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Critical polynomials in the nonplanar and continuum percolation models
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Exact or precise thresholds have been intensively studied since the introduction of the percolation model.
Recently, the critical polynomial PB(p, L) was introduced for planar-lattice percolation models, where p is
the occupation probability and L is the linear system size. The solution of PB = 0 can reproduce all known
exact thresholds and leads to unprecedented estimates for thresholds of unsolved planar-lattice models. In
two dimensions, assuming the universality of PB, we use it to study a nonplanar lattice model, i.e., the
equivalent-neighbor lattice bond percolation, and the continuum percolation of identical penetrable disks, by
Monte Carlo simulations and finite-size scaling analysis. It is found that, in comparison with other quantities,
PB suffers much less from finite-size corrections. As a result, we obtain a series of high-precision thresholds
pc(z) as a function of coordination number z for equivalent-neighbor percolation with z up to O(105) and
clearly confirm the asymptotic behavior zpc − 1 ∼ 1/

√
z for z → ∞. For the continuum percolation model,

we surprisingly observe that the finite-size correction in PB is unobservable within uncertainty O(10−5) as long
as L � 3. The estimated threshold number density of disks is ρc = 1.436 325 05(10), slightly below the most
recent result ρc = 1.436 325 45(8) of Mertens and Moore obtained by other means. Our work suggests that the
critical polynomial method can be a powerful tool for studying nonplanar and continuum systems in statistical
mechanics.
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I. INTRODUCTION

Percolation theory [1] has been extensively studied for
more than 60 years since it was first proposed by Broadbent
and Hammersley [2]. It concerns the formation of connected
components in random systems, and the percolation transition
is one of the simplest examples of phase transitions. Despite
the simplicity of its definition, the calculation of percolation
thresholds is a very challenging problem. For the convenience
of readers, we shall briefly recall some of the methods for an-
alytically solving percolation thresholds in the past 60 years.

In the early years, only a few special classes of two-
dimensional (2D) lattices could be exactly solved by using
duality or matching properties of the lattices. For a given
planar lattice L, the dual lattice L∗ can be obtained by doing
the following: (i) On each face of L, place a vertex which
serves as a vertex of L∗; (ii) for any two vertices of L∗, add an
edge between them if the corresponding two faces of L have a
common edge. For bond percolation, the thresholds of a lattice
L and its dual lattice L∗ are related by

pbond
c (L) + pbond

c (L∗) = 1. (1)
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Given a planar lattice L0, a pair of matching lattices can be
constructed by doing the following: (i) Select any subset of
the faces of L0, and fill in all the possible diagonals inside
these faces to form a new graph L; (ii) select the faces that are
not selected in step (1), and fill in all the possible diagonals
in these faces to form another graph L′. For site percolation, a
similar relation between a pair of matching lattices L and L′
is

psite
c (L) + psite

c (L′) = 1. (2)

From Eqs. (1) and (2), all bond percolation thresholds on
the self-dual lattices and site percolation thresholds on the
self-matching lattices are known to be pc = 1/2. Examples
include bond percolation on the square and martini-B lattice,
and site percolation on the triangular, union jack, and asanoha
[dual to the (3, 122)] lattice [3]. Typical examples of self-dual
and self-matching lattices are shown in Fig. 1.

In 1964, Sykes and Essam [4] introduced into the perco-
lation field the star-triangle transformation, which had been
used for electrical circuits [5] as well as for the Ising model
[6]. By use of the star-triangle transformation and bond-to-site
transformation, they found the exact values of bond perco-
lation thresholds on the triangular and honeycomb lattices,
and of the site percolation threshold on the kagome lat-
tice. The star-triangle transformation was further generalized
for bond percolation on the bowtie lattice in 1984 [7] and
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(a) (b) (c)

FIG. 1. (a) A typical example of a self-dual lattice. The square
lattice (solid line) and its dual lattice (dash line) are topologically
identical. (b) The asanoha lattice [dual to the (3, 122) lattice]. It is
self-matching since any 2D infinite lattice that is fully triangulated is
a self-matching lattice. (c) The covering lattice of bond percolation
on the square lattice. It is self-matching according to the argument
in Ref. [4]. Here the diagonal bonds are nonplanar, and actually for
all cases where the faces are not triangular, the matching lattice is
always nonplanar.

site percolation on the martini lattice in 2006 [8]. Here we
simply illustrate this method without proving it. As shown
in Fig. 2(a), one replaces the bonds of every unit cell of the
triangular lattice with a star, which transforms the triangular
lattice into the honeycomb lattice. Supposing that the bonds
of the two lattices are occupied with probabilities p and p∗,
respectively, and that the corresponding percolation thresh-
olds are pc and p∗

c , one considers bond percolation on an
individual “star-triangle” shown in Fig. 2(b). The probability
of A being connected to both B and C, which is denoted
as P(A → B, A → C) on the triangular lattice and P∗(A →
B, A → C) on the honeycomb lattice, can be obtained as

P(A → B, A → C) = 3p2 − 2p3

and

P∗(A → B, A → C) = p∗3
.

Following the argument in Ref. [4], the critical surface is
defined as

P(A → B, A → C) = P∗(A → B, A → C). (3)

Moreover, the duality between the triangular and honeycomb
lattices guarantees that pc and p∗

c are related by Eq. (1).
Combining Eq. (1) and (3), one obtains

p3
c − 3pc + 1 = 0. (4)

Equation (4) has only one root at pc = 2 sin π/18 in the range
[0,1], which is exactly the bond percolation threshold of the
triangular lattice. Besides Eq. (3), there are other connectiv-
ities that should be tested. For example, the probability of A
being connected to B but not C, denoted as P(A → B, A � C)

(a)

p*

p
D
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B

(b)

FIG. 2. (a) The star-triangle transformation on the triangular lat-
tice; (b) one individual star-triangle with the bond probabilities p and
p∗.
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FIG. 3. The triangle-triangle transformation on a basic cell is
shown in (a). The shaded region can contain any interactions among
the vertices A, B, C. Panel (b) is an example of a self-dual lattice
(the bowtie graph) since it is invariant under this triangle-triangle
transformation, as shown in (c).

on the triangle lattice, is

P(A → B, A � C) = p(1 − p)2

and on the honeycomb lattice is

P∗(A → B, A � C) = (1 − p∗)p∗2
.

