RMS).
These random matrix simulations have a continuously tunable
temperature parameter, and are highly efficient compared to
conventional molecular dynamics or Monte Carlo simulations
of long-range interactions. In Sec. IV we study the effect
of a periodic Peierls potential on pileups, and identify the
transition from the floating-defect phase to a low-temperature
pinned-defect phase by mapping our problem onto a quantum
Brownian motion model [12], which we analyze by deriving
the renormalization group recursion relations.

II. DISLOCATION PILEUPS AND RANDOM
MATRIX THEORY

In this section we review the equilibrium properties of
dislocation pileups and show that the statistical mechanics of
two types of pileups can be mapped exactly onto the eigen-
value statistics of recently studied random matrix ensembles
[23]. Table I summarizes the equilibrium dislocation densities
and random matrix connections (if they exist) for the pileups
studied in this work.

Dislocation pileups form in crystals under applied shear
stress σ . Although this macroscopic shear stress is often taken
to be a constant, we have found it convenient to allow it to
depend on position x, σ = σ (x), which allows us to study
a broader class of pileups. As we will show, a pileup in the
floating-defect phase embedded in a 2D crystal behaves like a
Coulomb gas of like-signed charges with logarithmic interac-
tions confined to one dimension. Although dislocations with
like-signed Burgers vectors in the same glide plane tend to
expel each other outwards indefinitely, dislocations in a pileup
are confined by physical obstacles and/or grain boundaries, or
equivalently by external potentials generated by applied shear
stresses σ (x) that are spatially nonuniform [24,25]. As dis-
cussed below, the force balance condition from a continuum
model determines the (possibly inhomogeneous) equilibrium
dislocation density of each pileup in response to the applied
shear stress.

Pileups can also occur on curved 2D crystals in response
to curvature-induced residual stress projected onto the glide
plane [21,22]. For example, edge dislocations on a spherical
cap can form pileups along the latitudinal direction near the
cap boundary [see illustration in Fig. 1(b)].

A. Equilibrium dislocation densities of pileups

The Hamiltonian for a one-dimensional dislocation pileup
embedded in a two-dimensional host crystal is [3]

H[n(x)] =
∫ L/2

−L/2
dx n(x)bσ0U (x)

−1

2

Y b2

4π

∫ L/2

−L/2
dx
∫ L/2

−L/2
dx′n(x)n(x′) ln |x − x′|,

(7)
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TABLE I. A summary of the different dislocation pileups discussed in this paper. The “Schematic” column shows a typical stationary
dislocation distribution and the corresponding confining potential (in blue). In the expressions for dislocation density n(x) and total number of
dislocations N in the next column, ζ = 4σ0

Y b , where Y is the 2D Young’s modulus, b is the magnitude of the Burgers vector, and σ0 determines
the magnitude of the applied shear stress. There exist two random matrix (RM) ensembles whose eigenvalue statistics correspond exactly to
the statistical mechanics of the single pileup (β-Wishart ensemble) and the semicircular pileup (β-Gaussian ensemble).

Dislocation Pileup Schematic
Dislocation density n(x)

x ∈ −L
2 , L

2

) Central potential profile U(x)

x ∈ −L
2 , L

2

)

Double pileup
nD(x) = ζ x

(L
2 )2−x2

ND = ζL

−|x|

Single pileup

(RM: Wishart)

nS(x) = ζ

√
L
2 −x√
L
2 +x

NS = ζLπ
2

x

Semicircle lattice

(RM: Gaussian)

nSC(x) = ζ

√
1 −

(
x

L/2

)2

NSC = ζLπ
4

1
L/2

x2

2

Uniform lattice
nU(x) = ζπ

NU = ζLπ

L
2 − x

)
log L

2 − x
)

+ x + L
2

)
log x + L

2

)

Uniform ring
nUR(x) = ζπ

NUR = ζLπ
None

where Y is the 2D Young’s modulus, b is the magnitude of the
Burgers vector, and n(x) is the density of dislocations along
the pileup. [Eventually we will take the discrete dislocation
positions {xn} into account by setting n(x) = ∑

n δ(x − xn),
but here it is convenient to use a more general continuum no-
tations.] The first term, with σ0U (x) = ∫ x

−L/2 dx′σ (x′), comes
from the Peach-Koehler force due to the applied shear stress
σ (x) [26], where σ0 measures the strength of the shear stress
and U (x), with dimensions of length, is the spatial profile
of the potential experienced by the dislocations due to the
shear stress. Note that the sign of the dislocation density n(x)
indicates the direction of the local Burgers vector �b = ±bx̂,
directed along the pileup. With the exception of the double
pileup (first row of Table I), all pileups studied here have edge
dislocations with Burgers vectors of the same sign.

The average dislocation density n(x) can be calculated
from the applied stress [∼∂xU (x)] via the force balance con-
dition at equilibrium, obtained from Eq. (7) by a functional
derivative with respect to n(x) followed by a spatial derivative
with respect to x,

0 = σ0b
dU (x)

dx
+ Y b2

4π

∫ L/2

−L/2
dx′ n(x′)

x′ − x
. (8)

Equation (8) can be solved for many interesting cases us-
ing special solutions to the Hilbert transform, given by the
Tschebyscheff (Chebyshev) polynomials [3]. Thus, by vary-
ing the form of the profile U (x) through the applied stress,
one can obtain an entire class of inhomogeneous dislocation
pileups in one dimension, each with its own distinctive density
profile.

We summarize the density distributions for the different
pileups studied in this paper in Table I, and refer the read-
ers to Appendix B for details of the derivations using the
framework described above. Table I reveals the rich variety of
pileups possible depending on the spatial profile of the shear
stress σ (x) = σ0∂xU (x). Double pileups and single pileups
experience uniform stress fields σ (x) = σ0 and linear poten-
tials U (x) ∼ x, while semicircle pileups result from linearly
varying stress fields σ (x) ∼ x, corresponding to a quadratic
confining potential U (x) ∼ x2.

While the statistical mechanics ideas used here apply
generally to any one-dimensional pileup embedded in a two-
dimensional crystal, we will utilize the specific pileups in
Table I to explicitly demonstrate and check various aspects
of our theory. The theory of uniform pileups is an important
building block for understanding inhomogeneous pileups. A
pileup with uniform average density can be constructed in two
ways. A uniform pileup ring follows from imposing periodic
boundary conditions (row 5 of Table I) without a confining
potential, while a uniform pileup chain with open bound-
ary conditions requires a nonuniform central potential profile
U (x) = UU(x). The form of UU(x) follows from inverting the
definition given for an average density n(x) = nU(x) described
by a rectangle function

nU(x) = nU

( x

L

)
≡

⎧⎪⎨
⎪⎩

1, | x
L | < 1

2 ,
1
2 , | x

L | = 1
2 ,

0, | x
L | > 1

2 ,

(9)
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where nU is a constant and 
(z) is the rectangle function with
the following well-defined Hilbert transform [27]:

H[
(z)] = 1

π
PV

∫ ∞

−∞


(z)dz

z − y
(10)

= 1

π
PV

∫ 1/2

−1/2


(z)dz

z − y
= 1

π
ln

∣∣∣∣y − 1
2

y + 1
2

∣∣∣∣, (11)

where PV denotes the principal value of the integral. Upon
integrating the result of the Hilbert transform, the central
potential for a uniform pileup chain is obtained as

UU(x) =
(L

2
− x

)
ln
(L

2
− x

)

+
(L

2
+ x

)
ln
(L

2
+ x

)
(12)

(see row 4 of Table I and Appendix B for details). Note that
the dislocation density described by the rectangle function
breaks translational invariance of the pileup and the confining
potential UU(x) diverges at |x| = L/2, corresponding phys-
ically to impenetrable walls bounding a row of like-signed
dislocations.

Interestingly, the central potential for a uniform pileup
UU(x) varies quadratically near the pileup center, just like the
central potential USC(x) for a semicircular pileup (a pileup
with semicircular density distribution, see row 3 of Table I),
and the dislocation density near the center of the semicircular
pileup nSC(x) is close to uniform, as for the rectangle density
nU(x):

lim
x→0

nSC(x) ∼ nU(x), (13)

lim
x→0

UU(x) ∼ USC(x). (14)

Remarkably, as shown in the next section, the statistical
mechanics of semicircular pileups [U (x) ∼ x2] and single
pileups [U (x) ∼ x, row 2 of Table I] at finite temperatures
maps exactly on to the eigenvalue statistics of special random
matrix ensembles that are easy to simulate. Random matrix
simulations then allow us to check our theoretical predictions
in Sec. III. In particular, while a semicircular pileup is in-
homogeneous when considered in its entirety, we can use its
center region to approximate a uniform pileup. In Sec. III we
utilize this feature to numerically check our theoretical struc-
ture functions and radial distribution functions for uniform
pileups and inhomogeneous semicircular pileups.

B. Connection to random matrix theory

We introduce two random matrix ensembles that allow
efficient finite temperature simulations of the long-range
interactions embodied in dislocation pileups—the general
β-Gaussian (Hermite) ensemble and general β-Wishart
(Laguerre) ensemble [23]—whose eigenvalue statistics map
exactly onto the statistical mechanics of semicircular pileups
and single pileups. Specifically, the random matrix parameter
β is proportional to the inverse temperature 1/kBT of the
dislocation pileups

β = Y b2

4π

1

kBT
, (15)

and the joint probability distribution function (JPDF) of the
random matrix eigenvalues at a particular value of β is equal
to the Boltzmann factor (normalized by the partition function)
of pileup configurations at the temperature T correspond-
ing to Eq. (15). (Note that we do not set β = 1/kBT , the
usual notational convention in statistical mechanics.) Thus,
the eigenvalues of these random matrices are the dislocation
positions in a snapshot of the pileup in thermal equilibrium,
and the temperature at which the snapshot is taken can be
tuned via the matrix parameter β in Eq. (15), also known as
the random matrix inverse temperature or the Dyson index.

Importantly, the general β-Gaussian and the general β-
Wishart random matrices are tridiagonal and allow β to
assume any positive value β > 0. We can thus obtain an
equilibrium configuration of semicircular pileups and single
pileups at any temperature kBT by diagonalizing a tridiag-
onal random matrix, an operation that scales with the total
particle number N as O[N log(N )] [28]. Thus, the use of
random matrix ensembles allows us to bypass the challenges
of direct numerical simulations with, say, molecular dynamics
for N particles with long-range interactions, which scales as
O(N5/2) [29].

