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Time increasing rates of infiltration and reaction in porous media at the percolation thresholds
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The infiltration of a solute in a fractal porous medium is usually anomalous, but chemical reactions of the
solute and that material may increase the porosity and affect the evolution of the infiltration. We study this
problem in two- and three-dimensional lattices with randomly distributed porous sites at the critical percolation
thresholds and with a border in contact with a reservoir of an aggressive solute. The solute infiltrates that medium
by diffusion and the reactions with the impermeable sites produce new porous sites with a probability r, which
is proportional to the ratio of reaction and diffusion rates at the scale of a lattice site. Numerical simulations for
r � 1 show initial subdiffusive scaling and long time Fickean scaling of the infiltrated volumes or areas, but
with an intermediate regime with time increasing rates of infiltration and reaction. The anomalous exponent of
the initial regime agrees with a relation previously applied to infinitely ramified fractals. We develop a scaling
approach that explains the subsequent time increase of the infiltration rate, the dependence of this rate on r, and
the crossover to the Fickean regime. The exponents of the scaling relations depend on the fractal dimensions
of the critical percolation clusters and on the dimensions of random walks in those clusters. The time increase
of the reaction rate is also justified by that reasoning. As r decreases, there is an increase in the number of time
decades of the intermediate regime, which suggests that the time increasing rates are more likely to be observed
is slowly reacting systems.
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I. INTRODUCTION

When a porous medium is filled with a static fluid and an
external surface is put in contact with a reservoir of a mobile
species with a different concentration, that species may infil-
trate into or out of that medium by diffusion. This occurs, for
instance, in the weathering of geological materials [1], in the
dispersion of contaminants in soils [2], and in the transport
of radionuclides in nuclear waste containers [3]. A simple
model for the diffusive infiltration without reactions considers
lattice random walks of (excluded volume) particles that start
from a source at one border, as originally proposed by Sapoval
et al. [4] and recently extended to fractal geometries [5]. The
infiltration length I is defined as the infiltrated volume per unit
area of the exposed surface and is shown to scale as

I ∼ t n, (1)

where n is termed infiltration exponent. If the medium in d
dimensions is homogeneous and the source is a border of
dimension d − 1, the infiltration is Fickean, with n = 1/2, as
shown in models and experiments [6–8]. However, anomalous
exponents (n �= 1/2) were already obtained in studies of mois-
ture infiltration in construction materials [9–13], in several
models of infiltration in regular fractals [5,6,14], and in the
infiltration of glycerin in Hele-Shaw cells with fractal pore
geometry (a problem that is equivalent to diffusive infiltra-
tion) [7].
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These processes are related to the molecular diffusion
in the medium. When particles randomly move in a ho-
mogeneous medium, their root-mean-square displacement R
increases in time as t1/2 (i.e., Fickean diffusion). In highly
disordered media, anomalous diffusion is observed, in which

R ∼ t1/dW , (2)

with the random walk dimension dW �= 2 [15–18]. In fractal
porous media, the self-similar distributions of irregularities,
such as impenetrable barriers or dead ends, usually lead to
subdiffusion, in which dW > 2. However, note that the infil-
tration exponent n and the random walk exponent 1/dW may
be different. For instance, in infinitely ramified fractals such
as Sierpinski carpets and Menger sponges, the connection
of diffusion driven infiltration and the diffusion anomalies
led to a relation between n, dW , the fractal dimension dF

of the medium, and the dimension dB of the infiltration
border [5,8]. A possible consequence is that superdiffusive
infiltration (1/2 < n � 1) occurs in a medium where random
walks are subdiffusive [14].

The interplay of infiltration in disordered media and chem-
ical reactions may lead to changes in the structure of those
media, which is of particular importance in the evolution of
geological materials [19–22]. Diffusion is expected to be the
dominant transport mechanism in several cases, particularly
in low porosity media [1,23–25]. For instance, in olivine-rich
rocks whose porosity is near a few percent, serpentinization
creates small fractures that serve as pathways for fluid in-
filtration [26–28]. Moreover, water infiltration and loss of
reaction products in basalt clasts lead to the formation of
porous weathered rinds around (more compact) unaltered
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cores [1,29]. Fractal pore geometry was confirmed in both
altered and unaltered domains of those clasts [29] and was
also observed in many other geological materials [30,31]. In-
filtration anomalies are expected due to the fractality, but they
may change with the progress of the reactions. Such changes
were recently shown in a model of infiltration and reaction
in infinitely ramified fractals, in which the initial subdiffusive
behavior crossed over to a long time Fickan infiltration [32].

