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Formation of vocabularies in a decentralized graph-based approach to human language
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Zipf’s law establishes a scaling behavior for word frequencies in large text corpora. The appearance of Zipfian
properties in vocabularies (viewed as an intermediate phase between referentially useless one-word systems
and one-to-one word-meaning vocabularies) has been previously explained as an optimization problem for the
interests of speakers and hearers. Remarkably, humanlike vocabularies can be viewed also as bipartite graphs.
Thus, the aim here is double: within a bipartite-graph approach to human vocabularies, to propose a decentralized
language game model for the formation of Zipfian properties. To do this, we define a language game in which
a population of artificial agents is involved in idealized linguistic interactions. Numerical simulations show the
appearance of a drastic transition from an initially disordered state towards three kinds of vocabularies. Our
results open ways to study Zipfian properties in language, reconciling models seeing communication as a global
minima of information entropic energies and models focused on self-organization.
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I. INTRODUCTION

This paper arises from two intriguing questions about
human language. The first question is: To what extent can
language, and also language evolution, be viewed as a graph-
theoretical problem? Language is an amazing example of a
system of interrelated units at different organization scales.
Several recent works have indeed stressed the fact that human
language can be viewed as a (complex) network of interact-
ing parts [1–4]. Within the graph-based approach to human
language, one may think of word-meaning mappings (that is,
vocabularies) as bipartite graphs, formed by two disjoint sets:
words and meanings [3].

The second question is: What is the nature of the lan-
guage evolution process that affects the shape of graph-based
language representations? To answer this question, we as-
sume that human communication is constrained (at least)
by two forces [3]: one that pushes towards communicative
success and another that faces the trade-off between speaker
and hearer efforts. The first force involves simpler decen-
tralized models of linguistic interactions within populations
of artificial agents, endowed with minimal human cognitive
features, negotiating pieces of a common language: the so-
called language games [5–8]. In the simplest language game,
the naming game [9,10], at a discrete time step, a pair of
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players (typically one speaker and one hearer) interacts to-
wards agreement on word-meaning associations.

Next, we also consider the communication cost to es-
tablish word-meaning mappings. Zipf referred to the lexical
trade-off between two competing pressures, ambiguity and
memory, as the least effort principle [11,12]: speakers prefer
to minimize memory costs, whereas hearers prefer to min-
imize disambiguation costs. As remarked by several works,
an interesting proposal has stated that humanlike vocabularies
appear as a phase transition at a critical stage for both com-
peting pressures [13–17]. The appearance of a drastic stage
of competing pressures can be understood moreover as an
explanation for the empirical Zipf’s law, which establishes
a dichotomy between low-memory words (such as the word
“the”) and low-ambiguity words (such as the word “cat”).
Within a statistical point of view, text corpora evidence strong
scaling properties in word frequencies [18–25]. With this in
mind, in our work, the word Zipfian must be considered as
a sign of an intermediate word-meaning mapping between
referentially useless one-word systems and one-to-one word-
meaning vocabularies.

The main aim is to address a decentralized approach (based
on a previous proposal of two authors of this paper [26]) to
the emergence of Zipfian properties in a humanlike language,
while players communicate with each other using bipartite
word-meaning mappings. To our knowledge, within the evo-
lutionary linguistics framework (see, for example, [10]) there
is a lack of studies about least-effort communications in
decentralized accounts. To structurally characterize changes
in the system, our methodology is mainly based on the
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description of vocabularies, arising from both classical sta-
tistical mechanics tools and graph-mining techniques. We run
numerical simulations over simple population topologies. We
apply graph-mining techniques, particularly a clustering no-
tion for bipartite graphs [28].

