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Extraction of unknown signals in arbitrary noise
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We devise a general method to extract weak signals of unknown form, buried in noise of arbitrary distribution.
Central to it is signal-noise decomposition in rank and time: only stationary white noise generates data with a
jointly uniform rank-time probability distribution, U (1, N ) × U (1, N ), for N points in a data sequence. We show
that rank, averaged across jointly indexed series of noisy data, tracks the underlying weak signal via a simple
relation, for all noise distributions. We derive an exact analytic, distribution-independent form for the discrete
covariance matrix of cumulative distributions for independent and identically distributed noise and employ its
eigenfunctions to extract unknown signals from single time series.
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I. INTRODUCTION

Signal separation from noise is an essential part of any ex-
periment, be it a passage of an elementary particle, arrival of a
gravitational wave, or a radar echo. Instrumental noise, clutter,
unwanted fluctuations are inevitable [1] and the literature on
the topic is vast, crossing many fields, and containing a great
variety of specialized solutions [2–4]. For example, lock-in
amplifiers detect low-level signals obscured by noise, but the
signal form must be known.

Approaches to extraction of signals of unknown form
(nonparametric) typically rely on the assumption of additive
normally distributed noise, e.g., Ref. [4] and signal process-
ing literature has been dominated, for over a century, by the
additive Gaussian white noise model, e.g., the least squares
approach of maximum likelihood [5,6]. But pronounced fluc-
tuations associated with “black swan” events and heavy-tailed
(power-law) distributions have become increasingly common
in statistical physics [7,8], e.g., ranging from photonics to
air pollution [9–12]. To that end, here we address situations
where neither signal form is known nor is the noise of a
conventional variety.

Despite its ubiquity, noise is notoriously difficult to define
(e.g., Refs. [1,2,13])—as the old adage goes, one man’s noise
is another man’s signal [14]. To that end, based on a simple
signal-noise decomposition in a rank-time plane [15,16], we
propose a general all-purpose signal extraction method. Al-
though there is a rich literature on rank-based approaches to
nonparametric hypothesis testing [17,18], there is a dearth of
rank-based signal retrievals. In fact, to the best of our knowl-
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edge, rank-based unknown signal extraction has not been
considered. For example, the comprehensive three-volume set
[19] on statistical signal processing does not suggest a single
ordinal method. Rank offers a broadly applicable framework
with no constraints; noise can be white or colored, additive
(e.g., “dark” noise in detectors) or signal-dependent such as
fluctuations caused by an atmospheric turbulent propagation
channel [3].

With that in mind, consider data from n serially ordered
channels (e.g., synchronously acquired time series), each
composed of N real-valued elements x( j)

k as depicted in Fig. 1.
The superscript and subscript identify the time series and an
observation within a given series, respectively. Such n time
series might represent seismic or EEG detectors, elements of
an antenna array, stock prices in a portfolio, weather stations
around the globe, hot wires in a turbulent flow, etc., with
each series containing N measurements of a noisy fluctuating
process. Several copies of an unknown sought signal s are thus
embedded in the several samples of noise. The ubiquitous case
of n = 1 is also treated in the material below.

In applications, the unknown signal is typically calculated
as the sample (arithmetic) mean

ŝk = 1

n

(
x(1)

k + x(2)
k + . . . x(n)

k

)
, k = 1, . . . N, (1)

where the observations x( j)
k are of the signal buried in noise.

The ̂ denotes the estimate of the true mean sk . It is one of
the cornerstones of probability theory that the sample mean in
Eq. (1) converges to the true (ensemble) mean as n → ∞ (law
of large numbers) [3,20], except for fluctuations with infinite
variance (e.g., Cauchy noise) [21]. Perhaps no calculation is
more commonplace in data analysis than the sample mean yet,
when first advanced, it was hotly debated [22], making an
early appearance as the “Arithmeticall meane” in Ref. [23].
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FIG. 1. Mean rank tracks the weak signal via Eq. (2). The data
value x( j)

k for each series j = 1 . . . n and time k = 1 . . . N is the sum
of a random variable drawn from the Cauchy pdf f (x) = (π [1 +
x2])−1 and signal s(t ) = sin(t )/2 on [0, 4π ], with N = 64 and n =
500. Each data series is sorted to yield the rank vs. time series which
are then averaged “cross-track.” That result for mean rank is shown
in black on the last trace. The red trace shows the ensemble limit
for mean rank, which clearly reproduces the form of s(t ). The signal
estimate itself, ŝ, is then derived from Eq. (2) with ρ1 = (2π )−1. The
standard deviation of the error in that estimated signal, ε = ŝ − s, is
σε ≈ 0.0573. While the formal variance of Cauchy noise is infinite,
the sample-based signal-to-noise ratio is ∼10−5.

An alternative to the ubiquitous Eq. (1) is proposed below and
it applies to any serially ordered data of arbitrary distribution.

To develop a robust, distribution-independent approach to
signal extraction, we turn to ranking of data [15], i.e., val-
ues in each of the n time series are sorted by magnitude in
ascending order, and N integer-valued ranks recorded in the
corresponding N “time slots” [5]. To illustrate this process and
the notation used in Fig. 1, consider the following example:

Mock Data

x −0.45 0.35 0.56 0.13 0.64 0.65 1.37
t 1 2 3 4 5 6 7
r 1 3 4 2 5 6 7
δr −3 −1 0 −2 1 2 3

where the top row x is a realization of raw data with signal
y(x) = x plus noise drawn from a uniform distribution on
the interval [−1/2, 1/2], the second row t is the time index,
the third row r is the first row data reduced to rank, and
the bottom row δr is the deviation from the expected mean
rank for pure noise, (N + 1)/2 = 4. The rank information in
this single trace can also be stored in 2D rank-time grid as
a (permutation) matrix P, whose rows and columns represent
the time t and rank r vectors respectively. The N unit entries
of P, indicating occupancy, are read from the vectors, e.g.,
P4,2 = 1 from the fourth entry and P4, j = 0 for j �= 2. For
n traces, the sum of the n Ps, normalized by nN , yields the
traditional (empirical) probability mass function (pmf), i.e., a
normalized 2D histogram.

At first glance, ranking appears to hold little promise as,
for example, all strong monotonic signals (low noise) such as
increasing linear, logarithmic, and exponential functions yield
the identical monotone rank distribution 1, 2, ..N . Yet, Fig. 1
demonstrates that deviation mean rank recovers the form of
the weak signal faithfully. How can this be? Paradoxically,
even a tiny amount of noise, it turns out, restores the magni-
tude information, up to an additive constant.

An essential ingredient is the observation that only station-
ary white noise generates all permutations of N ranks among
the N indexed slots with equal probability. This equipartition
U (1, N ) is perturbed by weak signals so that the change in
equal rank probabilities of pure noise is linearly proportional
to (weak) signal amplitudes and recorded by the deviation
mean rank as illustrated in the final trace of Fig. 1. Sampling
variability, of course, is present in all traces, including the final
(black) trace.

Mean rank, unlike the arithmetic mean, couples the “cross-
track” and “along-track” directions as illustrated in Fig. 1,
sorting within a trace and then averaging across traces, the
last line of the above “mock data” illustrating such a sample
trace numerically and sample traces seen graphically with r(1)

to r(n) in the figure. As can be seen in the final trace, despite
the loss of magnitude information, the (weak) signal-induced
perturbation of the (pure noise) uniform rank probabilities suf-
fices for the deviation mean rank, δ̂r, to track the underlying
signal faithfully.

II. SUMMARY OF THE MAIN RESULTS

Figure 1 demonstrates that for weak signals and large n,
mean rank accurately tracks the signal form. The (signal-
driven) perturbation from uniformity is defined by the rank
deviation δr̂k = rk − (N + 1)/2, where (N + 1)/2 is the ex-
pected value for pure noise for all time slots. Then, the
deviation mean rank provides an estimate of the exact signal
via a remarkably simple relation:

ŝ ≡ 1

N ρ1
δ̂r ≈ s, ρ1 ≡

∫ ∞

−∞
f (x)2 dx, (2)

where ŝ is the rank-derived signal estimate and f (x) is the
probability density function (pdf) of the background noise as
in Fig. 1. Note that being a pdf, f (x) has units so that inverse
ρ1 in Eq. (2) has dimensions of the actual measured signal
amplitude. The pre-factor of 1/n in Eq. (1) is subsumed in the
computation of mean rank and ŝ is defined up to an additive
constant. As explained in Sec. III C, the estimate in Eq. (2)
is the leading order term in an asymptotic expansion for an
ensemble, n → ∞.