It is noted that P(A → B, A � C) = P∗(A → B, A � C)
leads to Eq. (1). Thus one cannot obtain an additional relation
from the former equation, and it is similar for (A � B, A →
C) and (B → C, B � A) cases. The condition P(A � B, A �

C) = P∗(A � B, A � C), however, is equivalent to Eq. (3).
Generally speaking, the connectivity probabilities on both
“star” and “triangle” are required to be equivalent at criticality.

In 2006, Scullard and Ziff [9,10] introduced the triangle-
triangle transformation. This method extends the star-triangle
transformation to lattices in which the basic cells do not
necessarily lie in a triangular lattice, but in any self-dual
arrangement. Here a “self-dual” lattice is defined as a lattice
which is invariant under the triangle-triangle transformation,
as shown in Fig. 3. The basic cell can represent any network
of bonds and sites contained within the vertices A, B, C, as
long as no sites are at these vertices. Similarly, they consider
the connectivity between the vertices, which yields a general
condition for criticality as

P�(A, B,C) = P�(Ā, B̄, C̄) , (5)

where P�(A, B,C) refers to the probability that three vertices
A, B, C are connected, and P�(Ā, B̄, C̄) refers to the probabil-
ity that none are connected. Equation (5) leads to the threshold
for any lattice that is self-dual under triangle-triangle transfor-
mation, and therefore significantly expands the number and
types of lattices with exactly known thresholds [10,11]. For
example, one can apply Eq. (5) to get bond percolation thresh-
olds of the square, triangular, and honeycomb lattices. Other
examples include site and bond percolation thresholds for
the “martini,” “martini-A,” “martini-B,” and bowtie lattices
[10,11]. The approach is also applied to determine the critical
manifolds of inhomogeneous bond percolation on bowtie and
checkerboard lattices [12], although for the latter and some
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FIG. 4. Typical configurations on a 2D square with periodic
boundary conditions. The number of different directions along which
a configuration wraps decides its type among {Z2}, {Z1}, and {Z0}.

cases of the former one needs to introduce artificial bonds with
negative probability. It is noted that for the checkerboard case,
the approach reproduces F. Y. Wu’s formula [13], which can
be proven by the isoradial construction [12,14,15].

In the past few years, Scullard, Ziff, and Jacobsen devel-
oped the so-called critical polynomial method [16–25] which
associates a graph polynomial with any 2D periodic lattice.
This method originates from the observation that all the ex-
act percolation thresholds appear as the roots of polynomials
with integer coefficients. For example, the bond percolation
threshold of the triangular lattice is the root of integer poly-
nomial shown in Eq. (4). Scullard and Ziff first defined such
a polynomial based on the linearity hypothesis and symme-
tries [16,17]. By employing a deletion-contraction algorithm,
this polynomial can be applied on any 2D periodic lattice
and provide, in principle, arbitrarily precise approximations
for percolation thresholds [18,19]. Scullard and Jacobsen fur-
ther gave an alternative probabilistic definition of the critical
polynomial [20,21] which allows for much more efficient
computations [22–25].

For simplicity, we describe the critical polynomial on a
2D square with periodic boundary conditions (a torus). All
the configurations {C} on the torus are classified into three
types as {Z0}, {Z1}, and {Z2} according to their topological
properties. As shown in Fig. 4, a configuration C belongs to
{Z2} if it wraps along two different directions, to {Z1} if it
wraps along one and only one direction, and to {Z0} if it does
not wrap. Quantities R2, R1 and R0 represent the probabilities
for a configuration to be in these classes respectively, i.e.,
the wrapping probabilities [26–28]. For planar lattices, when
the configuration is of Z2-type (Z0-type), the corresponding
configuration on the dual lattice is of Z0-type (Z2-type). This
duality relation leads to R2 = R0 for self-dual lattices at crit-
ical point. Wrapping probabilities R2 and R0 are polynomial
functions of the occupation probability p, and generally the
critical polynomial is defined as PB ≡ R2 − R0. From univer-
sality of R2 and R0, the condition for criticality can be written
as

PB(p, L) = 0. (6)

The properties of PB on planar lattices are as follows:
(i) The root of Eq. (6) provides an estimate for percolation

the threshold pc, and it satisfies lim
L→∞

p(L) = pc.

(ii) Finite-size correction vanishes for all solvable lattices:
PB(pc, L) = 0. Therefore, the root of Eq. (6) gives the exact
value of pc for arbitrary system size L.

(a)

A B

C

A

B A

(b)

FIG. 5. (a) The basic cell of the square lattice with the bond
probability p. (b) The basic cell of the kagome lattice with the site
probability q.

(iii) [p(L) − pc] 	 ∑∞
k=1 AkL−�k vanishes rapidly for

those lattices of which the pc value is not exactly known.
For unsolved Archimedean lattices, it is suggested empirically
from transfer-matrix calculations that there are two differ-
ent classes: one class has the first three scaling exponents
as �k = 4, 6, 8 for k = 1, 2, 3, respectively; and the other
class has �k = 6, 7, 8 for k = 1, 2, 3, respectively [25]. The
first class includes the “Four-eight,” “Frieze,” “Cross,” “Snub
square,” and “Ruby” lattices, and the other class includes the
“Kagome,” “Three-twelve,” and “Snub hexagonal” lattices.
But it remains unclear how to derive these values analytically
and distinguish between the two classes [25].

Here we further explain these properties. For solvable lat-
tices, the root of Eq. (6) in the range [0,1] agrees with the
exactly known thresholds regardless of the system size. A
simple example is bond percolation on the square lattice.
Considering the smallest repeated cell of the square lattice
as shown in Fig. 5(a), and supposing each bond is occupied
independently with probability p, the wrapping probabilities
can be easily calculated as R2 = p2 and R0 = (1 − p)2, and
therefore PB = p2 − (1 − p)2. The only root of Eq. (6) is
p = 1/2 which is exactly the bond percolation threshold of
the square lattice. Another example is site percolation on the
kagome lattice as shown in Fig. 5(b). The basic cell contains
three vertices A, B, C that are independently occupied by
sites with probability p, which is different from the cell in
Fig. 3(a) for the triangle-triangle transformation where the
vertices are not allowed to be occupied by sites. We calculate
the wrapping probabilities as R2 = p3 and R0 = 3p(1 − p)2 +
(1 − p)3, which lead to PB = (1 − p)3 − 3(1 − p) + 1. Thus
the site percolation threshold of the kagome lattice is given by
the root of Eq. (6) as pc = 1 − 2 sin π/18, which is identical
with the bond percolation threshold of the honeycomb lattice.
This is a natural result because site percolation on the kagome
lattice is isomorphic with bond percolation on the honeycomb
lattice according to the bond-to-site transformation.