In contrast to the general β matrices, the usual classical
β-Gaussian matrices [30] and classical β-Wishart matrices
[31], with eigenvalue statistics identical to their general β

counterparts, are fully dense and only allow β to assume three
possible values β = 1, 2, 4 [32]. Nevertheless, the analytical
results derived via orthogonal polynomials for these standard
random matrix ensembles (β = 1, 2, 4) [30] will also be use-
ful for us.

1. General β-Gaussian ensemble

Matrix models of the general β-Gaussian ensembles,
where β assumes any positive real value, take the following
real symmetric tridiagonal form [23],

Hβ = 1√
2

×

⎡
⎢⎢⎢⎢⎣

N (0, 2) χ(N−1)β 0
χ(N−1)β N (0, 2) χ(N−2)β

. . .
. . .

. . .

χ2β N (0, 2) χβ

0 χβ N (0, 2)

⎤
⎥⎥⎥⎥⎦,

(16)

where all elements off the tridiagonals, including the corner
entries, are zero. Here N (0, 2) indicates a random number
drawn from the normal probability distribution with mean 0
and variance 2, and χk represents a random number drawn
from the chi distribution, which describes the statistics of√∑k

i=1 Zi, where Z1, . . ., Zk are k independent normally dis-
tributed variables with mean 0 and variance 1. The probability
density function pk (x) corresponding to the chi distribution χk

is then [33]

pk (x) =
{

xk−1e−x2/2

2k/2−1�( k
2 ) , x � 0,

0, otherwise,
(17)
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where �( k
2 ) is the gamma function, and k does not have to

be an integer and can in fact assume any real value. Note
that all diagonal elements Hβ,ii are independently drawn from
N (0, 2), whereas each Hβ,i j = Hβ, ji (i �= j) off-diagonal pair
are in fact the same number, so these matrices are symmetric
with real eigenvalues.

Upon rescaling the N eigenvalues (x1, . . ., xN ) as
xi → √

2βNxi, so that the spectrum lies in the interval x ∈
(−1, 1), the eigenvalue joint probability distribution function
(JPDF) is, up to a normalization constant [23],

n(x1, . . ., xN ) ∼ e−βN[
∑

i x2
i − 1

2N

∑
j �=k ln |x j−xk |]. (18)

Upon substituting β using Eq. (15) and replacing N using the
semicircular pileup normalization condition N = πσ0L/Y b
(see row 3 of Table I), one can immediately see that the
exponential in Eq. (18) is exactly equal to the reduced Hamil-
tonian H/kBT in Eq. (7) for the semicircular pileup in row
3 of Table I, which experiences a quadratic central confining
potential U (x) = x2/L.

In the large N limit, the average eigenvalue density dis-
tribution n(x) = ∫

dx2 · · · dxN n(x1, . . ., xN ) is given by the
famous semicircle law [23,34],

n(x) = 2N

π

√
1 − x2. (19)

As mentioned previously, the semicircle pileup and the associ-
ated general β-Gaussian random matrices will be exceedingly
useful for testing the theory developed in Sec. III.

In the next section we describe another fascinating connec-
tion, this time between random matrices and single dislocation
pileups. However, single pileups have lattice spacings that are
extremely inhomogeneous near the piling edge, so that only
a small amount of crystalline order can survive. We will not
focus much on them for the remainder of this paper. The
reader may skip the next subsection without loss of continuity.

2. General β-Wishart ensemble

Matrix models of the general β-Wishart ensemble consist
of square matrices of the form Wβ = BβBT

β , where Bβ are N ×
N square, bidiagonal, matrices. The matrix elements contain,
in addition to β, another tuning parameter M. (A similar pa-
rameter M appears in the classical Gaussian Wishart matrices
W = BBT , where B are N × M rectangular matrices. In gen-
eralizing the Wishart ensemble, Ref. [23] has transformed M
from an integer matrix rank parameter into a parameter tuning
the probability distribution of the matrix elements.) The subset
of these square Bβ matrices describes the statistical mechanics
of single dislocation pileups. The random bidiagonal matrix
Bβ with M = N takes the form

Bβ =

⎡
⎢⎢⎢⎢⎣

χ2ā 0 0
χ(N−1)β χ2−β 0

. . .
. . .

. . .

χ2β χ2ā−(N−2)β 0
0 χβ χ2ā−(N−1)β

⎤
⎥⎥⎥⎥⎦,

(20)

where β can assume any positive value, ā = βN
2 , and χk indi-

cates a random number drawn from the chi distribution shown
in Eq. (17).

Note that the product Wβ = BβBT
β is a symmetric N × N

square matrix with correlated matrix elements. The eigenval-
ues {xi} of Wβ , which is a positive semidefinite matrix, are
the squares of the singular values {σi} of Bβ : xi = σ 2

i . Upon
scaling the N eigenvalues (x1, . . ., xN ) of matrix Wβ according
to xi → βNxi, one obtains the following spectral JPDF, up to
a normalization constant,

n(x1, . . . , xN ) ∼ e−βN[
∑

i V (xi )− 1
2N

∑
j �=k ln |x j−xk |], (21)

where the associated central potential V (x) is

V (x) = x

2
+ (2/β ) − 1

2N
ln(x). (22)

In the thermodynamic limit N → ∞, the weak logarithmic
correction vanishes, and the central potential of the eigenval-
ues in Eq. (22) simplifies,

V (x) = x

2
. (23)

Remarkably, upon substituting β using Eq. (15) and re-
placing N using the single pileup normalization condition
N = 2πσ0L/Y b (row 2 of Table I), the thermodynamic limit
of the exponential weight in Eq. (21) corresponds exactly
to the Hamiltonian H/kBT of the single pileup, which ex-
hibits a linear potential (i.e., a constant stress field, see
row 2 of Table I). The average eigenvalue density n(x) =∫

dx2 · · · dxN n(x1, x2, . . ., xN ) in this large N limit is given
by the Marchenko-Pastur law [23,35], with

n(x) = N

2π

√
4 − x√

x
, (24)

where the spectral support lies in the interval x ∈ (0, 4). If we
shift x by a constant x → x + 2, the average density becomes

n(x) = N

2π

√
2 − x√
2 + x

. (25)

The eigenvalue distribution shown in Eq. (25) then corre-
sponds exactly to the dislocation density of a single pileup
with length L = 4, bounded by an impenetrable wall at x =
−2 and extending towards the positive x direction (see row 2
of Table I), with

nS (x) = Y b

4σ0

√
L
2 − x√
L
2 + x

, (26)

where x ∈ (− L
2 , L

2 ).
Note, however, that this correspondence between the statis-

tical mechanics of single pileups and the eigenvalue statistics
of the general β-Wishart ensemble is only exact in the thermo-
dynamic limit of large matrix rank N , whereas the statistical
mechanics of semicircular pileups maps exactly onto the
eigenvalue statistics of the general β-Gaussian ensemble for
all N (i.e., for an arbitrary number of dislocations or eigenval-
ues).

022139-6



STATISTICAL MECHANICS OF DISLOCATION PILEUPS … PHYSICAL REVIEW E 103, 022139 (2021)

III. MELTING TRANSITION OF DISLOCATION PILEUPS

In this section we calculate the structure factors and spatial
correlation functions for thermally excited dislocation pileups.
We begin by building the theory for uniform pileups and then
extend it to inhomogeneous pileups with slowly varying dis-
location spacings. We show that an entire sequence of phase
transitions can be associated with power-law divergences at
different Bragg peaks in the structure factor and identify a
set of transition temperatures. We then efficiently simulate
semicircular pileups (i.e., pileups with a semicircular average
density profile) by diagonalizing the general β-Gaussian ran-
dom matrices introduced in Sec. II B, and extract the structure
factor S(q) and the radial distribution function g(r) for both
a truncated piece of homogeneous dislocation lattice and the
untruncated semicircular dislocation lattice. The simulation
results show excellent agreement with our theory.

A. Energy of fluctuations

When dislocations with identical Burgers vectors b > 0 are
arranged at discrete positions {xn}, so that n(x) = ∑

n δ(x −
xn), the Hamiltonian for a pileup takes the following form:

H =
∑

n

B(xn) − A
∑
n �=m

ln |xn − xm|, (27)

where the sums are over all dislocations in the pileup, B(x) =
σ0bU (x) is the central confining potential, and A = 1

2
Y b2

4π
is a

constant, depending on the Burgers vector magnitude b, the
Young’s modulus Y of the host lattice, and the strength of the
applied force σ0.

The change in energy due to particle displacements from
equilibrium [36] in Eq. (27) is

�E =
∑

n

B(Rn + un)

−A
∑
n �=m

[ln |Rn + un − (Rm + um)| − ln |Rn − Rm|],

(28)

where Rn = nD is the equilibrium lattice position of the nth
dislocation, and un is the displacement of the nth dislocation
from Rn. We will expand each term to obtain the energy of
fluctuations to quadratic order in the displacements {un}.

In the large N limit, the fluctuation energy up to quadratic
order in displacements for a uniform pileup, whether with
periodic or open boundary conditions, is (see Appendix C for
details)

�E ≈ A

2

∑
n �=m

(un − um)2

(Rn − Rm)2
. (29)

The behavior of the fluctuations deep in the interior of a uni-
form dislocation pileup chain with a confining potential is thus
equivalent to that in the uniform ring in Eq. (C2), which has no
confining potential to begin with. Neglecting the effect of the
confining potential in the uniform pileup chain is somewhat
analogous to ignoring the effect of boundary conditions on
the bulk properties in the thermodynamic limit.

We now write �E in terms of Fourier modes using the
following Fourier transform conventions,

u(q) = D
N∑

n=1

eiqnDun, (30)

un =
∫ π/D

−π/D

dq

2π
e−iqnDu(q), (31)

where
∑

n sums over all N lattice sites. Equations (C2) and
(29) then become

�E =
∑
n �=m

A

(Rn − Rm)2

∫
dq

2π

∫
dq′

2π
u(q)u(q′)

×(ei(q+q′ )nD − eiqnDeiq′mD). (32)

Upon relabeling the equilibrium site variables as Rj = Rn −
Rm and Rρ = (Rn + Rm)/2 and summing over Rρ , Eq. (32)
becomes

�E =
∫

dq

2π

2A

D

∑
j>0

1

(Rj )2
[1 − cos(Rjq)]|u(q)|2 (33)

=
∫

dq

2π

1

2
B(q)q2|u(q)|2, (34)

where

B(q)q2 = 4A

D

∑
j>0

1

(Rj )2
[1 − cos(Rjq)] (35)

= 4A

D3

∑
j>0

1

n2
[1 − cos(nqD)]. (36)

With the help of the following summation identity [37,38]:
∞∑

n=1

1 − cos(nqD)

n2
= π |qD|

2
− (qD)2

4
+ · · ·, (37)

we truncate the kernel in Eq. (35) to lowest order in q,

B(q)q2 = 2Aπ

D2
|q|, (38)

which dominates the integral in Eq. (34). The change in the
long wavelength energy as a function of particle displace-
ments in momentum space is thus

�E =
∫

dq

2π

Aπ

D2
|q||u(q)|2 = 1

2

(
Y b2

4D2

)∫
dq

2π
|q||u(q)|2.