Both signal estimates, Eq. (1) for arithmetic mean and
Eq. (2) for mean rank, converge to the true signal as n → ∞,
but the arithmetic mean requires finite variance and fails for
heavy-tailed noise such as Pareto or Cauchy. The mean rank
converges via Eq. (2) only in the weak signal limit. Conver-
gence for stronger signals also holds but requires that Eq. (2)
be used in an iterative scheme, see Sec. III D.

The rates of convergence as given by the standard deviation
in the mean rank and arithmetic mean signal estimates are,
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respectively,

1√
12 ρ1

1√
n

and σ
1√
n
, (3)

where σ is the standard deviation of noise. The mean rank
expression arises from the zero-signal limit where mean rank
is uniformly distributed and its fluctuations, (integer-valued
counts) are described by the Poisson process. Thus, the con-
vergence comparison is governed by the quantity

√
12 ρ1 σ .

(The square of this quantity, the Pitman asymptotic relative
efficiency for rank spread test versus the t test [24,25], arose
in mathematical statistics, in the context of hypothesis test-
ing. A detailed comparison is supplied by the extensive table
surveying the factors for Pitman efficiency for not only rank
versus arithmetic mean but also rank versus median presented
in Appendix B 2.)

A skeptic might object that n = 500 in Fig. 1 is rather con-
fining. Indeed, while some applications such as ocean floats
or earthquake sensors would allow large n [15], others such
as EEG measurements do not. Probably the most common
case in practice is that of a single time series (n = 1). Of
course, the arithmetic mean, median estimates do no apply
then. Remarkably, mean rank performs well even in this n = 1
case, as demonstrated in Figs. 2(a) and 2(b), where a weak
sinc signal buried in overwhelming noise of infinite variance
is retrieved with high fidelity from a single time series. So in
what sense can we speak of “mean rank” when n = 1? Next,
we highlight the key ideas.

The space of rank vectors consists of the N! permutations
of the integers 1, . . . , N and one can compute the exact covari-
ance matrix for this space which, up to a scale factor, assumes
the “canonical” (indicated by ∗) form

�∗
j,k := N min( j, k) − jk, (4)

whose normalized eigenvectors of �∗ψm = λmψm emerge as
harmonics

ψm(xk ) =
√

2

N

{
sin(m xk ) m even,
cos(m xk ) m odd, (5)

where xk = kπ/N − π/2 for k = 1, . . . (N − 1) and

λm = N

2 [1 − cos(mπ/N )]
. (6)

What is the relation of this result to independent and identi-
cally distributed (iid) noise? On recognizing that the mapping
from stationary white noise to rank generates all permuta-
tions with equal probability of 1/N!, it follows that the same
covariance matrix also applies to the infinite ensemble. The
harmonics in Eq. (5), thus linked to white noise, are related
in the next section, via cumulative distribution fluctuations, to
the so-called Brownian bridge (Weiner process pinned at the
ends or returns of a zero-inertia Brownian particle) [26], but
with the Brownian part rendered inessential and the eigenval-
ues for a Weiner process similar to Eq. (6) only for small m,
where λm ∼ m−2, but not in the tails (note that the integral
equation eigenvalues in [26] are reciprocals of ours).

Toward signal extraction, consider raw data yielding a
perfectly ordered succession of ranks [1, 2, 3, ..N]. Despite
appearing “orderly,” this rank partition is just as likely as any
other to be generated by iid noise. But, given this data, we

FIG. 2. Nonparametric extraction for n = 1. (a) A series consist-
ing of a signal s(x) = 1.44 sinc(4x) plus Cauchy noise (full vertical
scale is [−171, 888]). (b) True (unknown) signal (blue), assumption-
free estimate (red), and estimate assuming signal symmetry about
the peak (dashed black). (c) Color-coded values of δC from Eq. (7)
with N = 256. (d) The expansion in Eq. (8) of δC with M = 10. Note
the similarity of large-scale patterns in panels (c) and (d). P is found
from this δC̃ via Eq. (10), whose first moment yields the mean rank
δr in Eq. (2). Then ρ1 = (2π )−1 yields the curves in panel (b).

can ask: is the white noise model as likely as a signal plus
noise model? This “likelihood” type of question is quantified
here beyond the confines of parametric estimation and even
for single trials (n = 1).

Guided by the equivalence of rank (r) and time (t) for iid
noise, we map the raw data to the rank-time (r, t ) plane. As
n → ∞, the resulting 2D discrete probability density (mass)
function (pmf) is jointly uniform, U (1, N ) × U (1, N ). This
characterization of stationary white noise defines the absence
of a signal, delivers a simple signal-noise decomposition, and
regards signals broadly as deviations from pure randomness.
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This symmetry-breaking property of signals then forms the
basis for universal (distribution-independent) signal extrac-
tion.

To implement this program, we continue with a cumulative
distribution function (cdf) of the iid noise, with a particularly
simple form (xy in the continuous case) and whose fluctua-
tions turn out to have universal correlation properties. With
rare exceptions, e.g., the cdf of optical depth in Ref. [27]
or improvements of statistical tests [28], physicists prefer
pdfs to cdfs. Yet, the cdf has important advantages both,
fundamental and practical. On the fundamental side, there
is the general propensity for the cdf perspective to yield
universal results, e.g., distribution-independent convergence
theorems of Kolmogorov and Smirnov, as well as the cele-
brated Kolmogorov-Smirnov (KS) test itself [5,29] and the
three-term cdf decomposition theorem [29]. Perhaps most
important, in our view, is the following remarkable yet seldom
mentioned result. Let a random variable X have a continuous
distribution for which the cdf is FX . Then the random variable
Y = FX (X ) has a standard uniform distribution, for any FX

[30]. Dealing with data at the cdf level also has its perks.
For instance, it is not necessary to bin the data to form a
natural empirical cdf staircase whereas some form of binning
is required for the pdf. Single-pass estimation of arbitrary
quantiles is often desired, e.g., from time to time one might
need the median value (or 95th percentile) of data seen thus
far [5].

Returning to signal extraction, the ensemble limit of a
jointly uniform pmf, p(r, t ) = U (1, N ) × U (1, N ), and its as-
sociated discrete cumulative distribution function (simple xy
for the continuous analog), C are both perturbed by signals.
Here we isolate that perturbation by means of the 2D deviation
cumulative distribution function δC defined as

δCk,l =
k∑

i=1

l∑
j=1

(
pi, j − 1

N2

)
{k, l} = 1, . . . (N − 1), (7)

where pi, j is the pmf and the δ denotes deviation. The subtrac-
tion of 1/N2 removes the jointly uniform base state [31]. In
practice, one obtains pi, js from ranked data via the normalized
2D histogram.

We show that δC, generated by the iid noise, fluctuates
in a distribution-independent manner just as rank vectors do.
Moreover, the δC covariance matrix is the Kronecker tensor
product of �∗

j,k with itself. This, in turn, yields a convergent
2D (Fourier) eigenfunction expansion formed by the direct
product of all (N − 1)2 pairs from Eq. (6) and corresponding
products of the associated 1D eigenvalues.

The main and seemingly contradictory idea now is to apply
Eq. (2) even at n = 1 as one estimates in Fig. 2(d) a small
subset of the 2D expansion coefficients for the ensemble
limit (n → ∞) of δC based on the single realization of δC in
Fig. 2(c). As indicated in Fig. 7 of Appendix B 4, a spectral
signature guides the choice of the truncation M for the expan-
sion:

δC̃k, j =
M∑

n=1

M∑
m=1

cn,m ψn(yk ) ψm(x j ), (8)

FIG. 3. Iterative reduction of rank nonlinearity yields excellent
signal retrieval. The signal (blue solid line) is deliberately generic:
a Fourier synthesis with randomly chosen coefficients. Green dots
(data) include added Cauchy (infinite variance) noise. The dotted
red line shows the first pass signal estimate from Eq. (20), leaving
σ 2

ε = 0.529. The amplitude error is due to cubic (and higher) terms
in Eq. (19). Iteration (solid red) annuls the M mode coefficients
(σ 2

ε = 10−6), hence eliminating the cubic error. To the best of our
knowledge, such performance with merely n = 4 is unrivaled by
other methods.

where

cn,m =
N−1∑
k=1

N−1∑
j=1

ψn(yk ) ψm(x j ) δCk, j .