For unsolved lattices, we related the exponent �1 to the
leading correction exponent y1 in the finite-size scaling of PB

as follows. In the renormalization formulation [29,30], as a
dimensionless quantity, the finite-size scaling formula of PB is

PB(t, u1, u2, L) = PB(Lyt t, Ly1 u1, Ly2 u2), (7)

where t ∝ p − pc is the relevant thermal renormalization
scaling field with the associated exponent yt = 1/ν = 3/4 >

0, and u1, u2 are two irrelevant fields with associated
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exponents y2 < y1 < 0. With PB(pc, L) = 0 in the limit L →
∞ and assuming y2 > 2y1, a first-order Taylor expansion
of Eq. (7) gives PB(p, L) 	 a1(p − pc)Lyt + b1Ly1 + b2Ly2 ,
where a1, b1 and b2 are nonuniversal constants. Substitut-
ing the expansion result into Eq. (6) leads to p(L) − pc =
−(b1/a1)Ly1−yt − (b2/a1)Ly2−yt . Thus the leading and sub-
leading irrelevant exponents are given by y1 = yt − �1 and
y2 = yt − �2, respectively. For unsolved Archimedian lat-
tices, using the aforementioned empirically found � values,
these tell that y1 = −3.25 or −5.25 for PB, which are much
smaller than y1 = −2 (expected as the subleading thermal
renormalization exponent [31]) for conventional quantities
such as wrapping probabilities [30].

Because of the above surprisingly small finite-size cor-
rections, for many unsolved 2D periodic lattices, the critical
polynomial method has been shown to be orders of magnitude
more accurate in determining the percolation threshold than
traditional techniques. It has also been applied to the q-state
Potts model in the Fortuin-Kasteleyn representation to predict
critical manifolds [21,22,24] with PB ≡ R2 − qR0, where q is
related to the symmetry of the model and q → 1 corresponds
to percolation. The generalization to nonplanar and continuum
models, as far as we know, has not been reported yet. In these
models, the value of PB in the scaling limit is supposed to
be zero as well due to universality, but the finite-size scaling
(FSS) behavior is not clear. In particular, does the leading
correction exponent belong to one of the two classes for
Amchimedean lattices?

The goal of this work is to explore the FSS behavior
of PB in nonplanar and continuum systems. For comparison
purpose, FSS analysis is also performed for two wrapping
probabilities R0, R2 and a dimensionless ratio Q (defined
later in Sec. II A) which is similar to the Binder ratio [32]
extensively used in the study of phase transitions and crit-
ical phenomena. Extensive Monte Carlo (MC) simulations
are conducted for a nonplanar lattice model, i.e., the 2D
square-lattice bond percolation with many equivalent neigh-
bors [30,33], and for the 2D continuum percolation with
identical penetrable disks [34]. Periodic boundary conditions
are employed as required for measuring PB. The simulation
results confirm that PB = 0 for these two models at the critical
point.

For the equivalent-neighbor percolation model, one of us
(Y.D.) and collaborators [30,33] observed recently that as long
as the coordination number z is finite, the model belongs to
the short-range universality in two dimensions. The percola-
tion threshold was determined by the critical polynomial, but
the analysis details have not been reported. It is particularly
informative to compare the finite-size correction in PB and
in more conventional quantities. In this work, the finite-size
correction in PB is found to be very small. For the model with
z = 8 equivalent neighbors, the leading correction term of PB

scales as Ly1 with y1 	 −3, while for R0, R2, and Q the leading
correction term is ∼L−2 or larger. The value −3 is close
to y1 = −3.25 for the first class of unsolved Archimedean
lattices. For z > 8, two types of models are considered, which
have different ways to involve neighbors, i.e., by coupling to
all sites within a circle or a square. It is shown that the data of
PB are still consistent with the leading correction term being
b1L−3. However, the amplitude b1 cannot be well determined

by fitting the data, which indicates that our data are barely
sufficient to detect the small finite-size correction. For very
large z, e.g., z ∼ O(105), due to finite-size corrections, for
sizes up to L = 8192, the crossing points of the wrapping
probability deviate significantly from the percolation thresh-
old, and the dimensionless ratio does not show a crossing at
all in a wide range near pc. Thus it is very hard to use the
wrapping probability or the dimensionless ratio to determine
precisely the percolation threshold for large z, as simulations
for much larger L are needed. By fitting the FSS ansatz of
PB, it is possible to determine precisely values of zpc for z
up to O(105) [33]. The data confirm the z → ∞ asymptotic
behavior zpc − 1 	 a1z−1/2 for both types of models, and
show that the coefficient a1 takes different values for the two
models. The latter indicates that a1z−1/2 represents a surface
effect for the 2D model [35,36].

For the continuum model, it is found that at criticality the
finite-size correction in PB is too small to be observed for
L � 3, i.e., PB(ρc, L) = 0 almost holds for arbitrary L. This
result is different from those of the unsolved Archimedean
lattices and the equivalent-neighbor model, as well as ex-
actly solved models for which PB(pc, L) = 0 exactly holds. In
comparison, a leading correction term ∼L−2 is confirmed for
R2 and ∼L−1.5 for Q. Using PB, the percolation threshold of
the continuum model is determined as ρc = 1.436 325 05(10),
slightly below the most recent result ρc = 1.436 325 45(8)
given by Mertens and Moore [34].

The remainder of this work is organized as follows. Sec-
tion II presents the simulation and results for the square-lattice
bond percolation model with various number of equivalent
neighbors, and Sec. III describes those for the 2D continuum
percolation model. A brief discussion and conclusion is given
in Sec. IV.