This scenario motivates the present investigation of the
coupling of diffusive infiltration and dissolution reactions
(which create new porosity) in critical percolation clus-
ters [31,33], which are the most prominent stochastic fractal
media exhibiting anomalous diffusion. Our first step is to
study the nonreactive infiltration of a solute in hypercubic
lattices of dimensions d = 2 and 3 where the porous sites are
randomly distributed with the critical percolation probabili-
ties and the remaining sites are impermeable. The infiltrated
area (d = 2) and volume (d = 3) are shown to increase with
exponents n < 1/2 consistent with the same scaling relation
obtained in infinitely ramified fractals [5]. The second part
of this work considers that reactions between the infiltrating
solute and the impermeable solid form new porous sites in
which solute transport is possible. The initial subdiffusive
infiltration and the long time Fickean behavior are observed,
but they are separated by a regime in which the infiltrated and
the dissolved volumes (or areas) increase faster than linearly
in time, i.e., infiltration and dissolution have time increasing
rates. This phenomenon results from the combination of a
slow penetration of the solute in a preferential direction of a
porous system of vanishing density and the linear advance in
all directions of the dissolution of the solid walls surrounding
the pores. The time range of this regime is shown to increase
as the reaction rate decreases (relatively to the diffusion rate),
so the nontrivial anomaly may last for long times in slowly
reacting materials with fractal pore systems. These results
are obtained with numerical simulations and explained by a
scaling approach.

This paper is organized as follows. Section II presents the
model of infiltration and reaction, information on the methods
of solution, and the main quantities to be measured. Sec-
tion III reviews the results for the same model with an initially
compact (not porous) medium, which helps the interpretation
of some results in the porous media. Section IV presents
results for infiltration without reactions in d = 2 and d = 3.
Section V presents simulation results for the model with re-
actions. Section VI presents a scaling approach that explains
the observed evolution of infiltration and reaction lengths,
with particular emphasis on the regime with time increasing
rates. Section VII summarizes our results and presents our
conclusions.

II. MODELS AND METHODS

A. Model definition

The porous media are built in the region z > 0 of hypercu-
bic lattices of dimension d . Each site is expected to represent
a homogeneous mesoscopic region of a porous material. The
permeable sites, which are termed P sites, are inert. Their
initial fraction is equal to the percolation threshold pc with
nearest neighbor (NN) connectivity. The impermeable sites

contain a reactive material and are termed M sites; their initial
fraction is 1 − pc. With these definitions, solute molecules can
be transported only through P sites that are NN.

The pore solution and the material M are initially in chem-
ical equilibrium. A large solution at z � 0 with a constant
concentration of an aggressive solute is put in contact with the
medium at time t = 0. Thus, z = 0 is the infiltration border,
whose dimension is dB = d − 1. The solute is represented
by S particles that permanently fill all the sites with z = 0
and that may also occupy P sites of the medium. Excluded
volume conditions are considered for the S particles, so that
a P site or a border site may have zero or one S particle.
The possible configurations of the lattice sites are shown in
Fig. 1(a). Figure 1(b) shows a configuration of a lattice in
d = 2 after infiltration of some S particles and the filled border
at z = 0.

In a time interval τ , all S particles attempt to hop to a
randomly chosen NN site. If an S particle attempts to hop
from the border z = 0 to an empty P site, the hop is executed
and another S particle is immediately inserted at its initial
position, so that the border remains with the same solute
concentration; this is illustrated in Fig. 1(c). However, if the S
particle attempts to hop to an M site or to a site with another S
particle, the attempt is rejected and that particle remains in the
same position. Figure 1(d) illustrates the hop of an S particle
at a P site, which was executed because the target site was
an empty P site; however, if that particle attempted to hop to
the site below it or to the site above it, the attempt would be
rejected.

In the same time interval τ , an S particle in contact with a
NN M site can react with probability r. The reaction leads to
the transformation of the M site into an empty P site and to the
annihilation of the S particle, as illustrated in Fig. 1(e). This
rule of the model is a simplified description of a series of phys-
ical and chemical processes: (i) the reaction between S and
M forms soluble and nonsoluble products; (ii) the nonsoluble
products form a porous precipitate with a physical structure
similar to those of the initial P sites; (iii) chemical equilibrium
is restored in the pore solution where the reaction occurs (this
is represented by the annihilation of the S particle).

B. Interpretation of the model parameters

Here we partly follow the reasoning of Ref. [32] to relate
the model parameters in d = 3 to measurable quantities.

Letting a be the lattice constant and D be the diffusion
coefficient of the S particles in the porous medium formed
only by P sites, we have

D = a2

2dτ
. (3)

This coefficient is expected to be smaller than that in free
solution.

When an M site reacts, the change in the number of moles
of the reacting material is �nM = a3/v, where v is the molar
volume of that material; in an application, v depends on the
properties of the reacting material and its volume fraction in
the solid represented by the M site. The area of the M site
in contact with a NN P site is a2, but the P site represents a
mesoscopic porous region, so only a fraction of that area is
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FIG. 1. Illustration of the model in d = 2. (a) Types of sites and particles. (b) The porous medium with some S particles and with a border
in contact with their source. (c) Infiltration of an S particle from the border. (d) Hop of an S particle to an empty P site at the right. (e) Reaction
of an S particle with an M site.

in contact with pore solution. We assume that this fraction is
equal to the effective porosity of a P site, which is denoted as
φP; see, e.g., Ref. [34]. Thus, an area AM = φPa2 of the M site
is in contact with the solution in the NN P site. Since the �nM

moles of M react with a probability r in a time interval τ , the
reaction rate k, in mol/(m2s), is given by k = r�nM/(AMτ ) =
6rD/(avφP ); here Eq. (3) was used with d = 3. This gives

r = φPv

6

ak

D
. (4)

Thus, r is a ratio between rates of reaction and diffusion
in the volume of a lattice site, which may be interpreted as a
second Damkohler number of the model [35]. The condition
of slow reaction compared to diffusion implies r � 1, which
is considered throughout this work. Since our main results are
obtained in terms of the parameter r, the application of the
model to a real system is possible if the physical and chemical
parameters in Eq. (4) are estimated.