From these estimated coefficients one obtains the smooth δC̃
and hence P(r, t ) from

P(x, y) = ∂2δC̃(x, y)

∂x∂y
, (9)

which, in discrete form, means using the harmonics

dψm(x′
k )

dx
= π

N

√
2

N

{
m cos(m x′

k ) m even,
−m sin(m x′

k ) m odd,

where x′
k = kπ/N − π/2 (1 − 1/N ) for k = 0, . . . (N − 1).

Then

Pj,k ≈
M∑

n=1

M∑
m=1

cn,m
dψn(y′

k )

dy

dψm(x′
j )

dx
, (10)

and δ̂r/N = P[1 . . . N]T
0 (subscript 0 indicates zero mean)

from which we obtain the signal estimate plotted in Fig. 2(b).
The dashed curve is a better match when signal parity is
used as prior information. An iterative approach, quantifying
the “weak signal” range of validity and extending Eq. (2) to
weaker noise (summarized in the caption of Fig. 3), again
yields retrievals unmatched by other methods.
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III. UNDERLYING THEORETICAL DEVELOPMENT

We begin with the derivation of Eq. (4) for the fluctuation
of rank vectors (discrete case) and then proceed with the
parallel derivation for cdf fluctuations (continuous case) by
treating cumulative distributions as order statistics [32]. This
culminates with the perturbation expansion to arrive at Eq. (2)
and higher order terms.

A. Discrete covariance matrix: Rank

Consider iid noise-generated fluctuations of the sample
vector with N entries. All possible permutations of N ranks in
N slots occur with the same probability 1/N!. Thus, an ergodic
behavior is ensured as our “system” samples all available
“microstates” without bias or preference and the ensemble
limit holds (n → ∞).

Elements of the i-th permutation vector are denoted by r (i)
k

for k = 1, 2, . . . N and i = 1, 2, . . . Np, where Np is the size
of the permutation space, which depends upon the allowed set
of entries X = {x}. Toward calculating the covariance matrix,
we then define zero-mean partial sums as

s(i)
k =

k∑
j=1

(
r (i)

k −
N∑

j=1

r (i)
j /N

)
, k = 1, 2, . . . (N − 1),

(11)
and calculate the covariance matrix from

�k,l = 1

Np

Np∑
i=1

s(i)
k s(i)

l , (k, l ) = 1, 2, . . . (N − 1). (12)

The discrete covariance matrix “standard” is given by
Eq. (4) and the simplest set of permutations yielding it is
N IN , where IN is the identity matrix of order N . A broader
context for this choice is the set of N! permutation matrices
PN , regarding the r (i)

k as either the rows or columns. Each
yields the identity case covariance matrix. Any particular per-
mutation matrix can be regarded as the rank-time realization
[15]. Using the identity matrix, we have r (i)

k = δi,k and the zero
mean partial sums are given by

s(i)
k = NH (k − i + 1) − k, k = 1, . . . (N − 1),

where H denotes the Heaviside function with the convention
H (0) = 0. Elements in the covariance matrix reduce to evalu-
ation of the product

1

N

N∑
i=1

[NH ( j − i + 1) − j] [NH (k − i + 1) − k]

= N
N∑

i=1

H ( j − i + 1) H (k − i + 1)

−
N∑

i=1

[ jH (k − i + 1) + kH ( j − i + 1)] + j k

= N min( j, k) − j k ( j, k) = 1, . . . (N − 1).

For all general permutation classes in Eq. (12) then � j,k =
α(N ) �∗

j,k and it suffices to simply compute �1,1 in Eq. (12)
as a function of N to fix α(N ) = �1,1/(N − 1). A variety
of examples of α(N ) is presented in Appendix C. That this

result emerges, wholly independent of details of the xi save
through the vestigial factor of α(N ) is paralleled in the order
statistics argument below when the perfect differential drops
all reference to the underlying noise distribution f (x).

Application of this covariance matrix to δC rests upon the
assumption of equal a priori occupancy of the corresponding
finite state space for an infinite ensemble of white noise input
vectors. Individual realizations of δC derive from an N × N
permutation matrix P:

NδCk,l =
k∑

i=1

l∑
j=1

(Pi, j − 1/N ), {k, l} = 1, 2, . . . (N − 1).

Based on either rows or columns alone, this is equivalent to
Eq. (4) but for IN rather than NIN , e.g., 1D α(N )/N2. The
double sum taken here then leads to a covariance matrix which
is (N − 1)2 × (N − 1)2 given by the Kronecker tensor product
of α(N ) �∗ with itself. The singular value decomposition of
the cdf ensemble for δC is then given by U σ VT where the
columns of U are the reshaped (N − 1)2 2D eigenvectors and
σ is a diagonal matrix with entries that derive from corre-
sponding products of Eq. (6), subject to the scale factor for
δC, and the standard factor of 1/

√
N − 1 for the conversion

from eigenvalues of the covariance matrix to singular values
[33]:

λn,m = 1

2N
√

N − 1

√
1

[1 − cos(mπ/N )] [1 − cos(nπ/N )]
,

(13)
where (m, n) = 1 . . . (N − 1) with the values sorted in
decreasing order, commencing with (m = 1, n = 1), and
columns of U and rows of V shuffled correspondingly.

B. Continuous covariance matrix: Order statistics

We shall now broaden the above derivation to the continu-
ous case. There are two major reasons for doing so. First, the
approach is needed to derive the main result, Eq. (2). Second,
we establish universality of fluctuations of the empirical cdf
via order statistics [32,34] and link it with the universality
of the pinned Wiener process (so-called Brownian bridge
[26,28]). Our derivation does not invoke the central limit
theorem, thereby disentangling Brownian and bridge parts, an
important result in itself.

To that end, we adopt the perspective of order statistics on
the empirical cdf, e.g., Refs. [29,34]. Let X = (X1, X1 . . . Xn)
be a random vector (sample) of size n and (x1, x2, . . . xn) be a
realization of the random vector X . For the iid case, let f (x)
and F (x) be their pdf and cdf, respectively. When the obser-
vations are arranged by ascending magnitude, X( j) denotes the
jth order statistic, that is, the jth smallest of the continuous iid
random variables X1, X2, . . . , Xn, [29,32]. The empirical cdf
(data staircase) can now be defined via the Heaviside (step)
function H (x) as a random process,

Fn(x) = 1

n

n∑
i=1

H (x − Xi ),

whose particular realization is obtained (measured) for Xi =
xi. So the step heights of the increasing staircase Fn(x) are
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multiples of 1/n. The key idea here is that by proving the in-
variance of the iid-generated covariance matrix we also show
the universality (distribution-independence) of Fn(x) fluctua-
tions.

Returning now to the order statistics, for the density func-
tion of X(J ) of an iid random process, one has

fX ( j)(x) = n!

(n − j)! ( j − 1)!
[F (x)] j−1 [1 − F (x)]n− j f (x),

e.g., see p. 276 of Ref. [3] or Eq. (6.2) in Ref. [32].
The expectation value of F (X(J ) ) is then

E [F (X( j) )] = n!

(n − j)! ( j − 1)!

∫ b

a
F (x)

× [F (x)] j−1 [1 − F (x)]n− j f (x) dx. (14)

The substitution s = F (x) and ds = f (x) dx yields∫ 1

0
s j [1 − s]n− j ds = (n − j)! j!

(n + 1)!
.

Hence, E [F (X( j) )] = j/(n + 1) j = 1, 2, . . . n.
Similar to Eq. (6.6) in Ref. [32], the joint density of X( j)

and X(k),

fX ( j),X (k)(x j, xk ) = n!

( j − 1)! (k − j − 1)! (n − k)!

× [F (x j )]
j−1 [F (xk ) − F (x j )]

k− j−1

× [1 − F (xk )]n−k f (x j ) f (xk ), (15)

and, with the same variable change, E [X( j) X(k)],

E [X( j) X(k)] = n!

( j − 1)! (k − j − 1)! (n − k)!

×
∫ 1

0
dt (1 − t )n−k t

∫ t

0
ds s j (t − s)k− j−1.