II. EQUIVALENT-NEIGHBOR PERCOLATION

A. Model and simulation

To the best of our knowledge, the equivalent neighbor
model was first introduced by Dalton, Domb, and Sykes
[37–39] to help bridge the gap in the understanding of
spin systems between very short-range forces and very
long-range forces. Recently, equivalent-neighbor percolation
models were studied for bond percolation in 2D [30,33], 3D
[40], and 4D [41], and for site percolation in 2D [42–45],
3D [45,46], and 4D [47]. In the square-lattice bond perco-
lation model with equivalent neighbors, for each lattice site,
there exists an edge between this site and any site within a
given range. Two sites at the end of the same edge are called
neighbors. Two ways to involve neighbors are considered: In
type-1 model a site i with coordinates (xi, yi ) is connected by
an edge to all sites j satisfying

√
(xi − x j )2 + (yi − y j )2 � r

(i.e., within a circle of radius r), and in type-2 model to all
sites j satisfying both |xi − x j | � r and |yi − y j | � r (i.e.,
within a square of side length 2r). As in the nearest-neighbor
percolation, the equivalent-neighbor percolation is introduced
by placing independently a bond on each edge with the same
probability p.

We simulate the above models with periodic boundary
conditions. Since there are many equivalent neighbors, the
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TABLE I. Fit results of observables PB, R2, R0, and Q for bond percolation on the square lattice with z = 8 equivalent neighbors. Entries
“—” indicate that the corresponding parameters are set to be zero, and the numbers without error bars are fixed in the fits.

Obs. Lmin χ 2/DOF yt pc O0 q1 b1 y1 b2 y2

8 25.8/32 0.84(9) 0.250 368 50(7) 0.000 008(5) −2.7(8) −0.17(2) −2.98(7) – –
9 23.8/27 0.82(9) 0.250 368 50(8) 0.000 007(6) −3(1) −0.18(4) −3.0(1) – –
5 34.0/38 0.84(8) 0.250 368 50(7) 0.000 007(5) −2.7(8) −0.34(10) −3.19(10) 0.5(2) −4
6 31.4/37 0.84(8) 0.250 368 46(7) 0.000 004(5) −2.7(8) −0.30(9) −3.2(2) 1.5(6) −5

PB 6 30.8/37 0.84(8) 0.250 368 46(7) 0.000 004(5) −2.7(8) −0.24(5) −3.12(10) 5(2) −6
8 30.6/34 3/4 0.250 368 40(2) 0 −3.6(2) −0.21(2) −3.08(4) – –
9 26.4/29 3/4 0.250 368 40(2) 0 −3.7(2) −0.23(3) −3.14(6) – –

10 29.8/29 3/4 0.250 368 39(2) 0 −3.7(2) −0.169(2) −3 – –
12 24.0/24 3/4 0.250 368 39(2) 0 −3.7(2) −0.165(3) −3 – –

14 10.6/17 3/4 0.250 368 5(5) 0.309 52(3) −1.8(2) 0.032(5) −1.56(7) – –
6 38.7/38 3/4 0.250 368 0(3) 0.309 50(1) −1.7(1) 0.044(3) −1.63(3) −0.176(9) −3

R2 8 28.4/32 3/4 0.250 368 2(3) 0.309 51(2) −1.73(10) 0.034(3) −1.57(4) −0.75(8) −4
7 29.8/34 3/4 0.250 368 47(4) 0.309 526 275 −1.7(1) 0.055(2) −1.72(1) −0.219(8) −3
8 30.0/33 3/4 0.250 368 56(5) 0.309 526 275 −1.7(1) 0.038(1) −1.62(1) −0.84(4) −4

10 22.2/27 3/4 0.250 369 1(2) 0.309 49(1) 2.0(1) 0.044(2) −1.63(2) – –
R0 7 25.4/33 3/4 0.250 368 9(3) 0.309 50(2) 1.9(1) 0.049(5) −1.67(4) −0.03(2) −3

7 25.4/33 3/4 0.250 369 0(3) 0.309 49(1) 1.9(1) 0.046(3) −1.65(3) −0.08(5) −4
5 36.0/40 3/4 0.250 368 45(3) 0.309 526 275 1.9(1) 0.0632(9) −1.768(5) −0.079(3) −3
6 37.3/39 3/4 0.250 368 38(3) 0.309 526 275 1.9(1) 0.0529(7) −1.715(7) −0.20(2) −4

20 5.5/11 3/4 0.250 368(2) 0.960 17(2) −0.28(2) −0.034(4) −1.58(5) – –
Q 12 18.9/21 3/4 0.250 369(1) 0.960 170(9) −0.28(2) −0.050(7) −1.68(5) 0.24(4) −3

14 13.5/16 3/4 0.250 369(1) 0.960 17(1) −0.27(2) −0.038(5) −1.61(5) 1.4(3) −4

simulation would be time consuming if the edges are individ-
ually checked to be occupied or not. We apply an algorithm
[33,48] which requires computer time that is almost indepen-
dent of the number of neighbors z. The cluster wrapping is
detected by a method [49,50] originally employed in simu-
lations of Potts models. Quantities are sampled after all the
clusters are constructed and a configuration is formed. From
the sampled configurations, the following observables are cal-
culated:

(i) Wrapping probabilities R0, R1, R2, and the critical poly-
nomial PB.

(ii) The dimensionless ratio Q = 〈C1〉2/〈C1
2〉, where C1 is

the size of the largest cluster and 〈.〉 means the statistical
average.

At percolation threshold, clusters become fractal and the
distribution of cluster sizes obeys some scaling-invariant
form. A conventional method to locate the percolation thresh-
old is then to utilize the scaling behavior of the cluster sizes. In
particular, dimensionless ratios like the quantity Q are found
very powerful because of their simple scaling form, and have
a long history of being used in the study of critical phenomena
[32,51]. The ratio Q, the wrapping probabilities and the criti-
cal polynomial PB exhibit similar finite-size scaling behavior.
When they are plotted versus the occupation probability, the
crossings of the curves for different system sizes asymptot-
ically converge to the percolation threshold and the critical
values of these quantities are universal.

Simulations were first performed for the model with z = 8
neighbors. The type of the model is not specified, since the
type-1 model shares the same 8 neighbors with the type-2
model. The system sizes in simulations range from L = 4 to

64, and the number of samples for each size at a given p
is around 1010 to 1011. Simulations were also conducted for
several values of z from 148 (r = 7) to 50 616 (r = 127) for
the type-1 model, and from 120 (r = 5) to 65 024 (r = 127)
for the type-2 model. The system sizes for these models of
z > 8 range from L = 16 to 8192.