(39)

Note that the coefficient of |u(q)|2 is linear in q, in contrast to
elastic theories with short-range interactions, where the elastic
energies are quadratic in q (see Appendix A or Ref. [18]).
This linear dependence on q is critical for obtaining singular
phenomena associated with phase transitions at the higher
order Bragg peaks in the structure factor for one-dimensional
pileups.

B. Structure factor for uniform pileups

The structure function S(q) measures the sensitivity of a
crystal to density perturbations of some length scale λ(q) =
2π/q. We calculate the dominant contributions to the structure
factor in two separate regimes: (1) when the momentum q is
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near 0, which describes long wavelength density fluctuations,
and (2) when q is close to the mth reciprocal lattice vector
Gm = m2π

D , where D is the constant dislocation spacing. Un-
derstanding these two regimes captures the most important
features of the structure factor, as confirmed by random matrix
simulations in Sec. III C.

1. Long wavelength limit

Let us again write the microscopic dislocation density
ρmicro(x) of a single realization of the uniform pileup as

ρmicro(x) =
N∑

j=1

δ(x − x j ), (40)

where {x j} is the set of N dislocation positions. By averaging
Eq. (40) over a hydrodynamic averaging volume centered at
x, containing a number of dislocations, we can coarse grain
ρmicro(x) to obtain a smoothed density field ρ(x) [15]. Den-
sity fluctuations can then be expressed as δρ(x) = ρ(x) − ρ0,
where ρ0 ≡ 〈ρ(x)〉 is the average density. The structure factor
S(q) in terms of the Fourier transform of δρ(x) is then

S(q) = 1

N

〈|δρ(q)|2〉, (41)

where the brackets denote thermal averaging and δρ(q) =
ρ(q) − 〈ρ(q)〉 is the deviation of the Fourier-transformed den-
sity from its average value 〈ρ(q)〉.

In the long wavelength limit q → 0, we can directly
calculate the structure factor S(q) using Eq. (41). Mass con-
servation in one dimension requires the following relation
between the displacement field and density fluctuations

δρ(x) = ρ0∂xu(x), (42)

where ρ0 = 〈ρ(x)〉 is the average density. In Fourier space,
Eq. (42) becomes

δρ(q) = ρ0iqu(q). (43)

From Eq. (39), the fluctuation energy can be written in terms
of the density fluctuations as

�E =
∫

dq

2π

1

2
W (q)|δρ(q)|2 = 1

N

∑
q

1

2

W (q)

D
|δρ(q)|2,

(44)

where W (q) = B(q)/ρ2
0 . With the help of Eq. (38), we obtain

W (q) = 2πA

ρ2
0 D2

1

q
= 2πA

1

q
, (45)

to lowest order in q, where we have set ρ0 = N/L = D−1.
Thus the structure factor for small q, following Eq. (41),
vanishes linearly in momentum

lim
q→0

S(q) ≈ kBT

A

D

2π
|q| = 8πkBT

Y b2
|q̄|, (46)

where q̄ ≡ q
2π/D is a dimensionless wave vector and we have

used A = Y b2/8π . The vanishing of the structure factor as
q → 0 indicates the absence of long wavelength modes due
to the incompressibility of dislocations with identical Burgers
vectors, similar to a Coulomb gas of like-signed charges.

2. Bragg peaks

In the previous section we obtained the behavior of the
structure factor near q → 0 by directly computing the density-
density correlation. A direct approach is more challenging at
finite q, say, near a reciprocal lattice vector Gm = 2π

D m. To
probe the structure factor near the wave vectors {Gm}, we
approximate this quantity using the one-dimensional displace-
ment correlation function C(s) ≡ 〈|us − u0|2〉.

To express the structure factor in terms of C(s), we use
Eq. (40) to rewrite Eq. (41) in the thermodynamic limit
as [39]

S(q) =
〈 ∞∑

n=−∞
eiq(xn−x0 )

〉
, (47)

where xn, the position of the nth dislocation, can be de-
composed into the equilibrium position Rn = nD and a
displacement un as xn = Rn + un. On defining s ≡ n − t and
setting k ≡ q − Gm, we can approximate Eq. (47) for |k| �
Gm as

S(Gm + k) =
∞∑

s=−∞
eikDse− 1

2 G2
m〈|us−u0|2〉, (48)

where we have used eiGmsD = 1 and the properties of Gaussian
thermal averages to evaluate 〈exp [iGm(us − u0)]〉.

Since the long wavelength modes provide the dominant
contribution to the displacement correlation function C(s),
we calculate 〈|us − u0|2〉 using Eq. (38) for large s. The
displacement-displacement correlation is then

C(s) = 〈|us − u0|2〉 (49)

= 2
∫ π/D

−π/D

dq

2π

∫ π/D

−π/D

dq′

2π
(1 − eiqDs) (50)

×〈u(q)u(q′)〉

= 4
D2kBT

2Aπ

∫ π/D

0

dq

2π

(
1 − cos(qDs)

|q|
)

, (51)

where 〈u(q)u(q′)〉 has been evaluated using properties of ther-
mal Gaussian averages and Eq. (39). In the limit of large
s → ∞, Eq. (51) can be approximated using cosine integrals
[40],

C(s) = 4
D2kBT

2Aπ

1

2π

(
γ + ln(πs) + O

[
cos(πs)

s

])
, (52)

where γ ≈ 0.577 is the Euler-Mascheroni constant. Upon
substituting Eq. (52) into Eq. (48), we obtain the singular
behavior of the structure factor for |k| � Gm, i.e., close to a
reciprocal lattice vector, as

S(Gm + k) =
∞∑

s=−∞
eikDse−γ

m22kBT
A (πs)−

2m2kBT
A (53)

= Am(T )

(Dk)1−αm (T )
, (54)

where the exponent 1 − αm(T ) is a temperature-dependent
susceptibility critical exponent, with

αm(T ) = m2 16πkBT

Y b2
, (55)
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and the amplitude in Eq. (54) is

Am(T ) = (eγ π )−αm (T )
∫ ∞

−∞
dηeiηη−αm (T ). (56)

It follows from Eq. (54) and (55) that the structure factor near
the mth reciprocal lattice vector Gm has a singular contribution
that scales according to

lim
q→Gm

S(q) ∼ 1

|q − Gm|1−αm (T ) . (57)

Note that the argument q ≈ Gm in Eq. (57) is distinct from
the argument q in the kernel in Eqs. (38) and (39), which
we integrate over as part of 〈|u(q)|2〉 in Eq. (51) to ob-
tain the displacement-displacement correlation C(s). We see
from Eq. (57) that at temperatures low enough such that
1 − αm(T ) � 0, the structure factor diverges as the momen-
tum q approaches the mth reciprocal lattice vector (i.e., as
|k| = |q − Gm| → 0). Thus, if we start from zero tempera-
ture (and neglect for now the pinning effect of the Peierls
potential), there is an infinite set of diverging Bragg peaks,
one located at every reciprocal vector Gm. When the pileup is
in this floating-defect solid phase, these Bragg peaks decay
algebraically as a function of q = Gm − k, with exponent
1 − αm(T ) such that the higher order Bragg peaks are less
singular than the more prominent ones closer to the origin
in momentum space. The temperature-dependent exponents
characterizing the divergence of the Bragg peaks in this
quasi-long-range ordered phase of the dislocation pileups are
reminiscent of the Bragg peaks below the melting tempera-
ture of 2D crystals [16,17,19]. As the temperature increases,
divergences in the highest order Bragg peaks vanish one by
one upon surpassing the transition temperature {T (m)

c }, where

kBT (m)
c = 1

m2

Y b2

16π
. (58)

The last Bragg peak to disappear is the first-order Bragg peak
at G1 = 2π

D closest to the origin in momentum space. Inter-
estingly, the temperature at which this last remaining Bragg
peak vanishes kBT (1)

c coincides with the dislocation-unbinding
temperature of the 2D host crystal, up to renormalizations
discussed in Sec. III E. Note that the spacing D between dis-
locations in the pileup drops out in Eq. (55) for the exponents
{αm(T )} and in Eq. (58) for the transition temperatures {T (m)

c }.
This independence of D arises because the D dependence of
the interaction strength in Fourier space B(q) ∼ 1/D2 cancels
against the D dependence of the reciprocal lattice vectors
{Gm} = {m2π/D}. Similar results have been found for low
angle grain boundaries in two dimensions [20].

Upon combining our results for q ≈ 0 and q ≈ Gm for m =
±1,±2, . . ., we expect the following form for the structure
factor for q > 0:

S(q) ≈ S0(q) +
∞∑

m=1

Sm(q), (59)

where S0(q) is the dominant term in the limit q → 0, and
Sm(q) is the dominant term in the limit q → Gm, i.e.,

lim
q→0

S(q) = S0(q), lim
q→Gm

S(q) = Sm(q). (60)

Upon requiring S(q) to be consistent with Eq. (46), we imme-
diately see that

S0(q) = α1(T )

2
|q̄|, (61)

while according to Eq. (57) we expect

lim
q→Gm

Sm(q) ∼ 1

|q − Gm|1−αm (T ) . (62)

We note that there are multiple ways to write Sm(q) that would
encompass the limiting behavior at q → Gm. To compare
our theory with numerically extracted structure factors from
random matrix simulations later in this section, we focus on
the momentum range below the second reciprocal lattice vec-
tor 0 < q < G2 and the temperature range T (2)

c > T � T (1)
c ,

where only the first-order Bragg peak is divergent. In this
regime, we will neglect contributions from higher order m > 1
Bragg peaks and decompose the structure factor S(q) as

S(q) = S0(q) + S1(q). (63)

In the next section, with the help of random matrix theory,
we write down an ansatz for S(q) in this regime that combines
the two scalings embodied in Eqs. (46) and (57) with no fitting
parameters.