(16)

This integral is evaluated in terms of the standard β func-
tion [29] and one arrives at the sought result for the order
statistics covariance matrix ( j < k),

E [X( j) X(k)] − E [F (X( j) )]E [F (X(k) )] = j (n + 1 − k)

(n + 1)2 (n + 2)
.

(17)
Note j and k are interchanged for j � k. Equation (17) is the
same as the earlier result Eq. (4) to within a scaling factor (see
Appendix C).

Although we are not aware of the universality question
being posed in terms of the covariance matrix, a related
result exists in the theory of stochastic processes. Namely,
eigenvalues for the Brownian bridge (pinned Wiener process)
are similar to Eq. (5) but rely on the normal approximation.
Thus, it is particularly noteworthy that the result Eq. (17) is
distribution-independent and yet neither this derivation nor the
discrete one above invokes the central limit theorem.

To link Eq. (17) explicitly to the Wiener process, we em-
ploy the Gnedenko-Koroliuk map from the cdf difference onto
a pinned random walk [35]. Letting {Yk} be another set of
n iid random variables with the same cdf F (x), one orders
the 2n-tuple composed of (X1, X2 . . . Xn) and (Y1,Y2 . . .Yn) in

ascending order, and puts either 1 or −1 in the j-th entry,
to replace Xj or Yj respectively. One thereby obtains a map
onto a discrete random-walk of 2n steps that returns to the
origin. In the Gaussian limit this yields the Brownian bridge
but for finite N , the exact covariance matrix generated by all
(2N )!/(N!)2 permutations of this Gnedenko-Koroliuk map is
a constant times Eq. (4). On the assumption that all permuta-
tions are equally likely, this then is the exact ensemble limit
for the finite random walk.

In the continuous limit, Eqs. (4) and (17) become the
function K (x, y) = min(x, y) − x y, which is recognized as
the correlation function for the Brownian bridge [26,28]. Prin-
cipal components from an orthogonal function expansion of
the Karhunen-Loeve type [20,36] are then eigensolution pairs

f (x) = sin(kπx), g(y) = 1

k2π2
sin(kπy), k = 1, 2, . . . ,

arising from the integral equation

g(y) =
∫ 1

0
K (x, y) f (x) dx, K (x, y) = min(x, y) − x y,

for the Brownian bridge [26]. The iid assumption is essential
for these results, e.g., our computations (to be reported) show
that a sufficiently strong negative correlation, by forcing fine
scale wrinkles in δC fluctuations, completely removes the
principal mode (half-wave).

C. Mean rank: Proof of Eq. (2) for weak signals

We prove Eq. (2) for N = 3 to distill the bare essentials and
the general case is treated in Eq. (B2). Following the above
machinery for order statistics, we introduce the pdf, fk and
cdf Fk . The three conditional pdfs for sk to map to each of
ranks r1,2,3 are then

f1(sk → r1|X = x) = (1 − Fi ) (1 − Fj ) fk,

f2(sk → r2|X = x) = [Fi (1 − Fj ) + (1 − Fi ) Fj] fk, (18)

f3(sk → r3|X = x) = Fi Fj fk.

These expressions for the mutually exclusive events are exact
and, as a check, sum to fk .

Next, let the iid noise rank uniformity be perturbed by a
weak signal as fk = f (x − εsk ) where ε � 1 and similarly for
Fk . (For ε = 0, P1 = P2 = P3 = 1/3.) From its Taylor series,
the O(ε) perturbation of pdf for expected mean rank is

d

dx

∣∣∣
ε=0

(r1 f1 + r2 f2 + r3 f3)

= −sk f ′(x) − 2skF (x) f ′(x) − (si + s j ) f (x)2.

To find the mean rank perturbation at tk , we integrate on
[−∞,∞] [37], appeal to vanishing boundary conditions on
f (x), and treat the second term by parts to obtain

2sk

∫ ∞

−∞
f (x)2 dx − (si + s j )

∫ ∞

−∞
f (x)2 dx

= 3[(sk − (si + s j + sk )/3]
∫ ∞

−∞
f (x)2 dx.

This can be rewritten as δ̂rk = 3ρ1 ŝk , a simple rearrangement
of Eq. (2) for N = 3, and one sees that the constant offset of ŝk
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amounts to a subtraction of the signal mean. A generalization
to all orders of the perturbed integral of Eq. (18) for arbitrary
N is given in Eq. (B2) of the Appendix.

D. Mean rank nonlinearity and iterative error reduction

Although weak signals are of most interest and Eq. (2)
works well in that limit, one needs the means to evaluate the
“weakness” of an unknown signal. To that end, the validity of
the linear approximation can be assessed by the next order per-
turbation in signal amplitude. From Eq. (B2) in the Appendix,
a cubic truncation assumes the form

〈rk〉 = ρ1 ε

[
N sk −

∑
i

si

]

− ρ3 ε3

3!

[
Ns3

k − 3s2
k

∑
i

si + 3sk

∑
i

s2
i −

∑
i

s3
i

]
+ O(ε5), (19)

where

ρ3 ≡
∫ ∞

−∞
[ f ′(x)]2 dx.

As earlier noted, since f (x) is a pdf, the units of ρ1 are those
inverse signal amplitude. Those of ρ3, are the inverse cube
of the amplitude. Correction terms to Eq. (19) up to O(ε7)
are illustrated in Fig. 4 of Appendix B 1. Equations (2) and
(19) apply “as is” to correlated noise and also to nonstationary
noise pdfs by computing

∫
f (x)2 dx as a function of a relevant

parameter and then averaging over the range of that parameter.
Whereas the signal plotted in Fig. 2 derives from the

M × M approximation of δC given in Eq. (8), we now ap-
proximate instead with only M × 1 lowest harmonics in rank,
ψ1(xk ). This is because signals in the time domain drive pre-
dominantly the first harmonic, with the excitation of higher
harmonics a function of moments of the noise pdf, f (x). On
the assumption that all of the amplitude ck,1 derives from
signal, removing that signal from the time series will simulta-
neously zero out both ck,1 and the signal-induced contribution
to higher harmonics, ck,(2,3,...). In addition, the amplitude of
that first rank harmonic is a nonlinear function of forcing
hence even after obtaining the M × 1 approximation of δC,
solving for P and using Eq. (2), for all but very weak signals,
the M harmonics ck,1, k = 1..M will retain significant signal.
It is hence necessary to iterate, accumulating successive con-
tributions to the signal.

The modified (scalar) form of Eq. (2) becomes

sk ≈ 1

N ρ1

[√
2

N

π cos(π/2N )

1 − cos(π/N )

M∑
i=1

εi
dψi(y′

k )

dx

]
, (20)

where

εi = −
N−1∑
j=1

N−1∑
k=1

ψi(y j ) ψ1(xk ) δC j,k i = 1, . . . M. (21)

As an iterative scheme, sk → s(n)
k and εi → ε

(n)
i with ε

(1)
i =

ck,1, that is, the modal coefficients of the initial δC. One then
subtracts the resulting mean rank prediction of s(1)

k from the

raw data and recomputes δC. In practice, after four or so
iterations, convergence in {ε(n)

i } as measured by

σ 2
ε = 1

M − 1

M∑
i−1

(εi − ε)2 (22)

saturates at about 10−4 [39].
In contrast to Fig. 2, for Fig. 3 the iteration is vital; the first

pass error is reduced by more than an order of magnitude.
Iteration is appropriate when a suitably weighted value of
σcubic, the standard deviation of the bracketed portion of the
cubic term in Eq. (19), is large in comparison to the noise con-
tribution noted below in Eq. (23). Further details are discussed
in Appendix B 3.

A second trial with this signal was run using: (i) correlated
Cauchy noise given by zi = (xi + xi+1)/2, and (ii) an incor-
rect value for ρ1, namely that for Gaussian noise. Iteration
converged to a solution with σ = 0.18 quite similar to that
plotted. This success illustrates two key points; first, noise
correlation does not alter that there remains a proportionality
between mean rank and signal and second, when iteration is
applicable, that errors in ρ1 are self-compensating.

The expected value of the noise standard deviation for this
M × 1 approach can be approximated as

σnoise ∼ 1√
12ρ1

1√
n

[√
M

N
− 0.1410√

N
+ O

(
1

N

)]
, (23)

where M is the order of the Fourier expansion. This takes
the place of Eq. (3). The condition for successful extraction
of a weak signal for small n is that the needed number of
harmonics M for the signal is a small fraction of N . To the
best of our knowledge, for this mixed regime of moderate n
and M with arbitrary noise, there is no method that can rival
the accuracy exhibited here.