B. Numerical results

The data of PB are fitted by the least-square criterion using
the following ansatz

O(p, L) = O0 + q1(pc − p)Lyt + b1Ly1 + b2Ly2 , (8)

where yt = 1/ν is the thermal renormalization exponent, and
y1, y2 are the leading and subleading correction exponents,
respectively. The second-order term q2(pc − p)2L2yt is not
present due to duality [52], and effects of crossing scaling
terms such as c1(pc − p)Lyt +y1 is found to be negligible. As
a precaution against high-order correction terms that are not
included in Eq. (8), we gradually exclude the data points for
L � Lmin and see how the residual χ2 changes with respect to
Lmin. Generally the fit result is satisfactory if the value of χ2 is
less than or close to the number of degrees of freedom (DOF)
and the drop of χ2 caused by increasing Lmin is no more than
one unit per degree of freedom.

For z = 8, the fit results are summarized in Table I. If
letting all parameters in Eq. (8) be free, the fitting procedure
does not work, which indicates that our MC data are not
sufficient to determine all parameters simultaneously. There-
fore, we perform fits with some parameters being fixed. When
setting b2 = 0, the fit results show that the leading correction
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FIG. 6. PB versus L−3 for bond percolation on a periodic square
lattice with z = 8 equivalent neighbors, at p = 0.250 368 385 which
is within the error margin of the estimate pc = 0.250 368 40(4). The
solid line is a straight line with slope b1 	 −0.17 obtained by fitting
the data. From right (small) to left (large), sizes for other data points
are L = 9, 10, 12, 14, 16, 20, respectively.

exponent is y1 	 −3. In order to confirm this observation,
we also perform the fits with y2 being fixed at −4, −5, or
−6, but b2 being free. And the results are consistent with
y1 	 −3. From these fits we also estimate yt = 0.84(11) and
PB0 = 0.000 007(8), which are consistent with yt = 3/4 [31]
and PB0 = 0, as expected from universality of 2D ordinary
percolation. We further perform the fits with both yt = 3/4
and PB0 = 0 being fixed, which is helpful to give an accurate
estimate of pc.

Thus, from all fits with y1 free, we estimate the leading
correction exponent of PB to be y1 = −3.0(3). And from all
fits with PB fixed at zero, we report our estimate of the per-
colation threshold as pc = 0.250 368 40(4). In Fig. 6, we plot
PB versus L−3 for our MC data at p = 0.250 368 385, which
is within the error bar of our estimate of pc. According to
Eq. (8), at pc and for large system sizes, PB versus Ly1 should
display approximately a straight line. This phenomenon is
indeed observed in Fig. 6, which demonstrates our estimate
of y1 	 −3. The value −3 is close to y1 = yt − �1 = −3.25
for the first class of unsolved Archimedean lattices mentioned
in the introduction. It is also noted that the magnitude of PB is
only in order O(10−4), illustrating the smallness of finite-size
corrections in PB.

We also perform fits for R0, R2, and Q by Eq. (8), and the
results are also summarized in Table I. These lead to estimates
of the leading correction exponent y1 	 −1.6. The data could
also be fitted by formulas with more sophisticated finite-
size scaling, e.g., with second-order term q2(pc − p)2L2yt ,
and with leading correction terms proportional to L−2 and
ln(L)L−2 for R2, and for Q with a correction term ∼L−43/24 in
addition to the latter two terms [30]. The results of universal
quantities are well consistent with the exact result R0,0 =
R2,0 = 0.309 526 275 [27,50] and with the previous estimate
Q0 = 0.960 17(1) [53]. From the estimate of the correction
exponent y1, it is seen that the finite-size corrections for PB

decay more rapidly than those for R0, R2, and Q.
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FIG. 7. Plots of PB, R2, and Q versus zp for different system
sizes L, for equivalent-neighbor percolation models with r = 15,
corresponding to z = 708 and z = 960 for type-1 (left panel) and
type-2 (right panel) models, respectively. Vertical dashed lines show
the thresholds zpc = 1.102 812(3) and zpc = 1.085 839(5) [33] for
type-1 and type-2 models, respectively. Horizontal dashed lines in-
dicate the universal values of these quantities at criticality. The error
bars of the data are smaller than the size of the data points. Values of
L are given in the legend. The solid lines connecting data points are
added for clarity.

For models with z > 8, we make plots for PB, and compare
them with those for other dimensionless quantities R2 and
Q. Figures 7 and 8 show the results for r = 15 and 127,
corresponding to z ∼ O(103) and O(105), respectively. We
have the following observations. Firstly, curves for different
sizes L cross well near the point (zpc , 0) for PB, even for
small relative sizes down to L/(r + 1) = 8. Second, for R2,
as L increases, the crossing points converge much slower than
for PB. For r = 127, the convergence is so slow that even
the crossing point of curves for the largest two sizes deviates
significantly from the critical point, and if not knowing the
exact value of R2, a biased estimate of the critical point may be
obtained. Finally, for Q, the crossing point of the largest two
sizes is significantly different from (zpc , Q0) when r = 15,
and the curves do not intersect at all near pc when r = 127.

Fits are also performed for models with z > 8 using
Eq. (8). For PB, the leading correction exponent y1 cannot
be well determined when it is set as a parameter to be fit-
ted. With fixed y1 = −3, stable fit results can be obtained,
though the resulting estimate of b1 has a large error bar that
is comparable to its absolute value. These tell that our data
are barely sufficient to detect the small finite-size correction
in PB. The fit results also suggest that the second-order term
q2(pc − p)2L2yt is absent in the scaling of PB. When fitting the
data of R2 and Q, the second-order term needs to be included.
For R2 at r = 127, if R2,0 is not fixed in the fits, the estimate
of pc is significantly different from that obtained by fitting
PB, which confirms our second observation in last paragraph.
For Q at r = 127, if Q0 is not fixed, the estimate of pc is also
biased, and the estimate of Q0 is different from the universal
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FIG. 8. Plots of PB, R2, and Q versus zp for different system sizes
L, for equivalent-neighbor percolation models with r = 127, corre-
sponding to z = 50 616 and z = 65 024 for type-1 (left panel) and
type-2 (right panel) models, respectively. Vertical dashed lines show
the thresholds zpc = 1.011 655(20) and zpc = 1.010 05(3) [33] for
type-1 and type-2 models, respectively. Horizontal dashed lines in-
dicate the universal values of these quantities at criticality. The error
bars of the data are smaller than the size of the data points. Values of
L are given in the legend. The solid lines connecting data points are
added for clarity.

value 0.960 17(1); if Q0 is fixed at the universal value, then
one cannot get stable fit results, due to large and complicated
finite-size corrections. Thus Q is not suitable for determining
pc when r (or equivalently z) is large, which is consistent
with the previous observation for Q that at r = 127 curves
for different sizes do not intersect near pc.