3. Connection to random matrix theory

As discussed in the Introduction, the dimensionless inverse
temperature parameter β in the β-Gaussian random matrix
ensemble is given by β = Y b2/4πkBT [see also Eq. (18)].
The temperature-dependent critical exponent from Eq. (55)
can then be written in terms of this random matrix parameter
β as

αm(T ) = 4m2

β
. (64)

The structure factor in the q → 0 and q → Gm limits in
Eqs. (46) and (57) can also be expressed in terms of β as

lim
q→0

S(q) = S0(q) = 2

β

q

G1
, (65)

lim
q→Gm

S(q) ∼ 1

|Gm − q|1− 4m2
β

. (66)

Note that the mth order Bragg peak, centered at Gm = m 2π
D

for a uniform lattice, disappears when β < β (m)
c , with

β (m)
c = 4m2. (67)

Conveniently, the exact form of the structure factor at
three specific temperatures β = 1, 2, 4 for the uniform lattice
(derived by studying the semicircular Wigner distribution of
eigenvalues in the limit of infinite length for the classical
Gaussian ensembles) can be obtained from conventional ran-
dom matrix theory using orthogonal polynomials [30]. These
results are summarized in Table II, where q̄ ≡ q/G1 such
that the mth Bragg peak is centered at q̄ = m. (Note that
β = 1, 2, 4 for the classical Gaussian ensembles, from which
the analytical results in Tables II and III are derived [30],
while β � 0 for the general Gaussian ensemble, which we
use to carry out all random matrix simulations in this work.)
We can see from Table II that the random matrix theory
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TABLE II. Exact expressions for S(q) ≡ K (q̄), where D is the
dislocation spacing and q̄ = q/G1 = qD/2π , derived from random
matrix theory via orthogonal polynomials for the special values of
the dimensionless random matrix inverse temperature parameter β =
1, 2, 4 [30].

β S(q) ≡ K (q̄), q̄ ≡ q
G1

1
2|q̄| − |q̄| ln(1 + 2|q̄|),
2 − |q̄| ln ( 2|q̄|+1

2|q|−1 ),
|q̄| � 1
|q̄| � 1

2
|q̄|, |q̄| � 1
1, |q̄| � 1

4
1
2 |q̄| − 1

4 |q̄| ln |1 − |q̄||,
1,

|q̄| � 2
|q̄| � 2

results at β = (1, 2, 4) [T = ( 1
4 , 1

2 , 1) × T (1)
c ] are consistent

with theoretical results in the q → 0 limit [Eqs. (46) and (65)]:

lim
q → 0

S(q) = 2

β
|q̄|. (68)

In particular, the results from random matrix theory at
β = 4 motivate us to propose an exact asymptotic expression
for the structure factor near the first Bragg peak. To determine
the form for S1(q) in Eq. (63), we require that the following
conditions are satisfied: (1) S1(q) is consistent with Eq. (57)
in the q → G1 limit, (2) S1(q) is subdominant to S0(q) in
the q → 0 limit, and (3) S(q) = S0(q) + S1(q) reduces to the
exact result from random matrix theory at β = 4 [α1(T ) = 1].
Based on these three conditions, we conjecture that the con-
tribution due to the first Bragg peak S1(q) can be written as

S1(q) =
∣∣∣ q̄
2

∣∣∣α1(T ) α1(T )

2[1 − α1(T )]

[
1

(1 − q̄)1−α1(T )
− 1

]
. (69)

One can verify that Eq. (69) satisfies the three conditions listed
above. First, Eq. (69) indeed diverges as the appropriate power
law near the first Bragg peak q̄ → 1. This is apparent for
α1 > 1. In the limit of α1 → 1, one can use the following
identity:

lim
p→0

1

p

(
1

|k|p
− 1

)
= − ln |k| (70)

TABLE III. Exact expressions for g(r) = h(r̄) from random
matrix theory derived via orthogonal polynomials, where r̄ = r

D
scales the intereigenvalue distance r = |x1 − x2| by the mean eigen-
value spacing near the center of the semicircle lattice D, and
s(r̄) ≡ sin π r̄

π r̄ [30].

β g(r) = h(r̄), r̄ = r
D

1 1 − [
∫∞

r̄ s(t̄ )dt̄][ d
dr s(r̄)] + [s(r̄)]2, s(r̄) = sin π r̄

π r̄
Large r̄: 1 − 1

π2 r̄2 + 3
2π4 r̄4 + cos 2π r̄

π4 r̄4 + · · ·
2 1 − s(r̄)2

Large r̄: 1 − 1
2π2 r̄2 + cos 2π r̄

2π2 r̄2 + · · ·
4 1 − s(2r̄)2 + d

dr̄ s(2r̄) · ∫ r̄
0 s(2t̄ )dt̄

Large r̄: 1 + π

2
cos(2π r̄)

2π r̄ + · · ·

to see that S1(q) diverges logarithmically as q → G1. Second,
in the limit of q → 0, S1(q) scales as

lim
α1 → 1,

q → 0

S1(q) = O(|q̄|1+α1(T ) ), (71)

which is subdominant to S0(q) ∼ kBT |q̄| for T > 0 [recall that
q̄ = q/( 2π

D )]. Finally, for α1(T ) = 1 (T = T (1)
c and β = 4),

Eq. (69) reduces to the following:

lim
β → 4

S1(q) = |q̄|
4

ln |1 − |q̄||, (72)

which matches the exact result from random matrix theory in
row 3 of Table II.

Upon combining Eqs. (65), (69), and (64), our conjectured
form for the structure S(q) in the temperature range T (2)

c >

T � T (1)
c (4 � β < 16) can be expressed in terms of β as

S(q) = 2

β

[
|q̄| +

∣∣∣ q̄
2

∣∣∣4/β 1

1 − (4/β )

(
1

(1 − q̄)1−(4/β )
− 1

)]
.

(73)

As shown in the next section, this expression shows excellent
agreement with results from random matrix simulations.

C. Random matrix simulations

In this section we compute the structure factors numeri-
cally for a system of N dislocations using [39]

S(q) = 1

N

〈∑
n,m

e−iq(xn−xm )

〉
, (74)

with the dislocation positions given by the eigenvalues of
random matrix simulations, and show that they agree with our
theory from the previous section.

Figure 3 shows the structure function S(q) for the semicir-
cle lattice of eigenvalues (red), averaged over 500 realizations
of rank N = 5000 random matrices Hβ from Eq. (16), with
β = 4, 16, 36, the random matrix inverse temperatures β at
which the first, second, and third Bragg peaks start exhibiting
a power-law divergence for a uniform pileup according to
Eqs. (57) and (67). Note from, e.g., Eqs. (69) and (73), that
we expect power-law divergences at the Bragg peaks precisely
at these special values of β. Note also that the Bragg peaks
in red are asymmetric, with their more pronounced wings
extending towards q = 0. This feature arises from the longer
lattice spacings near the edges of the semicircle lattice, where
the dislocations corresponding to the eigenvalues are more
dilute.

To better compare the random matrix eigenvalues to our
theory of the uniform pileup, we also show results from
truncating the semicircle lattice such that only the N/4 dis-
locations closest to the center of the lattice are retained (see
Fig. 3). In this interval, the dislocation/eigenvalue spacings
are approximately constant and the lattice is approximately
homogeneous. The resulting structure factors S(q) are shown
in Fig. 3 in green. After the truncation, which removes the dis-
locations with longer lattice spacings, the asymmetric wings
on the inner edges of the Bragg peaks vanish, and the Bragg
peaks are more centered at q/G1 = 1, 2, 3.
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FIG. 3. (a) Illustration of the average dislocation density of the
semicircular pileup (red) and approximately uniform pileup (semicir-
cle pileup truncated to include only those dislocations within 25% of
the center) (green). (b)–(d) Structure factor S(q) averaged over 500
realizations of rank N = 5000 random matrices. The first, second,
and third Bragg peaks form at β = 4, 16, 36, where β is the dimen-
sionless random matrix inverse temperature parameter β = Y b2

4πkBT in
Eq. (18), as predicted by Eq. (57). The wave vectors q on the x axes
are scaled by the first reciprocal lattice vector G1 = 2π/D where
D is the eigenvalue spacing at the center of the semicircular lattice.
Straight lines connecting the dots are there to guide the eye.

We can now compare the numerical results with the our
theory summarized in Eq. (73). As shown in Fig. 4, Eq. (73),
an exact expression with no fitting parameter, agrees well with
the structure factors extracted from random matrix simula-
tions for β > β (1)

c near the first reciprocal lattice vector.
We find that the heights of the Bragg peaks extracted from

the random matrix eigenvalues are approximately constant as
a function of system size N , provided that we average over
a large number of realizations. Although for uniform disloca-
tion lattices, one might expect the height of the Bragg peak to
scale as S(G1) ∼ Nα−1 by setting k ≈ π/N in Eq. (53), this
result is not confirmed by random matrix simulations. This
discrepancy may arise because the ∼Nα−1 scaling requires
a uniform lattice constant D(x) = D over the entire sample
size, leading to a precisely defined reciprocal lattice vector
G1(x) = G1 = 2π/D for all x. For our general β-Gaussian
random matrix simulations, although the truncated semicircle
lattice is sufficiently uniform such that S(q) has the correct
power-law divergence behavior near the Bragg peaks, the
equilibrium lattice spacing still has nonzero variation given by
a slowly varying function D(x). Although small, this variation
is enough to smear out the very tip of the Bragg peak, which
is sensitive to a wide range of dislocation spacing D(x).

D. Structure factor for inhomogeneous pileups

For an inhomogeneous pileup with spatially varying lattice
constant D(x), we can calculate the overall structure factor
via a direct one-dimensional “powder average.” Upon defin-
ing K ( q

G1
) ≡ S(q), the structure factor for an inhomogeneous

pileup with a variable average dislocation spacing D(x) is then
approximately

S(q) = 1

N

∫
dxn̄(x)K

(
q

2π/D̄(x)

)
, (75)

where n̄(x) ≡ 1/D̄(x) is a coarse-grained density. If the form
of a smooth, continuous, density n(x) is known, then one
can simply set D̄−1(x) = n̄(x) = n(x). In practice, given a set
of discrete dislocation positions {xi}, the structure factor is
given by

S(q) = 1

N

N∑
i=1

K

(
q

2π/D̄(xi )

)
, (76)

where the coarse-grained lattice constant can be estimated
using a sliding window to average over, say, five neighboring
lattice sites according to D̄(xi ) = 1

5

∑
| j−i|�2 D(x j ), determin-

ing the local reciprocal lattice vector as G1(xi ) = 2π/D(xi ).
To test our theory when averaged over inhomogeneous

dislocation spacings, we again focus on the 0 < q < G2 mo-
mentum range, and the temperature range T (2)

c > T � T (1)
c

(random matrix parameter range 16 > β � 4) where the first-
order Bragg peak dominates. The structure factor under these
conditions is then given by the inhomogeneous lattice average
in Eq. (76) with

K

(
q

2π/D̄(x)

)
= α1(T )

2

{∣∣∣∣ q

2π/D̄(x)

∣∣∣∣
+
∣∣∣∣ q

2[2π/D̄(x)]

∣∣∣∣
α1(T ) 1

[1 − α1(T )]

×
[(

1 − q

2π/D̄(x)

)−[1−α1(T )]

− 1

]}
. (77)

As seen in Fig. 5, Eq. (76) shows good agreement with
the structure factor extracted from random matrix simulations
of the inhomogeneous semicircular pileup. The deviation past
the first Bragg peak q > G1 likely comes from the smeared
out contribution of the S2(q) term neglected in Eq. (63), which
contributes a noise floor of S(q → ∞) = 1 in the absence of
higher order Bragg peak divergences. Note that for a general
inhomogeneous pileup, the reciprocal lattice vector Gm is not
well defined since the average dislocation spacing D(x) varies
in space. In Fig. 5 G1 is defined as G1 ≡ 2π/D(x = 0), where
D(x = 0) is the average dislocation spacing at the center of the
semicircular pileup, also the densest region in the semicircular
pileup.