II. THE MODEL

A. Key concepts on (bipartite) graphs

A bipartite graph is a triple B = (�,⊥, E ), where � and
⊥ are two mutually disjoint set of nodes, and E ⊆ � × ⊥ is
the set of edges of the graph. Here, � represents the set of
word nodes, whereas ⊥ represents the set of meaning nodes.
We remark that edges only exist between word nodes and
meaning nodes. A classical useful tool in graph theory is the
matrix representation of graphs. Here, we only consider the
adjacency matrix. Let us denote by A = (a)uv the adjacency
matrix for the (bipartite) graph B. From the bipartite sets �
and ⊥ representing, respectively, word and meaning nodes,
we define the rows of A as word nodes and the columns as
meaning nodes, where (a)uv = 1 if the word u is joined with
the meaning v, and 0 otherwise.

The neighbors of order 1 of u ∈ � are the nodes at distance
1: N (u) = {v ∈ ⊥ : uv ∈ E} (if u ∈ ⊥, the definition is anal-
ogous). Let us denote by N (N (u)) the set of nodes at distance
2 from u. The degree d (u) of the node u is simply defined
by d (u) = |N (u)|. We denote by dmax

W = maxw∈W d (w) the
maximum degree for word nodes (�). Analogously, dmax

M =
maxm∈M d (m) the maximum degree for meaning nodes (⊥).

In social networks, the notion of clustering captures the
fact that when there is an edge between two nodes (for exam-
ple, two individuals are friends), they probably have common
neighbors. With this, here the clustering becomes a simple
way to measure correlations between neighborhoods. Based
on this point of view, Ref. [28] proposed a clustering coeffi-
cient notion for bipartite graphs,

cc(u) =
∑

v∈N (N (u)) cc(u, v)

N (N (u))
, (1)

where cc(u, v) is a notion of clustering defined for pairs of
nodes (in the same set � or ⊥),

cc(u, v) = |N (u) ∩ N (v)|
|N (u) ∪ N (v)| . (2)

Interestingly, cc(u, v) captures the overlap between the neigh-
borhoods of u and v: if u and v do not share neighbors,
cc(u, v) = 0, and if they have the same neighborhood,
cc(u, v) = 1.

To give an overall overview of bipartite clustering for the
graph B, the average bipartite clustering reads

c(B) = 1

|�| + |⊥|
∑

u∈�∪⊥
cc(u). (3)

B. Basic elements of the language game

The language game is played by a finite population of
participants, P = {1, . . . , p}, sharing both a set of words, W =
{1, . . . ,N }, and a set of meanings, M = {1, . . . ,M}. Each
player k ∈ P is endowed with a graph-based word-meaning

mapping, Bk = (�k,⊥k, Ek ). In our case, Bk is a bipartite
graph with two disjoint sets: �k ⊆ W (word nodes) and ⊥k ⊆
M (meaning nodes). Each player k ∈ P only knows its own
graph Bk .

Two technical terms are introduced. First, we say that a
player k ∈ P knows the word w ∈ W if w ∈ �k . Clearly, this
definition is equivalent to the existence of the edge wm ∈ Ek ,
for some m ∈ ⊥k . Second, the ambiguity of the word w, de-
noted a(w), is defined as its node degree d (w).

C. Language game rules

The dynamics of the language game is based on pairwise
speaker-hearer interactions at discrete time steps. At t � 0,
a pair of players is selected uniformly at random: one plays
the role of speaker s and the other plays the role of hearer
h, where s, h ∈ P. Each speaker-hearer communicative inter-
action is defined by two successive phases. The first phase
involves the selection of a word to transmit a specific meaning.
Next, the hearer receives the word-meaning association and
both speaker and hearer attempt to align their vocabularies.
As we can observe, in our model, the first phase introduces a
parameter that penalizes having different meanings for a word.
This is a bias against ambiguity. The second phase penalizes
multiple words for the same meaning and does not penalize
having different words for each meaning (a bias against syn-
onymy, not ambiguity).

