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Site percolation on square and simple cubic lattices with extended neighborhoods
and their continuum limit
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By means of extensive Monte Carlo simulation, we study extended-range site percolation on square and simple
cubic lattices with various combinations of nearest neighbors up to the eighth nearest neighbors for the square
lattice and the ninth nearest neighbors for the simple cubic lattice. We find precise thresholds for 23 systems using
a single-cluster growth algorithm. Site percolation on lattices with compact neighborhoods of connected sites can
be mapped to problems of lattice percolation of extended objects of a given shape, such as disks and spheres, and
the thresholds can be related to the continuum thresholds ηc for objects of those shapes. This mapping implies
zpc ∼ 4ηc = 4.51235 in two dimensions and zpc ∼ 8ηc = 2.7351 in three dimensions for large z for circular
and spherical neighborhoods, respectively, where z is the coordination number. Fitting our data for compact
neighborhoods to the form pc = c/(z + b) we find good agreement with this prediction, c = 2dηc, with the
constant b representing a finite-z correction term. We also examined results from other studies using this fitting
formula. A good fit of the large but finite-z behavior can also be made using the formula pc = 1 − exp(−2dηc/z),
a generalization of a formula of Koza, Kondrat, and Suszcayński [J. Stat. Mech.: Theor. Exp. (2014) P11005].
We also study power-law fits which are applicable for the range of values of z considered here.
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I. INTRODUCTION

Percolation is an important model in statistical physics
[1,2] because of its fundamental nature and its many practical
applications, like liquids moving in porous media [3,4], for-
est fires problems [5,6], and epidemics [7,8]. Consequently,
researchers have devoted considerable effort to study it and
many valuable advances have been made.

Numerous lattice models have been widely investigated to
find the percolation threshold pc, which is a central quantity
of interest in this field, along with the critical exponents and
other related quantities. Among these lattice models, percola-
tion on lattices with extended neighborhoods is of interest due
to many reasons. (Here we define “neighborhoods” as the re-
gion of sites that connect to a given site by the extended-range
bonds.) For example, some problems related to 2D (two-
dimensional) bond percolation with extended neighborhoods
may provide a way to understand the spread of coronavirus
from a percolation point of view. In fact, many types of
systems can be studied with extended neighbors, because
the coordination number z can be varied over a wide range.
Bond percolation with extended neighbors has long-range
links similar to small-world networks [9] and is similar to
spatial models of the spread of epidemics via long-range links
[10]. Site percolation on lattices with extended neighborhoods
is related to problems of adsorption of extended objects on
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a lattice, such as disks and squares [11,12]. In addition, this
kind of lattice structure lies between discrete percolation and
continuum percolation, so further study will be helpful to es-
tablish the relationship between these two problems [11–13].

The study of percolation on lattices with extended ranges
of the bonds goes back to the “equivalent neighbor model”
of Dalton, Domb, and Sykes in 1964 [13–15], and many
papers have followed since. Gouker and Family [16] stud-
ied extended-range site percolation on compact regions in a
diamond shape on a square lattice, up to a lattice distance
of 10. Jerauld, Scriven, and Davis [17] studied both site and
bond percolation on body-centered cubic lattices with near-
est and next-nearest-neighbor bonds. Gawron and Cieplak
[18] studied site percolation on face-centered cubic lattices
up to fourth nearest neighbors. In a comprehensive work,
d’Iribarne, Rasigni, and Rasigni [19–21] studied site perco-
lation on all 11 of the Archimedian lattices (“mosaics”) with
extended-range connections up to the 10th nearest neighbors.
Malarz and Galam [22,23] introduced the idea of “complex
neighborhoods” where various combinations of neighbors,
not necessarily compact, are studied, and this has been fol-
lowed up by many subsequent works in two, three, and four
dimensions [24–28]. Koza and collaborators [11,12] stud-
ied percolation of overlapping objects on a lattice, and this
problem can be mapped to extended-range site percolation
as discussed below. Most of the earlier work involved site
percolation, but bond percolation has also been studied to
high precision in several recent works [29–33]. A theoretical
analysis of finite-z corrections for the bond thresholds has
recently been given by Frei and Perkins [34]. Some related
work on polymer systems has also appeared recently [35].
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FIG. 1. Neighbors of a central site (“0”) on a square lattice, up to
10th nearest neighbors.