We note that Bragg peaks of an inhomogeneous pileup
can become difficult to detect when the lattice spacing D(x)
does not have a finite lower bound. Since n(x) ∼ D(x)−1,
structure factors like that in Eq. (75) can be dominated by
signals from the portions of the lattice with very small lattice
spacings, corresponding to large reciprocal lattice vectors. If
D(x) goes to 0 at some location in the pileup, the Bragg peaks
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FIG. 4. Structure factor S(q) of the truncated semicircle lattice [i.e., approximately uniform lattice, see schematic on top right of Fig. 3(b)]
near the first reciprocal lattice vector at different temperatures in range T (2)

c > T � T (1)
c (16 > β � 4). Green dots show the results from

random matrix simulations while blue lines are from Eq. (73); simulations and theory show good agreement.

in the structure factor run away to arbitrarily large values 2π
D(x) .

We find that this anomalous behavior arises for the single
pileup and the double pileup shown in Table I, where the
lattice constant D(x) goes to zero as the density n(x) diverges
towards the pileup edges. Nevertheless, one could in princi-
ple detect signatures of algebraic long-range order in these
pileups by measuring the structure factor of locally crystalline
segments small enough such that the lattice constant is ap-
proximately uniform within the segment. We can also probe
quasi-long-range order in inhomogeneous lattices by studying
the local radial distribution function g(r), as shown in the
next section.

E. Radial distribution function

In this section we examine the dislocation ordering in pile-
ups using a quantity complementary to the structure factor,
the radial distribution function, also called the pair corre-
lation function or the two-point correlation function. For a
particular realization of dislocations extracted from, say, a
random matrix ensemble, the radial distribution function g(r)
determines the probability of finding a second dislocation a
distance r away from some first existing dislocation. Scaling
arguments based on the structure factor S(q) derived in the
previous section and results from random matrix theory allow
us to identify oscillations in g(r) that decay algebraically

FIG. 5. Structure factor S(q) of the full semicircular pileup at different temperatures in range T (2)
c > T � T (1)

c (16 > β � 4). Red dots
show the results from random matrix simulations while blue lines are Eq. (76); simulations and theory show good agreement. Deviations
above the first Bragg peak q > G1 likely come from the smeared out contribution of the S2(q) term, neglected in Eq. (63), which contributes
a noise floor of S(q → ∞) = 1 in the absence of higher order Bragg peaks. Here G1 is defined as G1 ≡ 2π/D(x = 0), where D(x = 0) is the
average dislocation spacing at the center of the semicircular pileup.
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as a function of interdislocation distance r, the signature of
quasi-long-range order in real space [15]. These oscillations
are controlled by the same exponents {αm} that determines
the divergences in the Bragg peaks of the structure factors
discussed in the previous subsections.

1. Radial distribution function for uniform pileups

The two-point correlation functions from random matrix
theory for the uniform lattice (derived by studying the semicir-
cular eigenvalue distribution in the limit of infinite length) at
the special dimensionless inverse temperature parameter β =

Y b2

4πkBT = 1, 2, 4, accessible via conventional random matrix
theory, are shown in Table III, along with their behavior when
the separation distance r is large relative to the lattice spacing
D [30]. Upon denoting r̄ ≡ r

D as the separation distance scaled
by the dislocation spacing D at the center of the band and
letting h(r̄) ≡ g(r), we can see from Table III that the leading
terms at large r̄ for β = 1, 2 are not oscillatory (∼ 1

r̄2 ), while
the leading term at large r̄ for β = 4 is oscillatory with a
periodicity corresponding to the first reciprocal lattice vector
(∼ cos(2π r̄)

r̄ ). Thus, although there are algebraically decaying
oscillatory terms ∼ cos 2π r̄ in the correlation function at
β < 4, they are subdominant to a nonoscillating algebraically
decaying term, consistent with no appreciable translational
order at high temperatures. When β = 1, the oscillatory term
is suppressed so much that it is invisible to the eye [Fig. 6(a)],
while for β = 4, the oscillations ∼ cos 2π r̄ are visibly modu-
lated by an algebraically decaying envelope symmetric about
g(r) = 1.

We can compare the correlation function g(r) correspond-
ing to our theory of dislocation pileups as a function of
temperature T , by Fourier transforming the structure factor
S(q):

g(r) − 1 = 1

ρ0

∫
dq[S(q) − δ(q) − 1]eiqr, (78)

where ρ0 is the average dislocation density. For T (1)
c � T >

T (2)
c , we expect that the contribution from the first Bragg peak

dominates for small k ≡ q − G1, and we can obtain the shape
of the envelope modulating the oscillations in g(r) as

g(r �= 0) − 1 = 1

ρ

∫
dq S(q)eiqr (79)

∼ e−iG1r
∫

dk |k|−1+α1(T )eikr (80)

∼ r−α1(T ) cos(G1r). (81)

This scaling gives the power-law decay of correlations in
real space, written in usual critical phenomena conventions
as g(r) ∼ 1/rd−2+η [41], where d = 1, g(r) ∼ 1/rα1(T ), with
α1(T ) given by Eqs. (55) and (64).

Equation (81) also displays oscillatory behavior given by
G1 = 2π/D on the scale of the dislocation spacing D, so the
radial distribution function behaves at large r according to

lim
r→∞[g(r) − 1] ∼ cos(2πr/D)

(r/D)α1(T )
. (82)

Upon utilizing the exact result for β = 4 [α1(T ) = 1] in row
3 of Table III, we determine the coefficients of Eq. (82) up to

FIG. 6. Radial distribution function g(r) at β = 1, 2, 4, 6 for uni-
form pileups. This quantity always approaches unity for large r.
Green dots are data from random matrix simulations (RMS) of the
truncated semicircle pileup [i.e., an approximately uniform pileup,
see see inset of (a)] averaged over 500 realizations of rank N = 5000
random matrices. Large r

D behaviors from classical random matrix
theory at β = 1, 2, 4 (Table III) are plotted in blue in (a)–(c) [D = π

2N
is known from random matrix theory to be the mean lattice spacing
at the middle of the semicircle lattice spanning (−1, 1).] Large r

D
behavior according to Eq. (84) at β = 6 is plotted in blue in (d).

a single fitting parameter c:

lim
r→∞ g(r) = 1 + c

4

cos (2πr/D)

(cr/D)α1(T ) . (83)

Upon examining the entire temperature range T (1)
c � T >

T (2)
c (16 > β � 4), we find that c ≈ 8.0, so the radial distri-

bution function at large r takes the form

lim
r→∞ g(r) = 1 + 2

cos (2πr/D)

(8r/D)α1(T ) . (84)

Figures 6(c), 6(d), and 7(a) show excellent agreement between
Eq. (84) and the radial distribution functions extracted from
random matrix simulations at β = 4, 6, 8, corresponding to
low temperatures.
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FIG. 7. Local radial distribution functions gR(r) at T = 1
2 T (1)

c

(β = 8) for inhomogeneous pileups at three different mean locations
R = {0, 0.47, 0.85} in the semicircular pileup of length L = 2 span-
ning (−1, 1), as indicated in the top graph. Dots are data averaged
over 500 random matrix simulations using rank N = 5000 matrices,
colored according to the mean location R indicated by the colored
slices in the top schematic. Blue lines are the predictions of Eq. (87)
with the mean lattice spacing D̄(R) extracted from simulations by
averaging the positions of dislocations (eigenvalues) within each
region R ± 0.01. Theory and simulations show good agreement.

We also show the radial distribution functions for ran-
dom matrix parameters β = 1 and β = 2 in Figs. 6(a) and
6(b) for completeness. However, random matrix simulations
of the 1D Coulomb gas at β < 4 correspond to dislocation
pileup lattices at temperatures T > T (1)

c . The latter situation
is likely inaccessible on flat two-dimensional host crystals,
which are unstable to a dislocation unbinding mechanism at
about the same temperature as the pileup they host Tm ≈ T (1)

c
[15–17,19]. We expect that the Young’s modulus of the 2D
host crystal is renormalized by the dislocation pairs that un-
bind near melting: Y → YR(l ), where l = ln(Lhost/a) and Lhost

is the host crystal size while a is the host lattice constant. As
a result, the melting temperature Tm of the 2D host crystal is
shifted as

Tm = YR(l )b2

16π
. (85)

The unbinding dislocation pairs in the host crystal will also
renormalize the interactions between the dislocations in a
pileup. Since the physics of pileup melting is dominated by
interactions at long wavelengths B(q) ∼ |q|−1 [see Eq. (39)],

their melting temperature will also be shifted by a partially
renormalized Young’s modulus

T (1)
c ≈ YR(l ′)b2

16π
, (86)

where l ′ = ln(L/a) and L is the length of the pileup. It seems
plausible that the renormalized Young’s modulus YR(l ′) that
controls the physics of the pileup is the same as the renor-
malized Young’s modulus YR(l ) that controls the 2D melting
transition of the host crystal if the pileup and the host crystal
are comparable in size L ∼ R. If the host crystal is appreciably
larger, it may melt sooner than the highest dislocation pileup
transition, corresponding to the loss of a diverging Bragg peak
at q = G1. Curved 2D crystals and their pileups [see Fig. 1(b)]
may exhibit different renormalized Young’s moduli depending
on their geometry. It is conceivable that the disappearance
of the first Bragg peak of a pileup at T > T (1)

c might be
observable in this case.