The above results demonstrate that PB also has much
smaller finite-size corrections than other quantities when z
is greater than 8. And this advantage of PB becomes more
obvious as z increases. Thus we use PB to determine precisely
percolation thresholds for various values of z for both type-1
and type-2 models. The results are summarized in Table II.
From the table, it can be seen that, when z is large (e.g.,
z > 100), the value of zpc decreases as z becomes larger,
and it tends to approach the mean-field value zpc = z/(z − 1)
which equals to one in the limit z → ∞. Using these es-
timates of zpc, we plot (zpc − 1)z1/2 versus z−1/2 for both
types of models in Fig. 9. The intercept of the lines in the
figure gives the value of a1, which is different for type-1 and
type-2 models. The straight lines indicate that both models
can be described by a correction term a2z−1/2 when z is large.
Overall, the figure confirms that the threshold pc satisfies
zpc − 1 = a1z−1/2(1 + a2z−1/2) when z is large [30,33].

For the asymptotic behavior of zpc as z → ∞, it has been
conjectured that zpc − 1 ∼ 1/rd−1 for 2D and 3D models
[35,36], where d is the spatial dimension. Since z ∼ rd , this
leads to zpc − 1 ∼ 1/z(d−1)/d for 2D and 3D models. When
d = 2, it yields zpc − 1 	 a1z−1/2 for large z, which is sup-
ported by our results above. Since rd−1 is proportional to the

TABLE II. Percolation threshold zpc for the equivalent-neighbor
percolation models of type-1 and type-2, with various number of
neighbors z. Results for z > 8 have been reported in Ref. [33], for
which one of us (Y.D.) is a coauthor.

Type-1 Type-2

r z zpc z zpc

1 4 2 8 2.002 947 2(32)√
2 8 2.002 947 2(32)

5 120 1.257 695(7) [33]
7 148 1.234 704(2) [33] 224 1.184 443(5) [33]
15 708 1.102 812(3) [33] 960 1.085 839(5) [33]
23 1652 1.066 297(7) [33] 2208 1.055 830(10) [33]
31 3000 1.048 803(8) [33] 3968 1.041 349(7) [33]
35.8 4016 1.042 043(5) [33]
47 6920 1.031 871(16) [33] 9024 1.027 217(15) [33]
63 12452 1.023 640(20) [33] 16128 1.020 270(15) [33]
127 50616 1.011 655(20) [33] 65024 1.010 05(3) [33]

surface length or area, the asymptotic behavior of the form
a1z−1/2 can be regarded as a surface effect for the 2D model.
Our observation that a1 is different for the two types of models
also implies this surface effect, since the surfaces are different
for type-1 and type-2 models.

III. CONTINUUM PERCOLATION

A. Model and simulation

Continuum percolation has been used to discuss the phys-
ical properties of complex fluids and disordered systems.
The 2D continuum percolation with overlapping disks is par-
ticularly important because it corresponds to the randomly
deposited networks of nanoparticles [54], which have various
interesting properties and applications. In the 2D continuum
percolation, a number (n) of randomly centered disks are dis-
tributed on a L × L square. The number n satisfies a Poisson
distribution

P(n) = λne−λ

n!
, (9)
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FIG. 9. Plot of (zpc − 1)z1/2 versus z−1/2 for equivalent-neighbor
models. The straight lines are obtained by fitting the data.
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where P(n) refers to the probability that n disks are dis-
tributed, and λ = ρL2 with ρ being the mean density. Two
penetrable disks are connected if they overlap, and the n disks
form connected groups with complex geometries. Various nu-
merical studies have shown that continuum percolation with
overlapping disks shares the same critical exponents with
lattice percolation, indicating that they belong to the same
universality class [55–57].

We simulate the continuum percolation model on a L × L
square with periodic boundary conditions. The identical pen-
etrable disks are of diameter one. In each trial, the number
of objects n is determined by a random number generator
following a Poisson distribution with mean density parameter
ρ. The disks are randomly placed into the square using a
uniform distribution. The cell-list method [58] is employed
for efficiently finding neighboring disks. The same set of
quantities as for the equivalent-neighbor model are sampled
after all the clusters are constructed.

As in site percolation, any pair of overlapping disks in
continuum percolation can be considered to be effectively
connected by a bond between their centers. One then obtains
a nonplanar graph by drawing all such bonds between pairs of
overlapping disks. However, for any pair of crossing bonds,
the disks at their ends must belong to the same cluster. This is
similar to site percolation on the square lattice with nearest-
and next-nearest-neighboring interactions (coordination num-
ber z = 8), for which four occupied sites on a square face,
having a pair of diagonal bonds, must be in the same cluster.
In other words, continuum percolation is like site percola-
tion with compact neighborhoods where crossing connectivity
cannot occur without simultaneously there being the presence
of nearest-neighboring connectivity. Actually the latter can be
mapped to problems of lattice percolation of extended shapes
(e.g., disks), whose thresholds can be related to the continuum
thresholds for objects of those shapes [45]. As a consequence,
an interesting property arises for continuum percolation in 2D:
The percolation of clusters and the void percolation of the
unoccupied space are matching and if one percolates, then the
other does not and vice versa.

A recent numerical study of the continuum percolation
of identical penetrable disks was published by Mertens and
Moore in 2012 [34]. In their work, wrapping probabili-
ties were applied as observables, and an adaption of the
Newman-Ziff algorithm was used for simulations [34,50].
They conducted extensive MC simulations for 50 different
system sizes ranging from L = 8 to 2048, with sample sizes
being 1010 for L � 100, 109 for 100 < L � 500, and 106

for 500 < L � 2048. In our work, we simulated 12 different
sizes ranging from L = 3 to 512. The number of samples
is about 1010 for L � 100 and 5 × 109 for 100 � L � 512.
It is noted that, though not used in this work, a similar
Newman-Ziff approach as in Ref. [34] can also be used to
calculate PB as function of ρ, which might save some com-
puter time since separate runs at different values of ρ are not
needed.