C. Methods of solution

Scaling relations are well known for the structural proper-
ties of percolation clusters and the diffusion of tracers in those
media [16,33,36]. Relations between infiltration and diffusion
exponents in regular fractals are also known [5,8] and can be
tested in the infiltration model without reactions at p = pc.
Moreover, scaling approaches for the interplay of diffusion
and alteration reactions (interfacial dissolution reprecipitation
mechanism [37]) were developed in Ref. [38] for nonporous
media; an analogous approach was used in the study of the
growth of passive layers on metallic surfaces [39]. A combi-
nation of these methods is used here to explain the scaling
regimes of infiltration and reaction.

We also use kinetic Monte Carlo simulations to support the
predictions of this scaling approach. In d = 2, we consider
lattices with infiltration border (z = 0) of size L = 1024a,
with very large length in the z direction, and with periodic
boundary conditions in the other direction. Some simulations

are also performed in L = 2048a to discard the possibility of
finite-size effects. The initial fraction of pore sites is pc =
0.592 746 05 [40], the values of r range from 10−2 to 10−6,
and 100 realizations are used to calculate average quanti-
ties, up to the maximal simulation time 107τ . In d = 3, we
consider lattices with infiltration border of size L = 256a,
with very large length in the z direction, and with periodic
boundary conditions in the other directions. Some simulations
are also performed in L = 512a to discard the possibility of
finite-size effects. The initial fraction of pore sites is pc =
0.311 606 0 [41], the values of r range from 10−2 to 10−5, and
50–100 realizations are used to calculate average quantities.
The maximal simulation time is 105τ for most samples, but
106τ for the smallest r.

A medium at pc has a percolating cluster of P sites with
fractal dimension dF = 91/48 in d = 2 [42,43] and dF =
2.5230 ± 0.0001 in d = 3 [44]. The random walk dimension
in critical percolation clusters in d = 2 obtained from simula-
tions is dW = 2.8784 ± 0.0008 [45]. In d = 3, the scaling of
the conductivity in percolation clusters gives dW = 3.806 ±
0.001 [44,46,47]. These values are used to test the scaling
relations determined here.

D. Basic quantities

The infiltration time is denoted as t and a dimensionless
infiltration time is defined as

T = t

τ
. (5)

The number of infiltrated sites, i.e., P sites with a particle
S, is denoted as NI . For a unified description in all spatial
dimensions, we define a dimensionless infiltration length I as
the ratio between the number of infiltrated sites, NI , and the
number of sites of the infiltration border, (L/a)d :

I = NI

(L/a)d−1 . (6)
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FIG. 2. Infiltration in a two dimensional compact medium with r = 10−2. The left (green) bar and the right (blue) bar represent the
infiltration and reaction lengths, respectively.

From this definition, Ia can be interpreted as the average
length in the z direction occupied by the (noncontiguous)
infiltrated P sites. The part of the medium with distance � Ia
from the infiltration border is termed the infiltrated region; it
comprises most sites with S particles.

The number of M sites transformed into P sites (i.e., M
sites that react) is denoted as NR. The dimensionless reaction
length R is defined as the ratio between this number and the
number of sites of the infiltration border, (L/a)d :

R = NR

(L/a)d−1 . (7)

The length Ra measures the extent of penetration of the reac-
tion in the z direction.

III. REVIEW OF THE MODEL WITH COMPACT
REACTIVE MEDIA

Here we consider the case in which the medium interacting
with the solution is compact, i.e., initially all lattice sites with
z > 0 are M sites. Figure 2 shows snapshots of the attacked
solid and the infiltrated region at several times for r = 10−2.

In the shortest times, we observe a large density of S parti-
cles near the M surface because they can rapidly move in the
porous medium near the source, whereas their reactions with
M sites are relatively slow. Thus, the M sites at the surface are
almost all the time in contact with an S particle (e.g., in the
first three panels of Fig. 2). This is a regime controlled by the
reaction, in which I ∼ rT , as shown in Fig. 3. However, when
the average distance between the source and the M surface
becomes large, the time for a new particle to leave the source
and to reach that surface increases. This time will eventually
be larger than the average time (r−1) for a reaction with an M
site, which leads to a depletion in the density of S near the M
surface. In this condition, the infiltration is controlled by the
diffusion of the S particles across the length I , so I ∼ T 1/2 (R
exceeds I because the S particles occupy only a fraction of the
sites that reacted). This is the long time Fickean regime, as
shown in Fig. 3.