2. Local radial distribution functions for inhomogeneous pileups

It is known from random matrix theory that the two-point
correlation function g(r) is stable under translations over the
eigenvalue spectrum provided that the distances r are ex-
pressed in terms of the local mean eigenvalue spacing D [30].
Thus, we can directly apply the above results for the radial
distribution function of uniform pileups to the local radial
distribution function of inhomogeneous pileups. In particular,
we expect that the local radial distribution function [42] of
an inhomogeneous pileup gR(r), where r = |x1 − x2| is the
interdislocation distance and R = x1+x2

2 is the mean location
of a pair of dislocations, may be written as

gR(r) = h

(
r

D̄(R)

)
, (87)

where D̄(R) is the mean lattice spacing at position R as defined
in Sec. III D, and h(r̄ = r

D ) ≡ g(r) as defined in Table III
where g(r) is the radial distribution function for a uniform
dislocation lattice. As shown in Fig. 7, Eq. (87) agrees well
with random matrix simulations for the inhomogeneous semi-
circular pileup at T = 1

2 T (1)
c (β = 8). As we move towards the

outer edge of the semicircular pileup, the dislocation spacing
increases on average, but the shape of the local radial distri-
bution function remains the same up to stretching along the x
axis.

IV. PINNED-DEFECT TO FLOATING-
DEFECT TRANSITION

We have thus far treated the dislocations as interacting par-
ticles and the underlying host crystal as a continuous elastic
medium. This is a valid approximation in the floating-defect
phase, where the dislocations are unaffected by the lattice
structure of the host crystal. In this section we examine the
effect of Peierls potential and identify a low-temperature
transition from the floating-defect phase to a pinned-defect
phase, where the physics is dominated by the underlying
lattice potential of the host crystal and the one-dimensional
pileup exhibits true long-range translational order. As we will
show, the structure factor of the pileup in the low-temperature
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FIG. 8. Illustrations of a pileup commensurate with the un-
derlying Peierls potential (gray) with D/a = 3 (a) and a pileup
incommensurate with the underlying Peierls potential with D/a =
3.5 (b), where a is the host lattice constant and D is the average
dislocation spacing.

pinned-defect phase exhibits delta function Bragg peaks at the
reciprocal lattice vectors, in contrast to the power-law Bragg
peaks characterizing the floating-defect phase.

We first study pileups whose zero-temperature equilibrium
density is accidentally commensurate with the host crystal
[see illustration in Fig. 8(a)]. We show that a model of
quantum Brownian motion model for a particle in a periodic
potential in imaginary time maps directly onto the classical
statistical mechanics of commensurate pileups. In particu-
lar, upon translating the renormalization group results from
Refs. [12,43], we can predict the transition temperature T 0

P
below which the floating-defect state becomes unstable to a
pinned-defect state for accidentally commensurate pileups.
This mapping onto a quantum problem shows that the long-
range interaction between the dislocations is crucial to the
existence of the pinned defect phase; the repulsive logarithmic
interaction potential is analogous to the friction force that pre-
vents the quantum particle from tunneling to the other minima
in the periodic potential. We then discuss incommensurate
pileups, reminiscent of the commensurate-incommensurate
transition of adsorbed monolayers on a periodic substrate
studied in Ref. [17] (see also Ref. [15]), where the transition
temperature TP is depressed from T 0

P by incommensurability.

A. Commensurate pileups and mapping to quantum
Brownian motion

The discrete nature of the atomic planes on either side of
a dislocation produces Peierls potential, describing the pre-
ferred dislocation positions [3]. If the equilibrium positions of
the dislocations are as to produce an integer number of extra
atomic planes in between neighboring dislocations, then we
say the pileup is “accidentally commensurate” with the host
lattice [see Fig. 8(a)]. Upon incorporating Peierls potential
into Eq. (39), the reduced Hamiltonian for an accidentally
commensurate pileup becomes

H

kBT
= 1

kBT

1

2

(
Y b2

4D2

)∫
dq

2π
|q||u(q)|2

−V0�

∫
dx cos

(
2πu(x)

a

)
, (88)

where a is the lattice constant of the host crystal, V0 =
VPeierls
kBT �−1 where VPeierls scales with the energy difference be-

tween the highest energy location and lowest energy location
of a dislocation in a unit cell of the host crystal, and � ∼ a−1

is a short distance cutoff. (Higher order cosines in the Peierls

TABLE IV. Correspondence between quantum Brownian motion
and the statistical mechanics of dislocation pileup.

Quantum Brownian motion Dislocation pileup

Action S reduced Hamiltonian H/kBT
Imaginary time τ spatial coordinate x

Frequency ω momentum q
Quantum particle position dislocation displacement field

x(τ ) u(x)
Friction coefficient η 1

kBT
Y b2

4πD2

potential, such as a coupling ∼ cos[4πu(x)/a], could be in-
cluded, but these are less important than the terms we have
kept.) The statistical mechanics associated with Eq. (88) can
be mapped onto the problem of a quantum particle experienc-
ing friction in a periodic potential, also known as the quantum
Brownian motion (QBM) model [12,43]. The correspondence
is detailed in Table IV.

Upon treating V0 as a perturbation to the floating-defect
Hamiltonian in Eq. (88), the renormalization group recursion
relation for V0 reads [12,43]

dV0(l )

dl
=
(

1 − 1

γ

)
V0(l ), (89)

where l determines the fraction of short wavelength degrees of
freedom that have been integrated out in the coarse-graining
procedure and

γ = 1

kBT

Y b2a2

8πD2
. (90)

The condition γ = 1 then gives us the temperature above
which the Peierls potential strength V0 becomes irrelevant to
the long wavelength statistical mechanics,

kBT 0
P = Y b2

16π

2a2

D2
. (91)

Below the pinning temperature T 0
P , Peierls potential is relevant

and V0 iterates to ∞ at long wavelengths. In this pinned-defect
phase, dislocation motion in the glide plane is frozen out and
these defects are pinned in place. Above T 0

P , Peierls potential
is irrelevant and V0 iterates to 0, leading to the floating-defect
phase, where dislocations behave as logarithmically interact-
ing Coulomb charges in 1D and exhibit the quasi-long-range
order described in the previous section. Recall that the first
Bragg peak no longer diverges for T > T (1)

c = Y b2/16π from
Eq. (58). Since dislocations in a pileup are typically separated
by many host lattice spacings (a/D)2 � 1, we expect

T 0
P � T (1)

c . (92)

Thus, a large temperature range exists between T 0
P and T (1)

c
where the host lattice structure is irrelevant and the un-
modulated Coulomb gaslike interactions between dislocations
dominate the physics of pileups.

In the QBM model, V0 → 0 corresponds to the delocalized
phase of the quantum particle, while V0 → ∞ corresponds
to the localized phase, where the particle is arrested by fric-
tion and cannot tunnel through the walls of the periodic
potential from one minimum to another. As summarized in
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Table IV, the friction term in the QBM problem maps onto
the long-range interaction term in the pileups Hamiltonian,
so the repulsive logarithmic interaction potential is analogous
to the friction force. Thus, the repulsive long-range interaction
between the dislocations cooperates with Peierls potential to
keep the dislocations locked in place; long-range interaction
with other dislocations and Peierls potential are both neces-
sary for the pinned defect phase to exist at finite temperatures.

B. Incommensurate pileups

The Hamiltonian for a more general incommensurate
pileup in real space is

H =
(

Y b2

8π

)∑
n �=m

ln |(Rn − Rm) + (un − um)|

−VPeierls

∑
n

cos

(
2π (Rn + un)

a

)
, (93)

where the equilibrium positions of the dislocations Rn can be
decomposed as Rn = nD = na(M + c), with

D

a
= M + c, (94)

where M = �D
a � is the maximum integer less than D

a and c is
the nonintegral part of the decomposition (we assume for sim-
plicity a constant dislocation spacing D here). When c = 0, Rn

drops out of the second term in Eq. (93) and the Hamiltonian
reduces to that of the accidentally commensurate pileup in
Eq. (88). The transition temperature T 0

P for a commensurate
pileup c = 0 in Eq. (102) can then be written as

kBT 0
P = 2

M2

Y b2

16π
. (95)

In contrast, when c �= 0 [an illustration of a pileup with
nonzero incommensurability is shown in Fig. 8(b)], Rn cannot
be neglected in the Peierls potential term and a quantitative
treatment of the Hamiltonian in Eq. (93) is more difficult.
There may still be a pinning transition at low temperatures,
since a strong incommensurate periodic potential can pull
the floating defect into registry with the host lattice despite
the long-range interactions. To see that the accidentally com-
mensurate pinning temperature T 0

P is an upper bound on
the pinning temperature TP for nearby commensurate densi-
ties, note that incommensurate perturbations to the floating
solid should be less relevant than the commensurate per-
turbations we considered above, similar to two-dimensional
commensurate-incommensurate transitions with short-range
interactions [15–17]. Physically, this means that the effect
of an incommensurate periodic potential on a pileup is even
more likely to be averaged out at long wavelengths than
that of a commensurate periodic potential. For a system of
particles with short-range interactions subject to a periodic
potential, one can see explicitly how the pinning temperature
decreases as a function of increasing incommensurability, by
studying the effect of a perturbing pressure on the particles
of an accidentally commensurate lattice [15–17]. In the case
of our defect lattice, long-range interactions between the
dislocations make the pileup incompressible, which further

restricts the possible accommodations (e.g., domain wall pro-
files) to the periodic potential at long wavelengths. Hence,
the temperature TP of the transition from the floating-defect
state to the pinned-defect state for pileups with nonzero in-
commensurability c is depressed from that of accidentally
commensurate pileups. More precisely, we expect that the
pinning temperatures TP of a pileup with average dislocation
space D = a(M + c), where c �= 0, is bounded from above by
the temperature T 0

P in Eq. (95),

TP � T 0
P . (96)

We cannot rule out the possibility that TP is depressed all the
way to T = 0 for some incommensurate dislocation densities,
due to long-range interactions.

C. Structure factor

When a pileup is in the pinned-defect phase at, say, an
accidentally commensurate density, the displacement of every
dislocation is close to zero un ≈ 0. Consider for concrete-
ness an accidentally commensurate pileup in Eq. (93) with
Rn = nMa. Since the phonon displacements {un} are small, we
can expand the cosine Peierls potential term up to quadratic
order in the displacements un. Upon discarding a constant
term, we obtain the Hamiltonian for a uniform pileup in the
pinned-defect phase

H = 1

2

Y b2

4πD2

∫
dq

2π
|q||u(q)|2 − 2π2

a2
VPeierls

∑
n

u2
n. (97)

The displacement correlation function C(s) in Eq. (49) then
approaches a finite value for large separation distances s →
∞. It is straightforward to show that the effect of thermal
fluctuations near the mth reciprocal lattice vector q ≈ Gm

leads to the following structure factor S(q):

lim
q→Gm

S(q) =
∞∑

s=−∞
ei(q−Gm )Dse− 1

2 G2
m〈|us−u0|2〉 (98)

= 2π

D
δ(q − Gm)e−m2 a2

D2
kBT

VPeierls . (99)

Thus, in the pinned-defect phase, the structure factors of pile-
ups exhibits delta function Bragg peaks at all reciprocal lattice
vectors {Gm}, each suppressed by a Debye-Waller factor [44].
The corresponding oscillations in the radial distribution func-
tion g(r) no longer decay for large separation distances r.