At each communicative interaction, the speaker s selects
one meaning m∗ ∈ M. This selection is done uniformly at
random from the set M. To transmit m∗, she needs to select
some word, denoted w∗. If she does not know a word with the
meaning m∗, she selects a word at random from her vocabu-
lary and adds this word-meaning pair to her lexicon Bs.

Then, she calculates w∗ based on her interests. She be-
haves according to the ambiguity parameter ℘∈ [0, 1]: with
probability 1-℘, w∗ is the least ambiguous word,

w∗ = min
w∈�s

a(w), (4)

while with probability ℘, w∗ is the most ambiguous word,

w∗ = max
w∈�s

a(w). (5)

She transmits the word w∗ to the hearer.
In turn, the hearer behaves as in the naming game. On

the one hand, if there is a mutual speaker-hearer agreement
(the hearer knows the word w∗), alignment strategies appear
[10]. On the other hand, a speaker-hearer disagreement (if the
hearer does not know the word w∗), involves a repair strategy
in order to increase the chance of future agreements (that
is, for t ′ > t). More precisely, if the hearer knows the word
w∗, both speaker and hearer remove all word-meaning pairs
wm∗ from their vocabularies, where w, respectively, belongs
to �s \ {w∗} and �h \ {w∗}. By contrary, if the hearer does
not know the word w∗, she adds the word-meaning pair w∗m∗
to her vocabulary Bh.

III. METHODS

To study the most simple interaction topology (i.e., any
two agents picked up randomly can interact), the population
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FIG. 1. Measures to describe the formation of vocabularies. Two
quantities are shown against the ambiguity parameter ℘ : average
population clustering cc(t f ) and effective vocabulary V (t f ). Averages
over 10 realizations. Vertical lines indicate standard deviation. As
shown in the figure, three domains for the evolution of bipartite word-
meaning mappings tend to appear: full, Zipfian-like, and single-word
vocabularies.

of agents is located on the vertices of a complete graph of
size |P| = 100, typically called the mean field approximation.
The population shares both a set of N = |W | = 128 words
and a set of M = |M| = 128 meanings. Starting from an
initial condition in which each player k ∈ P is associated to
a bipartite graph Bk where Bk

i j = 1 or Bk
i j = 0 with probability

0.5 (put differently, for each possible edge i j, i ∈ W and
j ∈ M exist with probability 0.5), the dynamics performs a
speaker-hearer interaction at each discrete time step t � 0.
More precisely, one speaker s ∈ P and one hearer h ∈ V (s)
are chosen uniformly at random. The bipartite word-meaning
mappings Bs and Bh are then reevaluated according to commu-
nicative success. All results consider averages over 10 initial
conditions and 3 × 105 time steps (denoted by 〈〉). We denote
by t f the final time step. The ambiguity parameter ℘ is varied
from 0 to 1, with an increment of 1%.

IV. RESULTS

A. Formation of three domains for vocabularies

Two key quantities have been analyzed for different values
of ℘: the average population clustering cc,

cc = 1

|P|
∑

k∈P

cc(Bk ), (6)

which captures the average correlation between word neigh-
borhoods, and the (effective) lexicon size at time step t , V (t ),
defined as [13,26]

V (t ) = 1

n|P|
∑

k∈P

|�k|, (7)

where V (t ) = 1 if |�k| = n, while V (t ) = 0 if |�k| = 0.
Three domains can be noticed in the behavior of 〈cc〉 versus

℘ , at t f , as shown in Fig. 1 (gold diamonds). First, 〈cc〉 in-
creases smoothly for ℘< 0.4, indicating that for this domain,
there is a small correlation between word neighborhoods. Full

FIG. 2. Phase transition in bipartite graphs. Orange circles indi-
cate meanings, whereas blue x’s indicate words. From top to bottom,
we choose three bipartite graphs corresponding, respectively, to ℘ in
{0.1, 0.52, 1}. Node positions are based on a PYTHON [27] implemen-
tation of the Fruchterman-Reingold algorithm [29].

vocabularies are also attained for ℘< 0.4. Second, a drastic
transition appears at the critical domain ℘∗ ∈ (0.4, 0.6), in
which 〈cc〉 shifts abruptly towards 1. An abrupt change in
V (t f ) versus℘is also found (Fig. 1, black circles) for℘∗. Third,
single-word languages dominate for ℘> 0.6. The maximum
value of 〈cc〉 indicate that word neighborhoods are completely
correlated.