The crossover time between the reactive and the Fickean
regime is obtained by matching the expressions for the infil-
tration length in those regimes:

Tc ∼ r−2. (8)

The right panel of Fig. 2, which is at T ≈ Tc ∼ 104, actually
shows that the density of S particles near the M surface is
much smaller than the density at the shortest times. Figure 3
confirms that the infiltration is entering the Fickean regime at
that time.

For further comparison, note that the crossover shown in
Fig. 3 occurs with a continuous decrease of the slope of the
log I × log T and log R × log T plots.

FIG. 3. Evolution of the infiltration and reaction lengths with an
initially compact medium in d = 2 and r = 10−2.
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FIG. 4. Infiltration without reactions in a porous medium at the percolation threshold in d = 2. The vertical green bar represents the
infiltration length.

IV. INFILTRATION WITHOUT REACTIONS

Figure 4 shows snapshots of an infiltrated medium in d = 2
at several times. The anomalous advance of the infiltration
front is confirmed by the infiltration length bars: as the time
increases by a factor 4 between consecutive panels, I varies
by factors smaller than 2 (the factor 2 is expected in Fick-
ean infiltration). In d = 3, I varies by smaller factors when
results at the same time are compared. As the infiltration
advances, we also observe a smaller density of filled pore
branches, which is related to the fractality of the percolation
cluster.

In Ref. [5], a scaling approach predicted that the infiltration
length in fractal porous media scales as in Eq. (1) with

n = dF − dB

dW
. (9)

Equation (9) was confirmed in several infinitely ramified
fractals, including some cases with superdiffusive infiltration
(1/2 < n < 1) [8,14]. However, it was not formerly tested in
stochastic fractals.

Using the structural and dynamical exponents of perco-
lation, Eq. (9) predicts n ≈ 0.3113 in d = 2 and n ≈ 0.137
in d = 3. Figures 5(a) and 5(b) show the evolutions of the
infiltration length in percolating media in d = 2 and d = 3,
respectively, with dashed lines indicating the predicted expo-
nents n. The agreement in d = 2 is very good, but deviations
are observed in d = 3 until the longest simulated times. The
local slopes of the log I × log T plots are the effective infiltra-
tion exponents neff shown in the insets of Figs. 5(a) and 5(b).
In d = 2, neff reaches values very close to the prediction of
Eq. (9) at T ∼ 105. In d = 3, neff is more than 10% larger than
the predicted value at T ∼ 106. The fit of neff as a function of
T −1/6 leads to an asymptotic estimate consistent with that of
Eq. (9), which shows the presence of large corrections to the
dominant scaling.

Note that the right panel in Fig. 4 shows that the distances
of several S particles from the source are much larger than
I . This occurs because their displacement is governed by

Eq. (2), with exponent 1/dW , while I increases with a smaller
exponent n [Eq. (9) with dF − dB < 1 implies n < 1/dW ].

FIG. 5. I as a function of T in the infiltration without reactions in
media at the critical percolation point in (a) d = 2 and (b) d = 3. The
insets show the convergence of the effective exponents; the variable
in the abscissa of the inset in (b) was chosen to provide the best linear
fit of the data at the longest simulation times.
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FIG. 6. Infiltration with dissolution (r = 10−3) in a porous medium at the percolation threshold in d = 2. In each panel, the left green bar
represents the infiltration length and the right blue bar represents the reaction length.

V. SIMULATIONS OF INFILTRATION WITH REACTIONS

A. Results in d = 2

Figure 6 illustrates the infiltration in d = 2 for r = 10−3

and the same times of Fig. 4 (the case without reactions).
The results for T < 103 show a slow advance of the infiltra-
tion front because the reaction probability ∼rT is small; this
is similar to the case without reactions. However, at longer
times, the S particles fill some dissolved (or partly dissolved)
layers near the source. The advance of the infiltration is faster
than that without reactions. The reaction length R increases
even faster. If the results at T = 9600 are compared with the
case of a compact medium (Fig. 2), here we observe a deeper
infiltration despite the smaller value of r. This is possible
because the solute infiltrates into the channels of the porous
medium and dissolves the channel walls, which facilitates the
subsequent infiltration.

Figures 7(a) and 7(b) show the time evolution of the in-
filtration length and of the reaction length, respectively, for
several values of r. At short times, the scaling of I is subdiffu-
sive, similarly to the case without reactions; in this regime, R
is very small, but rapidly increases in time. The extent of the
reactions eventually increase and lead to deviations from the
subdiffusive scaling. The time for these deviations to appear
increases as r decreases; inspection of Figs. 7(a) and 7(b)
shows that they occur as R ∼ 1 in all cases. Subsequently,
rapid increases of I and R are observed, followed by the con-
vergence of both quantities to the Fickean behavior ∼T 1/2 (the
same asymptotic behavior observed with an initially compact
medium; Sec. III).