IV. CONCLUDING REMARKS

The main theme of this paper is that departures from iid
white noise are identified as “signals.” To gauge such de-
partures we began by noting that the ensemble limit of the
noise-generated rank-time probability distribution for any N
point sequence is uniform and, in consequence, the deviation
cumulative distribution function δC vanishes. We then estab-
lish the needed benchmarks for expected sample variability
with finite data sets, replacing our previously purely com-
putational singular value results in Ref. [15] by far deeper
analytical results, including an exact distribution-independent
form for the discrete covariance matrix of cumulative distribu-
tions for iid noise, whether of discrete Eq. (4) or continuous
Eq. (17) origin, and the exact accompanying eigenvalues and
eigenvectors for noise-induced fluctuations about the equilib-
rium state.

We also prove that mean rank from an average across
jointly indexed series of noisy data, tracks an arbitrary un-
derlying weak signal via the simple, leading order, relation
Eq. (2) for all stationary noise distributions. An asymptotic ex-
pansion of this relation in Eqs. (19) and (B2) supplies precise
meaning to signal “weakness.” When nonlinear terms become
significant, Eq. (2) becomes an iterative scheme.
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Figures 1– 3 and 6 illustrate the successful extraction of
(presumedly) deterministic signals, both weak and strong,
embedded in arbitrary iid noise, where other methods are of
little or no avail. Not only do we extract unknown signals
for small n, as in Fig. 3, but even single trials, as in Fig. 2,
constituting perhaps the greatest advance of this paper. The
reason for the success with n = 1 is that the mean rank utilizes
both cross-track information (N) and along-track (n), thus
feasible when the latter is unavailable. A devil’s advocate
might argue that, in lieu of cross-track coupling, one can also
form a local running mean (or median) in the along-track
direction. But that window makes no use of the universal,
global, characterization of expected fluctuations for stationary
white noise.

Taking a more general view, noise other than iid itself
constitutes a “signal,” reflected in a structured δC improba-
ble under iid sampling variability. Perhaps the most common
departure is colored, i.e., correlated, noise which, though sta-
tionary, has a spectrum that is not flat. That “signal” is not
expressed in mean rank, which is still zero (in the limit), but
in the mean second moment of rank. Positive correlation has
in addition a systematic effect mainly on the eigenvalues of the
covariance matrix, whereas negative correlation is more dra-
matically seen in a sharp phase transition with a vanishing of
the lowest mode of the covariance matrix. Similarly, uncorre-
lated but nonstationary noise, where the variance is a function
of time, also leaves mean rank zero, with the signal again in
the second moment of rank. In a variety of problems, noise
of either character—colored or nonstationary—is present but
there is also a deterministic signal derived from mean rank
that is of principal interest. We have noted for such cases that,
in application of Eq. (2), for colored noise ρ1 is unaffected
and, for nonstationary noise, ρ1 is modified by averaging over
time.

Still farther from these generalized forms of noise, chaos
all the more departs from norms in Eq. (13) for sample
variability. Nonetheless, for discrete examples such as the
logistic and tent maps, chaos can maintain mixing of rank
with sufficient uniformity that one can extract lower frequency
signals buried within chaos based on the mean rank relation,
proceeding as in Sec. III D, illustrating the wider applica-
bility of Eq. (2). The proposed method can also be used to
test random number generators, e.g., Refs. [40,41], quantify
instrumental errors, detect over-fitting (when the δC residual
suggests anti-correlation), etc.
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APPENDIX A: BRIEF OVERVIEW

Below we address technical but important issues such as
a more detailed characterization of the expansion for mean
rank and its limitations, the relation of mean rank to arithmetic
mean and median, error analysis that accounts for nonlinear-
ity and simultaneously gives guidance on when iteration is
needed, and extension of the idea of mean rank to the second
moment, employing symmetries in rank-time plane. We also

give a brief illustration of other instances of the discrete co-
variance matrix as well as brief consideration of the kurtosis
deficit that is present for finite N in the pdfs for Fourier modes
of δC.

APPENDIX B: ON MEAN RANK

1. Nonlinearity

Proof of the relation between mean rank and signal is
outlined in the main text for N = 3 and here we describe it
for a general N and in more detail. We begin with

Pn,k (εs) =
∫ b

a
dx f (x − εsn)

(K−1
k−1 )∑
j=1

×
k−1∏
n=1

F
(
x − εsτ j,n

) K−k∏
m=1

[
1 − F

(
x − εsτ̃ j,m

)]
,

(B1)

where f (x) and F (x) are probability density and cumulative
distributions, respectively, on the interval [a, b]. Here

(K−1
k−1

)
is

the binomial coefficient, τ is a matrix whose rows contain all
possible choices of k − 1 elements from the set {1, 2, . . . , K}n

and

{τ̃ j,m} ≡ {1, 2, . . . , K}n\{τ j,n},
where \ denotes the relative complement (set exclusion).

In contrast to the earlier, strictly formal, appearance of
Eq. (B1) as Eq. (B1) in Ref. [15] (with a slightly different
notation), it is used here to obtain an expansion for mean rank.
Using Eq. (B1), the ensemble mean rank is

〈rn〉 =
N∑

k=1

k Pn,k (εs)

= N + 1

2
−

∞∑
j=1

(−1) j ε2 j−1ρ2 j−1

(2 j − 1)!

2 j−1∑
i=0

(
2 j − 1

i

)

× (−1)i s2 j−1−i
n

N∑
k=1

si
k, (B2)

where

ρ2 j−1 =
∫ b

a
dx

(
d j−1 f

dx j−1

)2

.

Recall that, being a pdf, f (x) has units so that ρ1 has units
of the inverse signal amplitude, ρ3 units of inverse cube of
the amplitude, etc. The simplest application of this result is
truncation at O(ε3), as in Eq. (19), by means of which we
can precisely define what is meant in this work by a “weak
signal.” For example, in Fig. 4(a), we chose (as suggested
by a referee), two Heaviside functions, H (x) as for H (x)/2,
differing by a factor of two in the step height. This example
is ideally suited to separate magnitude and shape recovery. As
Fig. 4(a) shows, the signals are well approximated by Eq. (2)
and so the leading order weak signal approximation appears
to hold. To check this more precisely we evaluate the cubic
correction in Eq. (19).
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FIG. 4. Tests of expansion Eqs. (19) and (B2). (a) The test signals
are step functions y(x) = H (x) and y(x) = H (x)/2, captured well
by the leading order estimate Eq. (2), but each with a small gap
caused by rank nonlinearity. The lesser amplitude deficit, ≈10−3

for H (x)/2, is barely discernible, indicating validity of the “weak
signal” (small perturbation) regime for this σ = 2 Gaussian noise
(see text). Inset: a sample time series gives a visual sense of the
weak signal relative to noise. (b) Quartet: The signal, sinc(x) on
x = [−2, 2] is buried in additive Cauchy noise [38] (x0 = 0, γ = 1)
with (N = 24, n = 2 × 107). Solid line is the residual Monte Carlo
δr, progressively decomposed. Dashed line is the analytic correction
from Eq. (B2) removed at each order in ε. Along-track sorting
confers a global character to rank, exemplified by the O(ε3) term
in Eq. (19) with nonlocal quadratic and cubic sums, while the linear
sum over si reflects rank invariance to a constant offset.

Reading off values from Fig. 4(a), we set ε = 1 and let
sk absorb both form and amplitude information. Removing
the mean leaves odd step functions, hence the sums with odd
powers of si vanish by antisymmetry. This leaves only the sin-

gle sum
∑

s2
i in Eq. (19) which, as the summand is constant,

reduces to N s2
k so that the second bracketed term is 4Ns3

k .
Dividing through by Nρ1, yields a refined mean rank signal
estimate, with a correction term of −4ρ3s3

k/(3!ρ1). While for a
general function, the form also influences the correction term,
the main operative factors that define a weak signal are thus
(i) the cube of the signal amplitude, scaled by, (ii) a pro-
portionality factor ρ3/ρ1 reflecting a subtle characterization
of the background noise. For the Gaussian pdf with σ = 2
in particular, ρ3 = (32

√
π )−1 and using sk = 1/4 for the

lesser step function H (x)/2 yields a correction of −1/768 ≈
−0.00130 for x > 0, and the opposite signed correction for
x < 0. This can be checked by averaging the exact signal
less the numerical mean rank signal estimator. On accounting
for the sign change at x = 0, the numerical average of the
data over [−1, 1] gives −0.000125, in excellent agreement
with the analytic cubic correction. The slight difference is
due mainly to noise in the numerical mean rank, as the suc-
ceeding quintic correction is only 6.1 × 10−6. For the larger
step function, a prediction immediately follows of −8/768 =
−1/96 = −0.0104, which also compares well to the corre-
sponding numerical mean of −0.0101.