B. Understanding the formation of vocabularies
with bipartite graphs

We now shift our focus from graph-based measures to-
wards a holistic level in which we illustrate the formation of
vocabularies using bipartite-graph representations. We stress
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×

FIG. 3. Average bipartite clustering vs time. For one player k ∈
P, the behavior of average clustering cc(Bk ) over time is described.
Circles indicate measurements every 104 speaker-hearer interactions
(starting from t = 0). For the initial condition, the player k ∈ P is
associated to a bipartite graph Bk , where Bk

i j = 1 or Bk
i j = 0 with

probability 0.5. ℘ is varied from {0, 0.4, 0.5, 0.6, 1}.

the fact that our framework based on a language game with
players endowed with bipartite word-meaning mappings is
able to visualize the structural changes of the three de-
scribed domains. Figure 2 displays, from top to bottom, the
bipartite word-meaning mappings for ambiguity parameters
℘ in {0.1, 0.52, 1}. As expected, there are radical structural
changes between bipartite graphs associated to such ambi-
guity parameters. Full vocabularies are attained for ℘= 0.1,
located at the hearer-centered phase. Zipfian vocabularies
seem to appear for ℘= 0.52, where speaker and hearer costs
have a similar value. Finally, a single-word vocabulary (that
is, one word, several meanings) is exhibited for ℘= 1.

C. Language dynamics over time

The average population clustering cc(Bk ) has been ana-
lyzed for different values of ℘over language game dynamics,
as shown in Fig. 3, and the maximum degree for word nodes
dmax

W (black circles) and meaning nodes dmax
M (red stars), as

shown in Fig. 4. For this figure, measurements are captured
every 104 speaker-hearer interactions.

We remark that this dynamics represents only one player
k ∈ P. Several aspects are noticeable for the evolution of the
average bipartite clustering cc(Bk ). In the first place, bipartite
clustering curves are superposed until t < 5 × 104 time steps,
where cc(Bk ) seems to reach a local minimum. We notice
that for the most speaker-centered situation (℘= 1), bipartite
clustering exhibits a drastic transition from 0.2 towards 1 at
a critical phase 0.5 × 104 < t < 1.5 × 105. In turn, for℘< 1,
there is a smooth transition starting approximately at t ∼ 105.
After that, curves corresponding to different values of the
parameter℘ tend to converge to their final values. Particularly,
for the critical value ℘= 0.5, we can observe an intermediate
evolution towards cc(Bk ) ≈ 0.5.

To more deeply understand the graph structural changes
over time, we describe the maximum degree for word and
meaning nodes at three different parameters ℘= 0.1, 0.52, 1.
As shown in Fig. 4, the curves corresponding to dmax

W and

×

×

×

FIG. 4. Maximum degree over time. For one player k ∈ P, the
behavior of the maximum degree for word nodes dmax

W and the
maximum degree for meaning nodes dmax

M over time is described.
Points indicate measurements every 104 speaker-hearer interactions
(starting from t = 0). For the initial condition, the player k ∈ P is
associated to a bipartite graph Bk , where Bk

i j = 1 or Bk
i j = 0 with

probability 0.5. ℘ is varied from {0.1, 0.52, 1}.

dmax
M exhibit a drastic transition at t ∼ 105, for ℘= 1. On

the other hand, for ℘= 0.1, only the curve dmax
M abruptly

converges to the same value of dmax
W . This case indeed sup-

poses a hearer-centered context, in which the player has an
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almost one-to-one word-meaning mapping. For the human-
like behavior, ℘= 0.52, the transition occurring at t ∼ 105 is
smoother. This fact suggests that the features of humanlike
vocabularies appear early in the dynamics, and not only at the
final consensus absorbing state.