Figures 7(c) and 7(d) show the evolution of the infiltration
rate İ ≡ dI/dT and reaction rate Ṙ ≡ dR/dT , respectively. İ
decreases at short times, has a local minimum just after the
subdiffusive regime, and has a local maximum just before the

Fickean regime. Between those extrema, İ slowly increases in
time; the time interval of this intermediate regime increases
as r decreases. Ṙ increases as a power law in the subdiffusive
regime of I and subsequently shows a faster time increase
(which can hardly be fit as a power law); at longer times, it
also shows a maximum before the crossover to the Fickean
regime.

The crossover time between the subdiffusive infiltration
and this intermediate regime is denoted as T1 and the crossover
time to the Fickean regime is denoted as T2. Here we consider
two possible definitions of T1: in the first one, it is the time
of the local minimum of İ after the subdiffusive scaling; in
the second one, it is the time in which the relative deviation
of I from the nonreactive case (r = 0) reaches a preset value
� (this is the same definition used in Ref. [32] for a similar
model in regular fractals). The crossover time T2 is also es-
timated considering two definitions: in the first one, it is the
time of the local maximum of İ before the Fickean regime; in
the second one, it is the time in which the relative deviation
of I from the asymptotic Fickean scaling reaches a preset
value �. The latter considers the exact asymptotic relation
I = 2

√
Dt/(dπ ) for a lattice with only P sites.

Figure 8(a) shows the crossover times calculated with the
two definitions as a function of r−1. In this analysis, we used
� = 20%. The plots suggest power law scalings as

T1 ∼ r−b, T2 ∼ r−c, (10)

where b and c are positive exponents. Linear fits of the T1 data
for r � 10−3 give b = 0.79 with the two methods; the fits of
the T2 data give c = 1.03 and 1.08. Since c is unequivocally
larger than b, the ratio T2/T1 increases as r decreases, i.e., the
time interval of the intermediate regime increases. It may be
very long for slow reactions; for instance, for r = 10−6, T2

and T1 differ by approximately 1.5 order of magnitude.
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FIG. 7. Evolution of (a) infiltration length and (b) reaction length
in d = 2 for several values of r; the dashed lines are theoretical
predictions for the subdiffusive and the Fickean regimes. (c) and
(d) show the respective rates of change, with dashed lines indicating
the slopes theoretically predicted for the subdiffusive and the inter-
mediate regimes.

The values of I at T1 and T2, which we denote as I1 and I2,
respectively, are shown in Fig. 8(b) as a function of r−1. As r
decreases, I1 increases, which is consistent with a longer subd-
iffusive regime; I2 increases slightly faster, which means that a
relatively larger infiltration is obtained in the regime with time
increasing rates. The values of R at those crossovers, which

FIG. 8. (a) Crossover times T1 and T2 as a function of r−1, in
d = 2, obtained from local extrema of I (labels min and max) and
from the deviation � = 20%. (b) Infiltration lengths (I1, I2) and
(c) reaction lengths (R1, R2) at the crossover times [same color code
as (a)]. (d) Infiltration rates (İ1, İ2) and (e) reaction rates (Ṙ1, Ṙ2) at
the crossover times [same color code as (a)]. In all plots, the error
bars are smaller than the sizes of the symbols and the slopes of the
least squares fits of all data sets (dashed lines) are indicated.
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FIG. 9. Evolution of a small cross section of the lattice in d = 3 with r = 10−4. The time 625 is below T1, 2500 is close to T1, 10 000 is
close to the inflection point, and 40 000 is close to T2. The left green bar represents the infiltration length and the right blue bar the reaction
length.

we denote as R1 and R2, respectively, are shown in Fig. 8(c).
R1 ∼ 1 for all values of r, which suggests that this condition
is related to the breakdown of the subdiffusion. In Fig. 8(d),
we show the infiltration rates İ1 and İ2 at the crossovers, and in
Fig. 8(e) we show the corresponding reaction rates Ṙ1 and Ṙ2.
In all cases, a decrease of these rates is observed as r decreases
(note that they are rates calculated at different times, so it does
not contradict the observation of time increasing rates in the
intermediate regime for a constant r). In Figs. 8(b)–8(e), the
linear fits show that those quantities vary as power laws of r
for small values of this parameter; the exponents shown in the
plots weakly depend on the definition used to calculate the
crossover times.

B. Results in d = 3

Figure 9 shows cross sections of a medium during its
infiltration with reaction probability r = 10−4. In the first
two panels, the infiltration is slow and a small number of
M sites has reacted. The third panel shows a high filling of
the accessible region near the source, but with no significant
change due to the reaction. Between the third and fourth
panels, the infiltration and the reaction rapidly advance. This
is accompanied by significant dissolution of some layers near
the source (within the reaction length), where the density of
S particles is high. The layers within or slightly below the
infiltration length are also highly filled, but only a fraction of
the M sites have reacted.