The exact result from (B2) for arbitrary signal strength of
a zero mean step function in Gaussian noise of variance σ 2 is

δr
Nρ1

=
√

π σ

2
erf

[
α (H (x) − 1/2)

σ

]
,

where the cdf of the noise recurs. One sees that judging a
weak signal by the traditional signal-to-noise ratio has little
relevance.

The infinite series in Eq. (B2) holds for many common C∞
pdfs whose support is R. Convergence of that series depends
on both the signal sk and the noise, through ρ2 j−1. For ex-
ample, it converges for almost all weak signals for Gaussian
and logistic pdfs but is always asymptotic for log-normal
noise owing to a controlling factor for ρ2 j−1 that grows like
exp[(2 j − 1)2σ 2/4]. In Fig. 4(b), with Cauchy noise as an
example, the terms in Eq. (B2) up to O(ε7) are shown. A
second calculation (not shown) gave similar agreement up to
and including O(ε11) for a signal in Gaussian noise.

For pdfs with finite or semi-infinite support, Eq. (B2) as
written can break down at an order that depends on properties
of each particular f (x). In all cases the first term in the ex-
pansion holds. But while, e.g., a uniform distribution on [0,1]
formally yields ρ3 = 0, there is nonetheless a cubic correction
to rank whose form in terms of s is still that given in Eq. (19).
However, the expression for the coefficient in place of ρ3 is
not yet known.

2. Relation to other averages

Color shading in the table of Fig. 5 is used to denote the
smallest factor controlling convergence as n−1/2. Blue denotes
unconditional dominance, e.g., for Gaussian noise, the arith-
metic mean is best for all σ while for noise with a uniform
distribution, mean rank and arithmetic mean are tied. Green
indicates dominance over a broad, range of parameter(s) in the
pdf. Specifically: for a χ -square distribution mean rank is best
out to k = 33. For a β distribution, mean rank and arithmetic
mean divide the (α, β ) plane between them, with a wedge
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FIG. 5. Convergence table: Mean rank wins. The 1/
√

n rate of decrease in sampling error is a broadly applicable result. While perhaps
most familiar from characterizing accuracy of a sample mean, it is equally relevant here for addressing random error in signal extraction. For
each of the twelve pdfs we list ρ1, the relevant factor in Eq. (3) for mean rank error, the numerator σ (μ1) for arithmetic mean error, and the
numerator σ (μ2) for median error. The color shading shows which of the three averages converges fastest, with blue denoting an unconditional
advantage while green indicates conditional restrictions on parameters in the pdf. We note that the earliest invocation of this for mean rank was
Pitman’s characterization of the efficiency of the rank spread test in Ref. [24].

symmetrically disposed about α = β where the arithmetic
mean converges faster, and the complementary region is mean
rank. There is in addition a technical point: the expression
given in the table for mean rank is limited to (α, β ) � 1.
Outside of that region, e.g., along the line α = β on [0,1],
the governing coefficient remains well defined through some
form of regularization yet to be explained. For the Student dis-
tribution, one could also shade the arithmetic mean in green.
Here is a triple exchange. For ν on [0,1.81] (including Cauchy
noise) the median is best. Then for [1.81,61.1], mean rank.
And finally, recovering the limiting case of Gaussian noise,
on [61.1,∞], it is arithmetic mean.

The random errors in the table are due to noise. As shown
above in Eq. (19) for mean rank, there are in addition sys-
tematic nonlinear corrections, commencing with cubic terms.
When the leading (linear) mean rank signal estimate is dom-
inated by random error, this precludes trying to make a cubic
correction. But an example here, and also in the main paper,
illustrate when and how that nonlinear error can be eliminated.
For median and arithmetic mean, no such consideration arises.

3. Error analysis: Noise + nonlinearity

Errors owing to Eq. (19) and the standard error Eq. (3) arise
from opposing tendencies with respect to signal amplitude.
Characterizing a general signal as ε s where s itself is normal-

ized in some convenient fashion and the scale varied with ε,
the random noise errors diminish with increasing ε while the
cubic deviations increase. The specific form of the error E (in
units of signal, 1/ρ1) is given by

E (ε, n) = 1√
12 ρ1

√
1

ε2 n
+ ρ2

3 ε4

3N2
σ 2

cubic, (B3)

where σcubic is the standard deviation of the bracketed portion
of the cubic term in Eq. (19). Note that σ 2

cubic is a rational
function of N which, to leading order, is O(N2). This cancels
against the N2 dependence of the denominator. For fixed ε,
the standard deviation E (ε, n) at first decreases sensibly with
increasing n but ultimately saturates at a level controlled by
the cubic term.

Further demonstration of mean rank-based signal extrac-
tion is seen in Fig. 6, where a small amplitude fractal, nowhere
differentiable, Weierstrass function is faithfully recovered,
confirming that there is no implicit smoothness, or other, con-
straint on the form of the signal that can be extracted by mean
rank. Log-normal noise was used with (μn = 0, σn = 4/3).
Applications may include fractional Brownian motion, etc.

The plot shows extraction of the original signal s itself. The
imposed signal was εs with ε = 0.164. A companion value of
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FIG. 6. A fractal signal retrieval from log-normal noise. The
signal is the Weierstrass function with (a = 0.99, b = 6), of Haus-
dorff dimension 1.9944, and sampled at N = 256 points on the
unit interval. The noise is log-normal with pdf parameters (μn =
0, σn = 4/3). The mean rank is an average over n = 4.27 × 106 time
series. Magnitude of the noise notwithstanding, influence of the cubic
nonlinearity can be seen in comparing the one (red) and two step
(black) computations of mean rank at the highest peaks. The former
has σ = 0.00301 while the latter with σ = 0.00253 is in excellent
accord with a pure noise error estimate of 0.00258. The median error
in the inset panel is seen to be about twice as large as the pure
noise rank error, borne out both empirically with σ = 0.00481 and
on the basis of the standard error prediction from the Pitman table of
σ = 0.00493.

n = 4.27 × 106 was used. For this dimensionless noise,

ρ1 = exp σ 2
n /4

2σn
√

π
= 3 exp 4/9

8
√

π
= 0.3299,

ρ3 = exp
(
9σ 2

n /4
) (

σ 2
n + 2

)
8σ 3

n

√
π

= 51 exp(4)

256
√

π
= 6.1366,

and from Eq. (3) the predicted standard error for pure noise
(incorporating a factor of 1/ε) is 0.00258. With σcubic =
7.9267, the estimated cubic error contribution is identical.
(The value of n was chosen purposely to bring this about.)

The predicted combined error in Eq. (B3) is hence a factor
of

√
2 larger, or σ = 0.00365. The actual error after one step

was σ = 0.00301, i.e., less than expected. However, ρ5 =
2.13 × 104, leading to a quintic term in Eq. (19) opposite
in sign, and twice as large as, the cubic. This is indicative
of the asymptotic character of the expansion for log-normal
noise and so one should not be surprised that a more precise
estimate for nonlinear error is problematic. In any event, with
just one further iteration, the standard deviation is reduced to
σ = 0.00253, almost exactly the predicted value noted above
for pure noise with a mean rank estimator.

For comparison in the inset, we show the error for the
signal estimate based on the median. The indicated tabular
value of the factor for the median standard error in Fig. 5
predicts 0.00493, in close conformity with the actual numer-
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FIG. 7. Running test of significance: A running log of the ratio of
the cumulative sum of the squares of the expansion coefficients c j,1

to the cumulative sum of the square of the corresponding singular
values derived from the covariance matrix of δC for white noise. The
running ensemble limit is unity. As seen here, the sharp rise at the
end indicates the departure from iid noise, albeit only marginally
so for Fig. 2 (main text). The spike gives guidance on a suitable
choice of M in signal extraction at moderate n (here n = 1 and 4,
respectively). Black dashed lines show the 5% and 95% confidence
limits for pure noise. In passing one notes the noise for Fig. 2 is
as “middle of the road” as possible while Fig. 3 (main text) has a
higher noise background. This contrast, which has nothing to do with
respective signal amplitudes, though clear here, cannot be inferred
by comparing plots of the raw data.

ical value of 0.00481. And the pointwise error of the iterated
rank solution is indeed seen to be about one-half that for the
median-based extraction.