The pinning transition from the floating-defect phase may
be observed through the structure factor as follows. Just above
the pinning transition, i.e., as T → T +

P , pileups in the floating-
defect phase will display a set of algebraically diverging
Bragg peaks at the lower order reciprocal lattice vectors Gm,
with

|m| <

√
T (1)

C

TP
. (100)

Below the transition T = TP, these algebraically diverging
Bragg peaks will narrow into delta function Bragg peaks. In
contrast, at the same transition point, delta function Bragg
peaks rise up from originally nondiverging Bragg peaks at the
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higher order reciprocal lattice vectors Gm, with

|m| >

√
T (1)

C

TP
. (101)

D. Inhomogeneous pileups

For pileups whose dislocation spacings are slowly vary-
ing as a function of space D → D(x), the temperature of
the transition from the floating-defect phase to the pinned-
defect phase varies locally throughout the pileup, i.e., TP →
TP(x). Specifically, the local transition temperature for an ac-
cidentally commensurate region of an inhomogeneous pileup
becomes

kBT 0
P (x) = Y b2

16π

2a2

D(x)2
, (102)

which shifts the entire curve of transition temperatures TP(x)
for incommensurate inhomogeneous pileups according to
Eq. (96). Thus, upon decreasing the temperature, the dislo-
cations in the denser regions of an inhomogeneous pileup
with smaller dislocation spacing D(x) will get pinned before
the dislocations in the sparser regions. For example, in the
semicircle pileup examined in the last section, the dislocations
near the center of the pileup will be pinned by Peierls po-
tential starting at higher temperatures compared to the more
dilute dislocations near the edges of the pileup. One could
probe this gradual regional pinning by measuring the local
radial distribution function, or identifying the narrowing of the
Bragg peaks in the spatially averaged structure factor, which
is now a combination of delta functions, from regions where
the defects are pinned, and power laws, from regions where
the defects are floating.

V. CONCLUSIONS

We have used statistical mechanics to explore a series of
one-dimensional melting phase transitions in floating-defect
phases, as well as a low-temperature transition from a floating-
defect phase to a pinned defect phase of 1D dislocation
pileups embedded in 2D crystals. Importantly, all results in
this paper can be experimentally probed through the structure
factor and spatial correlation functions.

The long-range interactions within one-dimensional dis-
location assemblies play a crucial role in the physics
of pileups. First, they describe the quasi-long-range or-
dered defect-solid phase, for which we have derived a set
of temperature-dependent critical exponents, which control
power-law divergences of the Bragg peaks in the structure
factor S(q) near the reciprocal lattice vectors Gm and the alge-
braic decay of correlations in the radial distribution function
g(r). The sequential melting of pileups to more disordered
defect liquids is characterized by the serial disappearance of
algebraically diverging Bragg peaks at temperatures given by
Eq. (58). We have obtained the exact forms of the structure
factor, for both uniform and inhomogeneous pileups, close
to q = 0 and to the reciprocal lattice vectors q = Gm, and
found agreement with random matrix simulations. In addi-
tion, these long-range repulsive interactions can also conspire
with Peierls potential to pin down the defects at low tem-

peratures, facilitating the transition between quasi-long-range
ordered floating defects to the long-range ordered pinned de-
fects, characterized by the transformation of power-law Bragg
peaks to delta function Bragg peaks at temperatures given by
Eqs. (96) and (102).

By extending our investigations to pileups with nonuni-
form densities, we have also explored the statistical mechanics
of a new class of one-dimensional inhomogeneous defect
crystals. By mappings to random matrix theory and the quan-
tum Brownian motion model, we have obtained the phase
boundaries, structure factors, and local pair correlation func-
tions for a variety of one-dimensional phases exhibited by
dislocation pileups. Interestingly, the sequence of melting
temperatures associated with pileup structure factors em-
body a collective behavior independent of their local density.
In contrast, the low temperature pinning transition depends
strongly on the ratio between the local average dislocation
spacing and the host lattice constant, leading to a series of
localized pinning transitions in inhomogeneous pileups.

Dislocation pileups in two-dimensional crystals have been
observed in previous simulations of spherical crystalline caps
(see, for example, Fig. 3(f) of Ref. [21] and Fig. 5(a) of
Ref. [22]). Significantly, disclinations and grain boundary
scars are required as part of the ground state for certain
curved crystals by topological constraints [45] and have been
observed experimentally in a variety of systems, including
spherical colloidosomes [46,47] and bubble rafts on the sur-
face of rotating fluids [48]. Such systems, in addition to liquid
crystal thin films, electrons on the surface of helium, and
others [49], on both flat and curved surfaces, are among the
possible experimental platforms that can be used to investigate
the physics of dislocation pileups described in this work. The
study of the statistical mechanics of edge dislocation pileups
in curved two-dimensional crystals is left for future works.

In three-dimensional bulk materials, multiple pileups can
emanate from a single stress source and interact with each
other on the same glide plane [see Fig. 1(a)]. In the limit
of short, rigid defect lines, the statistical mechanics reduces
to the two-dimensional case we have considered here. How-
ever, the statistical mechanics of more general longer and
deformable dislocation lines could be studied by mapping to
interacting bosonic worldlines in quantum mechanical path
integrals [15]. Here long-range interactions along the time-
like direction could be important [37]. Previous works have
studied the dynamics and scaling morphologies of disloca-
tion lines in disordered stress landscapes and as tangled cell
structures [2]. It would be interesting to investigate the effects
of thermal fluctuations on these even more complex disloca-
tion structures, and on the pinning effects of Peierls potential
in three-dimensional dislocation assemblies on the problems
studied in Ref. [37].
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APPENDIX A: STRUCTURE FACTOR OF A 1D LATTICE
WITH SHORT-RANGE INTERACTIONS

In this Appendix we review the structure factor of a
uniform one-dimensional array of particles with short-range
interactions [18,50]. We work in the classical limit, and as-
sume that the momentum degrees of freedom have been
integrated out. Consider an infinitely long homogeneous 1D
lattice, whose particle density is given by

ρ(x) =
∞∑

n=−∞
δ(x − xn), (A1)

where n sums over all particles, and xn = nD + un is the
instantaneous position of the nth particle and un is the dis-
placement of the nth particle from its equilibrium position
due to fluctuations. If the particles interact with their nearest
neighbors via a potential energy of the form

E = K

2

∑
n

(xn+1 − xn − D)2 = K

2

∑
n

(un+1 − un)2, (A2)

then the energy in the continuum limit is given by

�E = B0

2

∫
dx

(
du(x)

dx

)2

= B0

2

∫
dq

2π
q2|u(q)|2, (A3)

where B0 = K
D is a constant. The Fourier coefficients of the

density in Eq. (A1),

ρ(q) =
∫

dxeiqx
∑

n

δ(x − xn) =
∑

n

eiqxn , (A4)

determine the structure factor via

S(q) = 〈|ρ(q)|2〉 =
∞∑

s=−∞
eiqsD〈eiq(us−u0 )〉, (A5)

where us = u(x = sD). At low temperatures we expect that
S(q) is large near the reciprocal lattice vectors q ≈ Gm =
2π
D m, where m = 0,±1, . . . . We now expand about the mth

reciprocal lattice vector Gm by setting q = Gm + k with k �
Gm, and approximate Eq. (A5) as

S(q) ≈
∞∑

s=−∞
eiksD exp

[
−1

2
G2

m〈(us − u0)2〉
]
. (A6)

The displacement correlation function needed in Eq. (A6) is

C(s) ≡ 〈(us − u0)2〉 =
∫ π/a

−π/a

d p

2π

kBT

B0 p2
(1 − eipsD) (A7)

≈ kBT Ds

πB0

∫ ∞

0
dη

1 − cos(η)

η2
= kBT Ds

2B0
, (A8)

where we can extend the integration limits in Eq. (A7) to ±∞
because the integral is dominated by small wave vectors p.
Upon substituting this displacement correlation into Eq. (A6),
we have

S(q = Gm + k) ≈ 2

D

∫ ∞

0
dx cos(kx)e− kBT

4B0
G2

m|x|
. (A9)

Since ∫ ∞

0
dxe−αx cos(kx) = α

α2 + k2
, (A10)

we obtain the structure factor as a sum of Lorentzians centered
at each reciprocal lattice vector Gm,

S(q) ≈ 2

D

∑
m �=0

ξ−1
m

ξ−2
m + (q − Gm)2

, (A11)

where the widths of the Lorentzians {κm ≡ ξ−1
m } are given by

ξm = 4B0

kBT G2
m

. (A12)

Thus we have a set of correlation lengths, one associated
with each Lorentzian peak. Note that these peaks become less
pronounced with increasing m and that the correlation lengths
ξm ∼ 1/m2kBT only diverge in the limit T → 0.

APPENDIX B: EQUILIBRIUM DENSITY OF
DISLOCATION PILEUPS

The average dislocation density n(x) resulting from a par-
ticular applied shear stress profile σ (x) can be obtained by
solving the force balance condition in Eq. (8). In this Ap-
pendix we derive the average dislocation densities for the
different pileups shown in Table I using the continuum frame-
work explained in Sec. II.

Throughout these calculations we will frequently employ
the Hilbert transform Hx[·], defined by [27]

Hx[ f (y)] = 1

π
PV

∫ 1

−1

f (y)

y − x
dy, (B1)

where PV denotes the principal part of the improper integral.
Special solution pairs to the Hilbert transform are given by
the Tschebyscheff (Chebyshev) polynomials Tn and Un, with
f (y) ≡ Tn(y)/

√
1 − y2 or f (y) ≡ Un−1(y)

√
1 − y2,

Hx

[
Tn(y)√
1 − y2

]
= Un−1(y), (B2)

Hx
[
Un−1(y)

√
1 − y2

] = −Tn(y). (B3)

1. Spatially uniform stress fields: Double and single pileups

When the stress field is uniform in space and the stress
source is located at the center between the dislocation bar-
riers, a double dislocation pileup occurs via the Frank-Read
mechanism [51] (see row 1 of Table I).