Figures 10(a) and 10(b) show the evolution of I and R,
respectively, for several r, and Figs. 10(c) and 10(d) show the
corresponding rates. The qualitative evolution is similar to that
in d = 2, with an initial subdiffusive regime, an intermediate
regime with time increasing rates, and a final Fickean regime.
However, the distinct features of the intermediate regime are
shaper in d = 3: the time increase of İ is clearer and the
increase of Ṙ is faster in comparison with d = 2. Moreover,
this regime lasts longer as r decreases.

Here we also characterize the crossovers between the three
scaling regimes by the times T1 and T2, using the two def-

initions given in Sec. V A. For the method that considers
fractional deviations of I from the subdiffusive and from
the Fickean scalings, here we use � = 50%. The crossover
times are shown in Fig. 11(a) as a function of r−1 and
also follow the power law relations of Eq. (10). The ex-
ponents for T1 are b = 0.77 and 0.81, while the exponents
for T2 are c = 1.05 and 1.10; thus, the different definitions
of those times also lead to small differences in the mea-
sured exponents. Since c > b, the number of time decades
of the intermediate regime [log10 (T2/T1)] increases as r
decreases.

The infiltration lengths at T1 and T2 are shown in Fig. 11(b)
as a function of r−1; the reaction lengths at the crossover times
are shown in Fig. 11(c). As in the two-dimensional case, here
we observe that I1 increases as r decreases, consistent with a
longer subdiffusive regime, whereas I2 increases faster, con-
sistent with larger infiltrations during the intermediate regime
of time increasing rates. We also observe that R1 ∼ 1 for all
r, supporting the assumption that this condition is related to
the breakdown of the subdiffusion. Figure 11(d) shows the
infiltration rates and Fig. 11(e) shows the reaction rates at
the crossover times T1 and T2, which follow similar trends as
the crossover rates in d = 2. In Figs. 11(b)–11(e), the scaling
exponents obtained from data fits with the smallest r are
shown in the plots and are weakly dependent on the definition
of the crossover times.

VI. SCALING APPROACH

For any reaction probability r, the short time subdiffusive
infiltration is described by Eq. (9) because the number of
dissolved M sites is small. Reactions may occur on the walls
of the infiltrated channels, i.e., on the faces of the M sites in
contact with S particles. An analogy with the dissolution of
the compact medium (Sec. III) is helpful here: at short times,
Figs. 2(a)–2(c) show that almost all P sites in contact with
the M sites are infiltrated. Thus, the dissolved region acts
like an extension of the source at times much shorter than
the crossover to the Fickean behavior. Here, the difference
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FIG. 10. Evolution of (a) infiltration length and (b) reaction
length in d = 3 for several values of r; the dashed lines are theo-
retical predictions for the subdiffusive and Fickean regimes. (c) and
(d) show\the respective rates of change, with dashed lines indicating
the slopes theoretically predicted for the subdiffusive and intermedi-
ate regimes.

is that the S particles also invade the original P sites of the
porous medium, i.e., the extended source is inside the porous
medium.

This reasoning implies that the number of faces of M sites
in contact with S particles is proportional to the number NI of
infiltrated P sites. In d = 3, the area of M sites in contact with
S particles is of order AI ∼ NI a2 ∼ IL2; in d = 2, the length
in contact with S particles is LI ∼ NI a ∼ IL. These relations

FIG. 11. (a) Crossover times T1 and T2 as a function of r−1, in
d = 3, obtained from local extrema of I (labels min and max) and
from the deviation � = 50%. (b) Infiltration and (c) reaction lengths
at the crossover times [same color as (a)]. (d) Infiltration and (e)
reaction rates at the crossover times [same color as (a)]. In all plots,
the error bars are smaller than the sizes of the symbols and the slopes
of the least squares fits of all data sets (dashed lines) are indicated.
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omit the average number of faces of M sites per infiltrated P
site, which is of order 1.

In the neighborhood of an infiltrated P site, an M site reacts
with probability r in a time τ . Thus, in a time t , the reaction
advances into an average length l⊥ ∼ a(r/τ )t = arT of the
M sites surrounding that P site. This is applicable in d = 2
and d = 3 at short times, in which l⊥ � a, i.e., in which the
advance of the reaction is limited to the M sites in the closest
neighborhood of the P site. The total volume of M that reacts
in a time T is VR ∼ AI l⊥ ∼ IaL2rT in d = 3; in d = 2, the
total area that reacts is AR ∼ LI l⊥ ∼ IaLrT . Using Eqs. (7)
and (9), the reaction length in both dimensions scales as

R ∼ rT n+1. (11)

Since n > 0, R increases faster than linearly since short times.
The corresponding rate of reaction is

dR

dt
∼ rT n. (12)

In d = 2, the plots in Fig. 7(d) have slopes consistent with the
estimate n ≈ 0.3113. In d = 3, the plots in Fig. 10(d) have
slopes slightly larger than the estimate n ≈ 0.137; however,
this is expected because the effective exponents neff are large
at short times, as shown in the inset of Fig. 5(b).