That all the nonlinearity has been accounted for is sug-
gested on noting that the correlation of the one-step residual
with the original signal is −0.49 (the negative sign pairs with
that of the cubic correction) while after two steps that residual
correlation is 0.05. Interestingly, the correlation of the final
mean rank residual and median residual is 0.84, suggesting
an intriguing and unexpected relation between global (along
track) rank and strictly local (cross track) median methods.

We note that another approach to signal extraction can be
suggested here which has, for unclear reasons, never achieved
much prominence. Remarkable efforts have gone into the
derivation of countless special purpose algorithms for param-
eter estimation. In particular we note the more than 200-page
compendium of tables [42]. As an example, for the Pareto
distribution, defined by

f (x; λ, α) = α λα

xα+1
,

a particular parameter estimation algorithm appears as Ex. 2
of Ref. [42]. Namely, denoting X = (X1, X2, . . . , Xn) where
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TABLE I. Comparison of α(N ) for various permutation classes. Third column shows the elements in the set. The final column, Np, shows
the number of permutations. The first four examples are sampling without replacement. By design to map the statistics of the K-S test to
a discrete random walk, the xi for the Gnedenko-Koroliuk case sum to zero, i.e., the “Brownian bridge” is automatically enforced. The
succeeding generalized case simply requires a fixed subtraction of −k/(2N − k). The next two cases are sampling with replacement; a fair
two-sided coin and fair N-sided die. Allowed permutations for the two-sided coin range from all heads to all tails, with the Genedenko-Koroliuk
and generalized Gnendenko families both embedded within. For completeness, the final case recasts Eq. (17) also within this same framework
of a universal covariance matrix. (For convenience we make the variable change n + 1 → N .) Explicit combinatorial arguments for α(N ) in
these cases differ greatly in details and none resembles the reasoning in Sec. III B for order statistics. But the common theme is that each final
covariance matrix differs only by a simple factor from �∗ contingent—in the discrete cases—on the key assumption that all permutations in
each class are equally likely. Thus, the ratio of any two elements of the covariance matrix is universal.

Scheme α(N ) {x} Np

N IN 1 x1 = 1 x2,3,...N = 0 N
Rank N+1

12 xk = k k = 1..N N!
Gnedenko-Koroliuk 1

2N−1 x1,2,...N = 1 x(N+1),...2N = −1 (2N )!
(N!)2

Generalized Gnedenko 4N (N−k)
(2N−k)2 (2N−k−1)

x1,2,...N = 1 x(N+1),...2N−k = −1 (2N−k)!
N!(N−k)!

Coin toss 1
N x1 = 1, x2 = −1 2N

N-sided dice N2−1
12N xk = k k = 1..N NN

Order statistics 1
N2 (N+1)

R ∞

Xi ∼ f (x; λ, α) we let X(1) ≡ mini Xi, setting

Sn =
n∑

i=1

ln(X1/X(1) ) and Tn = X(1)

[
1 − Sn

n(n − 1)

]
.

Then Tn → λ. In comparison, the median approaches α
√

2 λ.
Though presented as an exercise in parameter estimation, this
same algorithm is equally applicable to signal estimation. For
example with (λ = 3/2, α = 2) the standard deviation as a
signal estimator scales as

0.7474

n
+ 0.7009

n2
+ O(n−3), (B4)

standing in sharp contrast to the convergence of the mean rank
for signal extraction, which scales as

5
√

3

16

1

n1/2
+ O(n−1).

(The leading coefficient for median is 3/2
√

2.) Clearly,
Eq. (B4) is preferable, with a rate of convergence beyond
the typical n−1/2. At the same time, it works for precisely
one noise pdf, Pareto. We can thus distinguish very general
methods of arithmetic mean, median, and mean rank from
special purpose, and sometimes very potent, means of signal
extraction for large n. But mean rank stands out among all
these competitors because of its effective extension to n = 1.

4. Rank and symmetries

Here we link the rank Eq. (2) developed here with earlier
results on symmetries of δC [16]. These links open up new
vistas and, in particular, motivate another new result for the
mean rank as sketched below.

First we note for the discussion on an M × 1 approximation
of δC that one might like some guidance on choosing M. For

this purpose, the restricted set of singular values

λ j,1 = 1

2N
√

N − 1

√
1

[1 − cos(π/N )] [1 − cos( jπ/N )]
(B5)

is helpful. In Fig. 7, we plot the log of

Sk =
∑N−1

j=N−k c2
j,1∑N−1

j=N−k λ2
j,1

, k = 1, . . . , (N − 1).

Note the inverted order of summation: from smallest to
largest. In the ensemble limit over many realizations of the
{c j,1} with pure noise, S j = 1 for all j. The distribution of S j

is a function of j, approximately Gaussian in the middle, but
exponential at the ends. This is taken into account with the
dashed lines, which show the 5% and 95% confidence limits.
The very clear spike at the right hand side gives the guidance
needed to choose a sensible value of M for both Figs. 2 and 3
in the main text: the base of the very sharp rise.

As presented in the main body of the paper, a suitable basis
for signal extraction is Eq. (20) from which one can now
see the analytic basis of Figs. 6(a) and 6(b) in Ref. [15]. In
particular the mode ψn(y j ) ψm(xk ) is excited by forcing of
the form dψn(y′

j )/dx provided m is odd, i.e., even in rank
(horizontal) and either even or odd in time. This explains the
contribution from group symmetries D2, D4, and C(y)

1 . What
then of the other two point groups?

In a striking parallel to Eq. (19), we conjecture (with ex-
tensive numerical evidence) that

δσ̂ ≡ 1

N2 ν1
δr̂ ◦ r ≈ δσ, (B6)

where δσ̂ is the rank-based estimate for a weak signal in
a form of nonstationary standard deviation (e.g., caused by
multiplicative noise [3]) and δr̂ ◦ r is the deviation of mean
square rank from uniformity (with ◦ denoting the Hadamard
product). As with s previously, so too here δσ represents
variation relative to the mean. The constant ν1 is given by an
integral whose dependence on f (x) is still to be determined.
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Note that contributions to Eq. (B6) derive from the C(x)
1 and

R2 group components of δC, cleanly divided from the D2,4

and C(y)
1 components that drive the nonstationary mean. Not

surprisingly, higher rank moments similarly pair with nonsta-
tionary skewness, kurtosis, etc., of the raw data.

APPENDIX C: α(N) FOR COVARIANCE MATRICES

See Table I for six discrete examples—sampling with and
without replacement—that give a covariance matrix differing
only in the prefactor α(N ) from the universal form �∗ given
by Eq. (4) of the main text.

The key defining property of all these discrete examples is
that each of the vector spaces is invariant to the interchange
of any possible pair of entries ( j, k) applied to all members in
the space.

APPENDIX D: KURTOSIS CORRECTIONS FOR FINITE N

Departure of modal pdfs from Gaussian form for finite
N is important when devising KS-type tests of pure noise.
The derivation of the covariance matrix supplies the elements
of U and singular values σ (whose squares are pure noise
variances), but about the pdf for normalized Fourier amplitude
of mode k (the kth row of V) one can infer only that it
is zero-mean, symmetric, and has unit variance. A suitable
representation for the 1D problem is then

f (x) ∼ exp

(
J∑

j=0

c j (N )x2 j

)
. (D1)

TABLE II. Sample expansion coefficients for Eq. (D1). For a
Gaussian distribution J = 1, c0 = −1/2 log(2π ) = −0.9189, and
c1 = −1/2. Entries here show the departure from this. With even N
the first column, c(1)

j , applies for all k. The negative definite coeffi-
cients show faster decay than a Gaussian, consistent with a kurtosis
of κ = 2.9152 vs. κ = 3 for a normal distribution. As noted in the
text, the second column, c(2)

j applies to a single mode, k = (N + 1)/2
when N is odd. Here the kurtosis deficit is yet more marked at
κ = 2.8382. For the listed values of c(1)

j ,
∫ ∞

−∞ f (x) dx = 1.000003
and σ = 1.00006 compared to exact values of unity for each. Com-
parable accuracy obtains for c(2)

J .

j c(1)
j (N = 32) c(2)

j (N = 33)

0 −0.93029000 −0.94023252
1 −0.47720819 −0.45901106
2 −0.37949305 × 10−2 −0.56800443 × 10−2

3 −0.15309200 × 10−4 −0.229661486 × 10−3

4 O(10−8) O(10−7)

For N → ∞ we recover the Gaussian result with c0 =
−1/2 log(2π ) = −0.9189, c1 = −1/2, and remaining c j =
0. Departure from these values is shown in Table II for N =
32.