V. DISCUSSION

In this paper, we have described a decentralized model
of the emergence of Zipfian features in a humanlike lan-
guage, where agents play language games communicating
with bipartite word-meaning mappings. The model suggests
the formation of a humanlike vocabulary satisfying Zipfian
word-meaning properties. Our central graph-mining tool has
been a notion of clustering for bipartite graphs. This function
allowed us to suggest that the drastic transition is, in some
sense, a qualitative transition in the word’s correlations.

To further understand the nature of the described transition,
we note a recent proposal [30], reinterpreting an old question
about language learning with an alternative approach: if lan-
guage learning by a child involves setting many parameters,
to what extent do all these need to be innate? According to the
principles and parameters theory [31], children are biologi-
cally endowed with a general “grammar” and then the simple
exposition to a particular language (for example, Quechua)
fixes its syntax by equalizing parameters. This debate was
illuminated by proposing a statistical mechanics approach in
which the distribution of grammar weights (where language
is modeled by weighted context-free grammars) evidences
a drastic transition. Language learning is, for this proposal,
a transition from a random model of grammar parameter
weights to the one in which deep structure (that is, syntax)
is encountered.

Here, the language learning problem is situated in a
decentralized process, with agents negotiating a common
word-meaning mapping exhibiting Zipfian scaling proper-
ties. Interestingly, our approach can shed light on the debate
opened by Ref. [30]. Indeed, our model questioned, first,
the fact that language learning is traditionally viewed as an
individual process, without any consideration of population
structure (in general, language games question this fact). Sec-
ond, we argue that our view pointed out the minimal necessity
of cognitive principles for cultural language formation: the
least effort principle. We hypothesize that players only need

the most basic cognitive features for language learning (and
formation) and the rest is an emergent property from the local
speaker-hearer interactions. It is interesting to remark that
several works have stressed the fact that language formation
can be viewed as a phase transition within an information-
theoretic approach [13–17].

Future work could explore an intriguing hypothesis: Zip-
fian properties have strong consequences for syntax and
symbolic reference. Reference [32] has indeed proposed that
Zipf’s law is a necessary precondition for full syntax and
for going beyond simple word-meaning mappings. They hy-
pothesized, moreover, that the appearance of syntax has been
as abrupt as the transition to Zipf’s law. This is a goal for
future work: to propose a decentralized model in which agents
(constrained by specific cognitive features) develop a Zipfian
language that acts as a precondition for the abrupt transition
to simple forms of syntax (based, for example, on [33]). An-
other related research line arises from models assuming the
interplay between maximization of the information transfer
and minimization of the entropy of signals (see, for example,
[13,17,34]). As previously remarked, these models evidence a
lack of population structure. Current work asks how a commu-
nity of individuals playing the language game proposed here
can minimize the energy functional �(λ) of word-meaning
mappings. This quantity is formed by the combination of two
terms,

�℘ = ℘H (R|S) + (1 −℘)H (S), (8)

where ℘ is a parameter in [0,1], H (R|S) is the effort for the
hearer, and H (S) is the effort for the speaker. In its original
form [13], the hypothesis that Zipfian vocabularies should
appear at℘≈ 0.5 is assumed, where the efforts of the speaker
and the hearer have a similar contribution to �℘.

We may hypothesize, in our language game approach, that
reaching global consensus at the critical phase (that is, for
℘≈ 0.5) is closely related to the global minima of �(λ). This
idea opens fascinating ways to study human language, recon-
ciling models seeing communication as a global minima of
information entropic energies and models focused on popula-
tions self-organizing themselves towards a shared consensus.
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