B. Numerical results

Figure 10 shows the plots of quantities PB, R2, and Q as a
function of ρ for different L. From the plot of PB, it can be

-0.030

-0.020

-0.010

 0

 0.010

 0.020

 0.030

P B

 3
 4
 8
16
32
64

 0.295

0.300

 0.305

0.310

 0.315

0.320

 0.325

R 2

 3
 4
 8
16
32
64

 0.930

 0.940

 0.950

 0.960

 1.434  1.435  1.436  1.437  1.438  1.439

Q
c

ρ

  4
  8

 16
 32
 64

128

FIG. 10. Plots of PB, R2, and Q versus ρ for different sys-
tem sizes L for the continuum percolation model. Values of L are
given in the legend. Vertical dashed line shows the threshold ρc =
1.436 325 05(10), and horizontal dashed lines indicate the universal
values of these quantities at criticality. The error bars of the data are
smaller than the size of the data points. The solid lines connecting
data points are added for clarity.

seen that the curves cross very well near ρ 	 1.4363, which
is a rough approximation for the percolation threshold with an
uncertainty at the fourth decimal place. At criticality, the value
of PB is consistent with zero as expected from universality.
For plots of R2 and Q, when L is small, the curves cross at
different points due to finite-size corrections. As L becomes
larger, the intersections of curves converge to the critical
point, with R2,0 	 0.309 and Q0 	 0.960 being consistent
with their universal values R2,0 = 0.309 526 28 [27,50] and
Q0 = 0.960 17(1) [53].

To examine the FSS behavior of sampled quantities, we fit
the data by the ansatz

O(ρ, L) = O0 + a1(ρc − ρ)Lyt + a2(ρc − ρ)2L2yt

+ b1Ly1 + b2L2y1 + c1(ρc − ρ)Lyt +y1 , (10)

where the thermal renormalization exponent is fixed at
yt = 3/4. For PB and wrapping probabilities, the leading
correction exponent y1 is fixed as the subleading thermal
renormalization exponent −2 [31], which is supported by
previous data of wrapping probabilities for 2D continuum
percolation [34]. The fit results are shown in Table III.
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TABLE III. Fit results of sampled quantities for the continuum percolation model. “Obs.” is the abbreviation of “observables.” Entries “—”
indicate that the corresponding parameters are set to be zero, and the numbers without error bars are fixed in the fits.

Obs. Lmin χ 2/DOF O0 ρc a1 a2 b1 b2 c1 y1

3 95.3/102 −0.000 002(1) 1.436 324 94(7) −0.567 3(2) 0.001(3)
4 95.3/99 −0.000 002(1) 1.436 324 94(7) −0.567 3(2) 0.001(3)
8 88.2/94 −0.000 003(2) 1.436 324 89(7) −0.567 3(2) 0.001(3)
3 100.5/103 0 1.436 325 05(5) −0.567 3(2) 0.001(2)

PB 4 100.4/100 0 1.436 325 05(5) −0.567 3(2) 0.001(2) – – – –
8 98.4/95 0 1.436 325 05(5) −0.567 3(2) 0.001(2)
3 100.7/104 0 1.436 325 05(5) −0.567 3(2) 0
4 100.6/101 0 1.436 325 05(5) −0.567 3(2) 0
8 98.6/96 0 1.436 325 05(5) −0.567 3(2) 0

16 72.0/69 0.309 526 275 1.436 324 88(7) −0.283 6(2) 0.052(2) 0.118(2) −2.9(3) −0.02(4) −2
R2 24 44.5/56 0.309 526 275 1.436 324 92(7) −0.283 4(2) 0.052(2) 0.123(3) −7(2) −0.2(3) −2

32 37.3/51 0.309 526 275 1.436 324 97(8) −0.283 5(2) 0.052(2) 0.131(7) −16(7) −0.3(3) −2
16 65.2/69 0.309 526 275 1.436 324 95(7) 0.283 5(1) 0.056(2) 0.125(1) −4.5(3) 0.04(4) −2

R0 24 37.5/56 0.309 526 275 1.436 324 92(7) 0.283 2(2) 0.056(2) 0.129(3) −8(2) 0.6(2) −2
32 36.3/51 0.309 526 275 1.436 324 91(8) 0.283 2(2) 0.056(2) 0.131(7) −9(7) 0.6(2) −2
64 34.2/33 0.960 173(4) 1.436 327(1) −0.040 89(3) 0.014 5(1) −0.20(2) −0.04(2) −1.51(2)

Q 96 19.3/24 0.960 176(7) 1.436 327(2) −0.040 87(4) 0.014 5(2) −0.18(4) – −0.08(7) −1.48(5)
128 14.4/20 0.960 2(1) 1.436 337(8) −0.040 83(6) 0.014 5(2) −0.03(3) −0.01(1) −1.0(3)

For PB, the amplitudes b1, b2, and c1 are found to be
consistent with zero when they are set as parameters to be
fitted, which indicates that the finite-size correction is very
small. The presented results for PB are from fits with b1, b2,
and c1 being fixed at zero. When O0 is a free fit parameter,
the fitted values of O0 for PB is consistent with zero within
one error bar, as expected from the universality of PB. Then
fits are performed with fixed O0 = 0. It is found that, with
only the second and third terms, Eq. (10) can well describe
the PB data for L � 3 near the critical point, yielding a stable
estimate of ρc as 1.436 325 05(5). Moreover, the fit results
have a2 being consistent with zero, which implies that the
second-order term a2(ρc − ρ)2L3/2 vanishes also due to du-
ality [52]. Fits with fixed a2 = 0 also lead to the estimate of
ρc as 1.436 325 05(5). Thus we set our final estimate as ρc =
1.436 325 05(10), where the error bar is quoted as twice the
statistical error to account for possible systematic errors. The
systematic errors may be due to higher-order scaling terms or
the very small finite-size correction not included in the fits.
Figure 11 shows a plot of PB versus L at three different values
of ρ that are very close to the critical point. It is found that
the data points at ρc 	 1.436 325 0 distribute around PB = 0
regardless of the system size L, i.e., the finite-size correction
in PB is undetectable at criticality. The obvious deviation from
PB = 0 when ρ = ρc illustrates the reliability of our estimate
of ρc.