However, for odd N , an idiosyncrasy arises in applying
Eq. (D1) for the median Fourier mode (N + 1)/2, whose
entries are √

2

N + 1
[1, 0,−1, 0, 1, . . .]. (D2)

For this single mode a distinct expansion applies, as given by
the coefficients c(2)

j in Table II. Note that limN→∞ c0(N ) →
log(1/

√
2π ), c1 → −1/2, and all higher coefficients vanish,

i.e., one recovers the standard zero mean unit variance normal
distribution. The 2D extension for δC is straightforward.

[1] A. Van der Ziel, Noise in Measurements (Wiley, Hoboken, NJ,
1976).

[2] P. R. Bevington and D. K. Robinson, Data Reduction and Error
Analysis for the Physical Sciences (McGraw-Hill, New York,
1992).

[3] R. Frieden, Probability, Statistical Optics, and Data Testing: A
Problem Solving Approach, 3rd ed., Vol. 10 (Springer, Berlin,
2001).

[4] R. N. McDonough and A. D. Whalen, Detection of Signals in
Noise (Academic Press, San Diego, CA, 1995).

[5] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes, 3rd Edition: The Art of Sci-
entific Computing (Cambridge University Press, New York,
2007).

[6] L. L. Scharf, Statistical Signal Processing (Addison-Wesley
Reading, MA, 1991), Vol. 98.

[7] P. L. Krapivsky, S. Redner, and E. Ben-Naim, A Kinetic View
of Statistical Physics (Cambridge University Press, Cambridge,
UK, 2010).

[8] J. Klafter and I. M. Sokolov, First Steps in Random Walks: From
Tools to Applications (Oxford University Press, Oxford, UK,
2011).

[9] M. Manceau, K. Y. Spasibko, G. Leuchs, R. Filip, and M. V.
Chekhova, Phys. Rev. Lett. 123, 123606 (2019).

[10] G. Williams, B. Schäfer, and C. Beck, Phys. Rev. Res. 2,
013019 (2020).

[11] R. C. Dalang, T. Humeau et al., Ann. Prob. 45, 4389 (2017).
[12] T. Srokowski, Eur. Phys. J. B 85, 65 (2012).
[13] D. K. C. MacDonald, Noise and Fluctuations: An Introduction

(Courier Corporation, North Chelmsford, MA, 2006).
[14] R. Wittje, Phys. Today 73, 42 (2020).
[15] G. Ierley and A. Kostinski, Phys. Rev. X 9, 031039 (2019).
[16] G. Ierley and A. Kostinski, Phys. Rev. E 102, 032221 (2020).
[17] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric

Statistical Methods (John Wiley & Sons, New York, 2013), Vol.
751.

[18] E. L. Lehmann and H. J. D’Abrera, Nonparametrics: Statistical
Methods Based on Ranks. (Holden-Day, San Francisco, 1975).

[19] S. M. Kay, Fundamentals of Statistical Signal Processing Vol-
ume I: Estimation Theory; Volume II: Detection Theory; Volume
III: Practical Algorithm Development. (Prentice-Hall, Upper
Saddle River, NJ, 1998).

[20] A. Papoulis, Probability, Random Variables, and Stochastic
Processes (McGraw-Hill, New York, 1984).

022130-13

https://doi.org/10.1103/PhysRevLett.123.123606
https://doi.org/10.1103/PhysRevResearch.2.013019
https://doi.org/10.1214/16-AOP1168
https://doi.org/10.1140/epjb/e2012-30003-9
https://doi.org/10.1063/PT.3.4409
https://doi.org/10.1103/PhysRevX.9.031039
https://doi.org/10.1103/PhysRevE.102.032221


GLENN IERLEY AND ALEX KOSTINSKI PHYSICAL REVIEW E 103, 022130 (2021)

[21] The arithmetic mean is not suitable also when the data traces
bear differing units, e.g, spaceborne radars, lidars and radiome-
ters observing the same storm.

[22] S. M. Stigler, The seven pillars of statistical wisdom (Harvard
University Press, Cambridge, MA, 2016).

[23] H. Gellibrand, A Discourse Mathematical on the Varia-
tion of the Magneticall Needle, Together with Its Ad-
mirable Diminution Lately Discovered (William Jones, London,
1635).

[24] E. G. J. Pitman, Notes on Non-Parametric Statistical Inference,
Institute of Statistics Mimeo Series, vol. 27 (North Carolina
State University, Raleigh NC, 1949), p. 56.

[25] P. J. Bickel and K. A. Doksum, Mathematical Statistics: Basic
Ideas and Selected Topics (Simon and Schuster, NY, 1977),
pp. 352–353.

[26] I. Gikhman, A. Skorokhod, and M. Yadrenko, Probability The-
ory and Mathematical Statistics (Vyshcha Shkola, in Russian,
Kiev, 1988).

[27] C.-Z. Gao, C.-B. Zhang, C.-X. Yu, X.-F. Xu, S.-C. Wang, C.
Yang, Z.-Y. Hong, Z.-F. Fan, and P. Wang, Phys. Rev. E 102,
022111 (2020).

[28] R. Chicheportiche and J.-P. Bouchaud, Phys. Rev. E 86, 041115
(2012).

[29] A. Renyi, Probability Theory (Dover, Mineola, NY,
2007).

[30] Y. Dodge and D. Commenges, The Oxford Dictionary of Statis-
tical Terms (Oxford University Press on Demand, Oxford, UK,
2006).

[31] For notational economy, we use C to denote the ensemble cdf
as well as the empirical one.

[32] S. Ross, A First Course in Probability (Prentice-Hall, Upper
Saddle River, NJ, 2009).

[33] The pdf for Fourier amplitudes of mode k (the kth row of V)
tends to a zero-mean unit variance normal distribution only in
the limit as N → ∞, as documented in Appendix D.

[34] V. Voinov and M. Nikulin, Unbiased Estimators and Their
Applications (Nauka, Moscow, 1989), in Russian.

[35] W. Feller, An Introduction to Probability Theory and its Appli-
cations V.2 (Wiley, Hoboken, NJ, 1966), p. 38.

[36] M. B. Priestley, Spectral analysis and time series (Academic
Press, San Diego, CA, 1981).

[37] Any pdf defined on a compact domain can be simply padded
with zeros.

[38] S. R. K. Vadali, P. Ray, S. Mula, and P. K. Varshney, IEEE
Trans. Commun. 65, 1061 (2017).

[39] While one might try to seek a zero of the vector-valued function
ε, owing to the discreteness of rank, no signal will exist that can
exactly zero each component. However, the value of σε can be
minimized with the Nelder-Mead algorithm, which allows for
the discrete structure induced by rank. This was done for Fig. 3
with a mild improvement to σε = 0.001. But in practice, simple
iteration suffices.

[40] M. Herrero-Collantes and J. C. Garcia-Escartin, Rev. Mod.
Phys. 89, 015004 (2017).

[41] C. Gabriel, C. Wittmann, D. Sych, R. Dong, W. Mauerer, U. L.
Andersen, C. Marquardt, and G. Leuchs, Nat. Photonics 4, 711
(2010).

[42] V. Voinov and M. Nikulin, Unbiased Estimators and Their
Applications: Volume 1: Univariate Case (Springer Science &
Business Media, Berlin, 2012), Vol. 263.

022130-14

https://doi.org/10.1103/PhysRevE.102.022111
https://doi.org/10.1103/PhysRevE.86.041115
https://doi.org/10.1109/TCOMM.2016.2647599
https://doi.org/10.1103/RevModPhys.89.015004
https://doi.org/10.1038/nphoton.2010.197