Note that here we call this problem “extended-range perco-
lation” rather than “long-range percolation” because the latter
term has frequently been used to indicate infinte-range links,
with a decreasing size distribution such as by a power law (al-
though several of the extended-range papers referenced here
[16,21] use the “long-range” name). As mentioned above,
other names in the literature include “equivalent neighbors,”
[15], “medium-range percolation [36], and “complex neigh-
borhoods” [22].

Correlations between percolation thresholds pc and coordi-
nation number z and other properties of lattices have long been
discussed in the percolation field. Domb [13] argued that for
extended-range site percolation, the asymptotic behavior for
large z could be related to the continuum percolation threshold
ηc for objects of the same shape as the neighborhood of the
extended-range connections, and this argument has also been
advanced by others [11,12,21]. As discussed below, for large
z this implies that

pc ∼ 2dηc

z
, (1)

where d is the number of dimensions. Here ηc is the total
volume of adsorbed objects of the shape of neighborhood,
including overlapping volumes, per unit volume of the system,
at criticality in continuum percolation. In contrast, for bond
percolation, one expects that Bethe-lattice behavior to hold
for large z,

pc ∼ 1

z − 1
, (2)

because for large z and low p, the chance of hitting the same
site twice is vanishingly small and the system behaves basi-
cally like a tree. Thus, in both cases, one expects pc ∼ z−1 as
z → ∞, but with different coefficients.

In this paper, we focus on site percolation on the square
(SQ) and the simple cubic (SC) lattices, with various extended
neighborhoods, based on Monte Carlo simulation, using a
single-cluster growth algorithm. Diagrams of the SQ and SC

lattices showing neighbors up to the 10th and ninth nearest
neighbors, respectively, are shown in Figs. 1 and 2, and the
distances and multiplicities are shown in Tables I and II. Pre-
cise site percolation thresholds are obtained, and fits related
to the asymptotic behavior in Eq. (1) as well as power-law fits
are discussed.

Here we use the notation SC-a, b, . . . to indicate a sim-
ple cubic lattice with bonds to the ath nearest neighbor, the

(a) 1st plane (b) 2nd plane

(c) 3rd plane (d) 4th plane

FIG. 2. Four planes of the simple cubic lattice showing neighbors
up to the ninth nearest neighbors surrounding the site marked (“0”)
on the first plane.

bth nearest neighbor, etc., and likewise for the square lattice
(SQ). Other notations that have been used include (a, b, . . .)
[14], (aNN + bNN + · · · ) [22,26], [(a + 1)N + (b + 1)N +
· · · ] [24]. That is, in Ref. [24], “3N” signifies the next-nearest
neighbor (NNN), a distance

√
2 from the origin, while in

Ref. [22] that neighbor is called “2NN” indicating the second
nearest neighbor. We also call the second nearest neighbor “2”
as shown in Figs. 1 and 2.

The remainder of the paper is organized as follows. Sec-
tion II describes the numerical method and the underlying

TABLE I. Nearest-neighbor distances r and multiplicities on the
square lattice.

Neighbor r2 Number Total z

1 1 4 4
2 2 4 8
3 4 4 12
4 5 8 20
5 8 4 24
6 9 4 28
7 10 8 36
8 13 8 44
9 16 4 48
10 17 8 56
11 18 4 60
12 20 8 68
13 25 12 80
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TABLE II. Nearest-neighbor distances r and multiplicities on the
cubic lattice.

Neighbor r2 Number Total z

1 1 6 6
2 2 12 18
3 3 8 26
4 4 6 32
5 5 24 56
6 6 24 80
7 8 12 92
8 9 30 122
9 10 24 146
10 11 24 170
11 12 8 178
12 13 24 202
13 14 48 250

theory. Section III gives the threshold results. A detailed dis-
cussion of the results and a discussion of other works is given
in Sec. IV, and in Sec. V we present our conclusions.

II. METHOD AND THEORY

A. Simulation method

We use a single-cluster growth algorithm described in
previous papers [31,32,37]. We generate many samples of
individual clusters and put the results in bins in ranges of
(2n, 2n+1 − 1) for n = 0, 1, 2, . . .. Clusters still growing when
they reach an upper size cutoff are counted in the last bin.
From the values in the bins, we are able to find the quantity
P�s, the probability that a cluster grows greater than or equal
to size s, for s = 2n. From the behavior of this function, we
can determine if we are above, near, or below the percolation
threshold, as discussed below.