For R2 and R0, the value of O0 is fixed at the theoretical
predictions in the fitting. The data up to Lmin = 16 have to be
discarded for a reasonable residual χ2. The results support the
presence of the leading correction term ∼L−2 with the ampli-
tude b1 	 0.12. Together with the fact that the coefficient a1

of R2 and R0 have the same amplitude but opposite signs, it is
suggested that R2(ε) = R0(−ε) with ε = (ρc − ρ)Lyt , which
is expected from duality [52].

For Q, as seen from Fig. 10, the finite-size correction is
much larger than that in R2 and PB. When the data are fitted to

Eq. (10), the coefficient b2 has an error bar much larger than
the central value. Thus fits are performed with fixed b2 = 0. A
large cutoff Lmin = 64 has to be set for a stable fit. The results
show a leading correction term with exponent y1 	 −1.5.

IV. DISCUSSION AND CONCLUSION

In summary, we study the critical polynomial PB in nonpla-
nar and continuum percolation models by MC simulations and
FSS analysis. Two kinds of models are considered, i.e., the
bond percolation model on square lattice with many equiv-
alent neighbors (a nonplanar model) and the 2D continuum
percolation of identical penetrable disks. As in planar-lattice
models, it is found for these two models that PB = 0 holds at
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FIG. 11. Plot of PB versus L at different mean densities ρ near
criticality. Standard re-weighting technique is applied to obtain the
data. Values of ρ are given in the legend. The curves are obtained by
fitting the data.
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the critical point as expected from universality, and that the
finite-size correction in PB is very small.

For PB in the 2D equivalent-neighbor percolation model,
from the data of the model with z = 8 neighbors, we find
that the leading correction exponent is y1 	 −3, much smaller
than y1 	 −1.6 for the wrapping probabilities and the ratio Q.
For the latter quantities, the apparent leading correction term
with Ly1 = L−1.6 might be a mixture of L−2, L−2 ln(L) and
other irrelevant scaling terms [30]. For PB, the value y1 	 −3
is very close to y1 = yt − �1 = −3.25 for the first class of
unsolved Archimedean lattices [25] mentioned in the intro-
duction. The advantage of PB over other quantities is more
significant as z increases. Thus, for two types of equivalent-
neighbor models with different ways to involve neighbors, PB

is employed to determine precisely the percolation threshold
pc(z) for various values of z. The asymptotic behavior of zpc is
confirmed to be zpc − 1 	 a1z−1/2 for z → ∞, with the coef-
ficient a1 being different for the two types of models. Since the
regions of neighbors have different surfaces for the two types
of models, the observed difference of a1 could be regarded as
evidence that the term a1z−1/2 is a surface effect [35,36]. We
also find that the subleading dependence of zpc − 1 on z is
proportional to z−1.

Equivalent-neighbor percolation models have also been
studied in more than two dimensions in the literature. For
d = 3, while the implied surface effect suggests the z →
∞ asymptotic behavior zpc − 1 	 a1z−2/3 [35,36], a most
recent numerical study finds empirically zpc − 1 	 a1z−1/2

[40]. Since the maximum value of z considered in Ref. [40]
is 146, it would be interesting to simulate systems with much
larger z to clarify the ambiguity of the correction exponent.
For d � 4, it is suggested that zpc − 1 	 a1/z (with logarithm
corrections in d = 4) [35,59], which implies that in this case
the asymptotic behavior of zpc is a bulk property. More work
is needed to confirm the above asymptotic behavior for d � 4,
and to understand the difference of the correction exponents
in different dimensions.

For PB in the 2D continuum percolation model, it is found
that the finite-size correction is undetectable for L � 3. This
implies that the leading correction exponent for PB is much
smaller than y1 	 −2 and −1.5 for the wrapping probabilities
and the ratio Q, respectively. Thus by using PB, we are able
to determine precisely the continuum percolation threshold
as ρc = 1.436 325 05(10). This estimate is slightly below the
previous value ρc = 1.436 325 45(8) obtained by analyzing
the FSS of wrapping probabilities [34]. Our simulations are
with smaller system sizes than the previous work as described
in Sec. III A, but the resulting error bars of ρc are of the same
order, i.e., 10−7.

For unsolved planar-lattice percolation models at critical-
ity, PB usually has a very small leading correction term, such
as ∼L−3.25 or ∼L−5.25 for unsolved Archimedean lattices
[25]; and for exactly solvable lattice percolation problems, the
finite-size correction in PB vanishes for arbitrary size L. Might
the continuum model be similar to the exactly solvable lattice
models also for system sizes L < 3? To answer this, since L is
not limited to integers, we perform additional simulations for
system sizes 2 � L < 3 at ρc. The result is shown in Fig. 12. A
nonzero correction is observed for L � 2.8, which means that
the finite-size correction in PB does not vanish for arbitrary L,
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-2.0×10-3
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-1.0×10-3
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5.0×10-4

 2  2.5  3  3.5  4

P B

L

FIG. 12. Plot of PB versus L for L � 4 in continuum percolation,
at ρ = 1.436 325 0 that is within the error margin of the estimated
critical point ρc = 1.436 325 05(10). The line connecting data points
is added for clarity.

although it is negligible for L � 3. It is nevertheless surprising
to see that the amplitude of finite-size corrections is small and
in order O(10−3) even for L = 2.

Why the finite-size correction in PB is so small in the 2D
continuum percolation model remains an open question. For
exactly solved lattice percolation models, the symmetry of the
lattice can lead to the absence of correction terms in the FSS
of PB, which is proved by Mertens and Ziff [60] on self-dual
lattices and self-matching lattices. Our results support that, in
the continuum percolation model for L � 3, PB is antisym-
metric around pc, which exactly holds for bond percolation
on self-dual lattices [52].

The critical polynomial PB can also be applied to study the
continuum percolation of other shaped objects, the nonplanar
Potts model in the FK representation, etc. PB is currently
defined in two dimensions. In more than two dimensions, one
can also define various types of wrapping probabilities ac-
cording to their topological properties. Is it possible to define
a quantity similar to PB from the combination of these wrap-
ping probabilities? With the great success of the application
of PB in two dimensions, it is very attractive to explore the
possibility. If found, then the quantity could have many appli-
cations, such as helping clarify the z dependence of zpc − 1
for equivalent-neighbor percolation models with d � 3.
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