After some time, several M sites are transformed into P
sites, which facilitates the infiltration of other S particles.
Figures 8(c) and 11(c) show that the first crossover occurs
when R ∼ 1, which corresponds to the reaction of one M site
per source site. This means that the extended source formed
inside the porous medium has a volume of the same order as
the volume of the source localized at the infiltration border.
After it occurs, the attack to the M sites inside the medium
(by an increasing number of S particles) is faster than the
attack to the top M sites; the subdiffusive behavior then ceases
and a different scaling regime begins. The crossover time T1

is obtained by substituting the condition R ∼ 1 in Eq. (11),
which leads to the scaling in Eq. (10) with exponent

b = 1

1 + n
. (13)

The infiltration and reaction lengths at T1 are obtained by
substituting Eqs. (10) and (13) in Eqs. (9) and (11); their time
derivatives give the rates of those lengths at the crossover:

I1 ∼ r−n/(n+1), İ1 ∼ r (1−n)/(1+n), Ṙ1 ∼ rb. (14)

Our numerical results support these scaling relations. In
d = 2, the estimate n ≈ 0.3113 gives b ≈ 0.763, n/(n + 1) ≈
0.237, and (1 − n)/(1 + n) ≈ 0.525 for the exponents in
Eq. (14). The numerical values of the exponents of T1,
I1, İ1, and Ṙ1, shown in Figs. 8(a)–8(c), are close to the
predictions of this scaling approach, with maximal devia-
tions ≈6%. In d = 3, the asymptotic value n ≈ 0.137 gives
b ≈ 0.880, n/(n + 1) ≈ 0.120, and (1 − n)/(1 + n) ≈ 0.759.
The numerical estimates of the exponents of T1, İ1, and Ṙ1

[Figs. 11(a)–11(c)] differ up to ≈13% from those values. The
numerical estimate of the exponent of I1 [Fig. 11(b)] has
a larger deviation. In this case, T1 is in the range 102–104

[Fig. 11(a)], in which the infiltration length without reactions
increase with neff between 0.25 and 0.18 [Fig. 5(b)], which are
30%–80% larger than the asymptotic value ≈0.137. Thus, the

l

percolation cluster

isolated
pores

M

FIG. 12. Scheme of an infiltrated region of the porous medium
in d = 2 before (left) and after (right) the reactions occur.

numerical estimates of exponents b and (1 − n)/(1 + n) are
actually expected to be smaller than the scaling predictions
based on the asymptotic n, whereas the estimate of n/(n + 1)
is expected to be larger than the scaling prediction.

The deviation from subdiffusion at T1 implies that the frac-
tality is broken in the region within the infiltration length. At
T > T1, the dissolution of M sites creates new paths for the
infiltration. The S particles fill P sites that belong to the critical
percolation cluster plus new P sites created by the reactions
and P sites that were initially isolated; see Fig. 12. To esti-
mate the infiltration length, we consider these contributions
separately.

First consider the infiltrated part of the original perco-
lation cluster. The infiltration source is extended, i.e., the
noninfiltrated parts of that cluster are below a region with a
high density of S particles. Thus, the infiltration advance is
expected to be the same observed when the initial percola-
tion cluster was in contact with the source at z = 0. In each
time interval T1, the infiltration advances into that cluster by
a length I1 in the z direction (as in the initial subdiffusive
regime), which means that the extended source advances by
that length. At T > T1, the infiltration length Ipc in the original
percolation cluster is proportional to T/T1:

Ipc ∼ I1
T

T1
. (15)

Now we analyze the infiltration of the other P sites, i.e.,
sites that do not belong to the original percolation cluster. The
reactions around an infiltrated P site advance in all directions
to a length l⊥ ∼ a(r/τ )t = arT , as illustrated in Fig. 12; now
l⊥ is not of the same order as a. In a d-dimensional region with
size l⊥, the total number of P sites is ∼pc(l⊥/a)d , i.e., the P
sites occupy a finite fraction of the available volume. In the
same region, the number of P sites in the critical percolation
cluster is ∼(l⊥/a)dF . Thus, the ratio between the total number
of P sites and the number of P sites in the percolation cluster
at time T is

fP(T ) ∼
(

l⊥
a

)d−dF

∼ (rT )d−dF . (16)

Since d > dF , this result implies that most of the infiltrated
sites are not those of the original percolation cluster.
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Recalling that Ipc [Eq. (15)] accounts only for the infiltrated
sites of the percolation cluster, the total infiltrated length I is
larger than Ipc by the factor fP(T )/ fP(T1):

I ∼ fP(T )

fP(T1)
Ipc ∼ rhT g, g ≡ 1 + d − dF , h ≡ g − n

n + 1
.

(17)
This gives I ∼ I1 at T ∼ T1. The infiltration rate scales as

İ ∼ rhT d−dF . (18)

Equations (17) and (18) give g > 1 in any dimension, so
they theoretically predict the time increasing infiltration rate.
The numerical values are g = 53/48 ≈ 1.104 in d = 2 and
g ≈ 1.477 in d = 3, which show that the effect is more pro-
nounced in d = 3. This result is confirmed with good accuracy
by the slopes d − dF ≈ 0.104 and 0.477 of the infiltration rate
evolution in Figs. 7(c) and 10(c), respectively.