In the continuum model, the Hamiltonian for the double
dislocation pileup is

H[n(x)] = −
∫ L/2

−L/2
dx n(x)σ0bx

−1

2

Y b2

4π

∫ L/2

−L/2
dx
∫ L/2

−L/2
dx′n(x)n(x′) ln |x − x′|,

(B4)

where n(x) is the density of dislocations along the pileup,
which can be positive, referring to the density of dislocations
with positive Burgers vector �b = bx̂, or negative, referring
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to the density of dislocations with negative Burgers vector
�b = −bx̂.

The force balance condition at equilibrium is then [3]

σ0b = Y b2

4π

∫ L/2

−L/2
dx′ n(x′)

x′ − x
. (B5)

Note that the 2D Young’s modulus has dimensions of force
per unit length [Y ] = F

L .
We obtain the equilibrium dislocation density using

the Chebyshev polynomials U0(x) and T1(x), as shown in
Eq. (B2),

nD(x) = ζ
x√(

L
2

)2 − x2
, (B6)

where ζ = 4σ0
Y b and x ∈ (− L

2 , L
2 ) [3]. Note that nD(x) has dif-

ferent signs for x > 0 and x < 0, meaning the dislocations on
opposite sides of the pileup have oppositely oriented Burgers
vectors: �b = sgn(x)bx̂ (see schematic in Table I). The normal-
ization condition

∫ L/2
−L/2 dxnD(x) = ND gives the expression for

the total number of dislocations in a double pileup ND as

ND = ζL. (B7)

Note that ζ has dimensions of inverse length [ζ ] = L−1, so
that ND is dimensionless, as expected.

To account for the single (stressed) pileup (row 2 of Ta-
ble I), we need to use the unstressed single pileup density
f (x),

f (x) = 1√
1 − (

x
L/2

)2
, (B8)

derived via the following force balance condition:

0 = 1

π
PV

∫ L/2

−L/2

f (x′)
x′ − x

dx′. (B9)

The density distribution of a single stressed dislocation pileup
nS(x) is then obtained from a linear combination of the double
pileup density nD(x) and the unstressed single pileup density
f (x), with coefficients a′ and b′ such that the normalization
condition is satisfied and the dislocation density vanishes at
the right side of the pileup x = L/2,

nS(x = L/2) = a′ f (x = L/2) + b′nD(x = L/2) = 0. (B10)

The density distribution for the single stressed dislocation
pileup (centered at x = 0) is then

nS(x) = ζ

√
L/2 − x√
L/2 + x

, (B11)

where x ∈ (− L
2 , L

2 ). Note that the total length of the pileup
is significantly impacted by the last few, widely spaced, dis-
locations on the right side of the pileup, which are poorly
represented in the continuum model. Nevertheless, Eq. (B11)
accurately describes most of the pileup distribution [3]. The
normalization condition relating the length and the total dis-
location number in a single stressed pileup is given by

NS = ζ
L

2
π. (B12)

2. Spatially varying stress fields: Semicircle lattice
and uniform lattice

If the shear stress varies linearly in space and, in particular,
smoothly changes sign at the center of the interval, the dislo-
cations in the pileup then form a semicircular lattice (row 3 of
Table I).

In the continuum limit, the Hamiltonian for the semicircu-
lar dislocation lattice is

H[n(x)] =
∫ L/2

−L/2
dxn(x)

σ0b

L/2

x2

2

−1

2

Y b2

4π

∫ L/2

−L/2
dx
∫ L/2

−L/2
dx′n(x)n(x′) ln |x − x′|,

(B13)

where the factor of L/2 in the denominator of the first term
makes manifest that [σ0b x

L ] = F has dimensions of force. The
force balance condition that results is then

σ0b
x

L/2
= Y b2

4π
PV

∫ L/2

−L/2
dx′ n(x′)

x′ − x
. (B14)

Using the relevant pair of Chebyshev polynomials, T1(x) = x
and U0 = 1, we obtain the dislocation density as

nSC(x) = ζ

√
1 −

(
x

L/2

)2

, (B15)

where, as before, ζ = 4σ0/Y b and x ∈ (− L
2 , L

2 ). The condi-

tion
∫ L/2
−L/2 dx nSC(x) = NSC relates ζ to the total number of

dislocations as

NSC = ζ
Lπ

4
. (B16)

One can also use the force balance condition to invert for
the stress field corresponding to a uniform dislocation lattice
(row 4 of Table I). We start by first solving for the applied
force profile from the force balance condition in Eq. (8).
Upon letting nU(x) denote a prescribed constant density of
dislocations in a pileup, described by a rectangle function

(z),

nU(x) = nU

( x

L

)
≡

⎧⎪⎨
⎪⎩

1, | x
L | < 1

2 ,
1
2 , | x

L | = 1
2 ,

0, | x
L | > 1

2 ,

(B17)

the force balance condition for the uniform pileup spanning
x ∈ (− L

2 , L
2 ) is

−σ0bU ′
U(x) = Y b2

4π

∫ L/2

−L/2

nU

y − x
dy. (B18)

Since the rectangle function 
(z) has the following well-
defined Hilbert transform [27]:

H[
(z)] = 1

π
PV

∫ ∞

−∞


(z)dz

z − y
(B19)

= 1

π
PV

∫ 1/2

−1/2


(z)dz

z − y
= 1

π
ln

∣∣∣∣y − 1
2

y + 1
2

∣∣∣∣, (B20)
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Eq. (B18) becomes

U ′
U(x) = − nU

ζπ
ln

∣∣∣∣x − L
2

x + L
2

∣∣∣∣. (B21)

Upon integrating Eq. (B21), the central potential that gives a
constant density of dislocations in a pileup is obtained as

UU(x) =
(L

2
− x

)
ln
(L

2
− x

)

+
(L

2
+ x

)
ln
(L

2
+ x

)
(B22)

(see row 4 of Table I) and the uniform dislocation density
associated with the potential is given by

nU = ζπ. (B23)

The normalization condition, in this case straightforward,
gives

NU = ζπL = 4σ0

Y b
πL. (B24)

It is interesting to compare the central potential profiles
for the semicircular lattice USC(x) and the uniform lattice
UU(x). To this end we set x = L

2 y, such that the pileups lie
on the interval y ∈ [−1, 1]. The discrete Hamiltonians for the
semicircular lattice and the uniform lattice then read

HSC = σ
(SC)
0 b

LSC

4

[∑
i

y2
i − 1

2NSC

∑
i �= j

ln |yi − y j |
]
,

(B25)

HU = σ
(U)
0 bLU

[
1

2

∑
i

(1 − yi ) log (1 − yi ) + (yi + 1)

× log (yi + 1) − 1

2NU

∑
i �= j

ln |yi − y j |
]
. (B26)

To appropriately compare the central potential profiles for
the semicircle lattice and the uniform lattice, we set the total
number of dislocations in both pileups to be equal

NSC = NU ≡ N, (B27)

which, using the normalization conditions NSC = ζSCLSC and
NU = ζULUπ (see third column of Table I), translates to

σ
(SC)
0 LSC

4
= σ

(U)
0 LU ≡ σ0L. (B28)

Upon substituting in Eqs. (B27) and (B28) into the discrete
Hamiltonians in Eqs. (B25) and (B26) and expanding the
central potential of the uniform pileup to quadratic order in
y, we obtain

HU({yi ≈ 0}) = HSC({yi}) (B29)

= σ0bL

[∑
i

y2
i − 1

2N

∑
i �= j

ln |yi − y j |
]
. (B30)

Thus, the central potential for the uniform lattice in Eq. (B26),
when expanded around y = 0, gives the same factor of y2 as

the central potential for the semicircular pileup, and the semi-
circular and uniform dislocation pileups should have nearly
identical statistical mechanics near the pileup center.

APPENDIX C: FLUCTUATION ENERGY
OF THE UNIFORM PILEUP

In this Appendix we derive Eq. (29) in detail, for both the
uniform ring pileup with periodic boundary conditions (row 5
of Table I) and the uniform lattice pileup with open boundary
conditions (row 4 of Table I).

The uniform pileup ring with periodic boundary conditions
(see last row of Table I) does not have a confining potential,

B(x) = 0, (C1)

so the energy cost of fluctuations to quadratic order comes
solely from the interaction term:

�ERing = A

2

∑
n �=m

(un − um)2

(Rn − Rm)2
. (C2)

In contrast, the uniform pileup chain experiences the con-
fining potential in Eq. (12), and the energy of displacements
is, approximately,

�E =
∑

n

E (a)
n u2

n − A
∑
n �=m

unum

(Rn − Rm)2
, (C3)

where

E (a)
n = 1

2
∂2

x B(Rn) + A
∑

m

′ 1

(Rn − Rm)2
. (C4)

Here
∑′ indicates a sum of over all lattice sites m except

m = n. We can compare the magnitudes of the central po-
tential term and the interaction potential term in E (a)

n in the
large N limit by seeing how these two terms scale with the
total number of dislocations N . With the help of Eq. (12), we
obtain the first term in Eq. (C4) as

1

2
∂2

x B(x) = 2

L

σ0b

1 − (
x

L/2

)2 . (C5)

The energy cost of fluctuations near the edges |x| ≈ L/2 of the
uniform dislocation chain diverges due to the confining nature
of the potential. This result is plausible because, by construc-
tion, UU(x) constrains the dislocations to a rectangle density
distribution nU(x) = 
(x/L) [see Eq. (B17)] that vanishes for
|x| > L/2, making it infinitely costly for a dislocation on the
edge to fluctuate into the forbidden region. Henceforth, we
will focus our attention deep inside the pileup chain, where
∂2

x B(x) ∼ σ0b 1
L from Eq. (C5). Then, using the normaliza-

tion condition for uniform pileups N = 4σ0Lπ/Y b (row 4 of
Table I), we see that A = Y b2/8π = σ0bL/2N , so the second
term in Eq. (C4) scales as

A
∑

m

′ 1

(Rn − Rm)2
≈ π2

3
A

1

D2
∼ A

N2

L2
∼ σ0b

N

L
. (C6)
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Inside the uniform pileup, the ratio between the two terms in
the diagonal energies {E (a)

n } in Eq. (C4) is then

∂2
x B(x)

A
∑′

m(Rn − Rm)−2
≈ 3

π2

B′′(x)

AD−2
∼ 1

L

L

N
∼ 1

N
. (C7)

Thus, in the large N limit, we can ignore the contribution
due to the confining potential in the bulk of the pileup, and

Eq. (C3) becomes

�E ≈ A

2

∑
n �=m

(un − um)2

(Rn − Rm)2
, (C8)

shown as Eq. (29) in the main text.
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