The crossover to Fickean infiltration occurs when the infil-
tration length of Eq. (17) is of the same order as the diffusive
infiltration length I ∼ T 1/2, which does not depend on r. This
gives the scaling of T2 as in Eq. (10) with

c = g − n

(1 + n)(g − 1/2)
. (19)

At the crossover, the infiltration length and its rate scale as

I2 ∼ r−c/2, İ1 ∼ rc/2. (20)

In d = 2, Eq. (19) gives c ≈ 1.01 (c/2 ≈ 0.51). The nu-
merical estimates of c obtained from T2 [Fig. 8(a)] and the
estimates of c/2 obtained from I2 and İ2 [Figs. 8(d) and 8(e)]
are close to these predictions. In d = 3, Eq. (19) gives c ≈
1.21 (c/2 ≈ 0.61). However, the same relation with neff larger
than the asymptotic n, as shown in Fig. 5(b), gives a smaller
effective value of c. Indeed, the numerical estimates of expo-
nent c in the scaling of T2 [Fig. 11(a)] are smaller than the
estimate of the scaling approach and the numerical estimates
of the exponents of I2 and of İ2 [Figs. 11(b) and 11(c)] are
smaller than the corresponding estimate of c/2, with differ-
ences in the range 9–13%.

The number of time decades Ntir with time increasing rates
is

Ntir ∼ log10

(T2

T1

)
∼ (c − b) log10 r−1, (21)

where c − b ≈ 0.25 in d = 2 and c − b ≈ 0.33 in d = 3. In
cases of very slow reactions or very fast diffusion, Eq. (4)
implies r � 1 and the time increasing rates may be observed
in several time decades.

For comparison, in the reactive regime of the dissolution
of a compact medium, the constant rate lasts longer, with a
number of time decades ∼ log10 r−2. However, in that case,
the crossover to Fickean infiltration occurs with continuously
decreasing rates instead of the time increasing rates obtained
here. The difference is related to the penetration of the reac-
tants in the percolating porous system, which dissolve the pore
walls and accelerate the convergence to the Fickean regime.

Our numerical results also show time increasing rates of
the reaction lengths. However, we were not able to determine
a scaling relation for that length. In Fig. 13, we show the
effective slopes of the log R × log T plots for three values
of r in d = 3. These slopes have peaks between T1 and T2,
but they do not converge to a finite exponent as r decreases;

FIG. 13. Effective exponent of R as a function of T . The vertical
dashed and dotted lines represent the crossover times T1 and T2

respectively, with colors matching the corresponding data set.

instead, they are increasing, which means that faster growths
of R and Ṙ are observed in the regime of time increasing
infiltration rate. Similar results are obtained in d = 2. Direct
inspection of Figs. 7(b), 7(d), 10(b), and 10(d) also shows
that it is not possible to perform reliable linear fits of the
log R × log T or of the log Ṙ × log T plots in that regime.
Despite this limitation, we observe that R2 ∼ I2 and Ṙ2 ∼ İ2

in both dimensions, which indicate that the reaction length
crosses over to the Fickean regime simultaneously with the
infiltration length.

VII. CONCLUSION

We studied a model of solute infiltration from a source
of constant concentration into disordered lattices at the per-
colation thresholds and reactions of the solute with the
impermeable sites, which create new porous sites. We per-
formed numerical simulations in hypercubic lattices in d = 2
and 3 and developed scaling approaches to determine the
time evolution of the extents of infiltration and reaction and
to relate them with a model parameter r that describes the
relative rate of reaction and diffusion (Damkohler number).
Cases of slow reactions (r � 1) are considered.

The model without reactions shows subdiffusive infiltra-
tion with a time scaling exponent n predicted by the same
relation previously verified in infinitely ramified fractals. In
the reactive case, short time subdiffusion is observed and,
at sufficiently long times, the reacting media is far from the
source and the infiltration is Fickean. Between these regimes,
a regime with time increasing rates of infiltration and reaction
is observed. This is explained by a cooperative effect between
the directional infiltration of the solute into the fractal porous
medium and the advance of reactions in all directions. The
exponents of the time evolution of the infiltration and reaction
lengths and their relations with r are predicted by a scaling
approach and confirmed by numerical simulations, with some
deviations in d = 3 that can be explained by the slow conver-
gence of the initial subdiffusion exponent. The regime with
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time increasing rates spans a time range that increases as r
decreases, so that it is more likely to be observed in slowly
reacting materials.

The interplay of infiltration in porous media and chemical
reactions that change their structures is essential to understand
their evolution. This was already shown in the study of mate-
rials of geological and technological interest. In low porosity
systems, diffusion is expected to be the main transport mech-
anism, and if those systems are fractal they are expected to
display subdiffusion. This work suggests the investigation of a

possible anomalously fast infiltration if the reactions increase
the porosity of such systems.
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