B. Basic theory

The method mentioned above depends on knowing the
behavior of the size distribution (number of clusters of size
s) ns(p). In the scaling limit, in which s is large and (p − pc)
is small such that (p − pc)sσ is constant, ns(p) behaves as

ns(p) ∼ A0s−τ f [B0(p − pc)sσ ], (3)

where τ , σ , and f (x) are universal, while A0 and B0 are
lattice-dependent “metric factors.” At the critical point, Eq. (3)
implies ns(pc) ∼ A0s−τ assuming f (0) = 1. For finite s at pc,
there are corrections to this of the form

ns(pc) ∼ A0s−τ (1 + C0s−� + · · · ). (4)

The probability that a point belongs to a cluster of size greater
than or equal to s is given by P�s = ∑∞

s′=s s′ns′ , and it fol-
lows by expanding Eq. (3) about p = pc and combining with
Eq. (4) that, for p close to pc and s large (see Refs. [31,32] for
more details),

sτ−2P�s ∼ A1[1 + B1(p − pc)sσ + C1s−�]. (5)

where A1, B1 and C1 are nonuniversal constants.
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FIG. 3. Plot of sτ−2P�s vs sσ with τ = 2.18905 and σ = 0.4522
for the SC-1,4 lattice under different values of p. The inset indicates
the slope of the linear portions of the curves shown in the main figure
as a function of p, and the central value of pc = 0.1503793 can be
calculated from the p intercept.

III. RESULTS

A. Results in three dimensions

With regard to the universal exponents of τ , �, and σ , in
three dimensions, relatively accurate and acceptable results
are known: 2.18906(8) [38], 2.18909(5) [39] for τ , 0.64(2)
[37], 0.65(2) [40], 0.60(8) [41], 0.64(5) [42] for �, and
0.4522(8) [38], 0.45237(8) [39], 0.4419 [43] for σ .

We set the upper size cutoff to be 216 occupied sites. Monte
Carlo simulations were performed on system size L × L × L
with L = 512 in three dimensions under periodic boundary
conditions. Some 109 independent samples were produced for
most of the lattices, except 3 × 108 when considering nth
nearest neighbors with n > 4. We chose τ = 2.18905(15),
� = 0.63(4), and σ = 0.4522(2). Here we take large error
bars on these values for the sake of safety. Then the number of
clusters greater than or equal to size s could be found based on
the data from our simulations, and the quantity sτ−2P�s could
be easily calculated.

First, we can see from Eq. (5) that if we use sσ as the
abscissa and sτ−2P�s as ordinate, then Eq. (5) predicts that
sτ−2P�s will convergence to a constant value at pc for large s,
while it deviates linearly from that constant value when p is
away from pc. Figure 3 shows the relation of sτ−2P�s versus
sσ for the SC-1,4 lattice under probabilities p = 0.150377,
0.150378, 0.150379, 0.150380, 0.150381, and 0.150382. A
steep rise can be seen for small clusters, due to the finite-size-
effect term (s−�). Then the plot shows a linear region for large
clusters. The linear portion of the curve become more nearly
horizontal when p is close to pc. The central value of pc can
then be deduced using these properties

d (sτ−2P�s)

d (sσ )
∼ B1(p − pc), (6)

as shown in the inset of Fig. 3, pc = 0.1503793 can be calcu-
lated from the p intercept of the plot of the above derivative
versus p.
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FIG. 4. Plot of sτ−2P�s vs s−� with τ = 2.18905 and � = 0.63
for the SC-1,4 lattice under different values of p.

When p is very close to pc, percolation thresholds can also
be estimated based on the s−� terms in Eq. (5). At p = pc,
there will be a linear relationship between sτ−2P�s and s−� for
large s, while for p �= pc the behavior will be nonlinear. A plot
of sτ−2P�s versus s−� for the SC-1,4 lattice under probabilities
p = 0.150377, 0.150378, 0.150379, 0.150380, 0.150381, and
0.150382, is shown in Fig. 4. Better linear behavior occurs
when p is very close to pc. If p is away from pc, we can see the
curves show an obvious deviation from linearity for large s.
The range 0.150379 < pc < 0.150380 can be concluded here,
which is consistent with the value we deduced from Fig. 3.

Comprehensively considering the two methods above, as
well as the errors for the values of τ = 2.18905(15) and
� = 0.63(4), we conclude the site percolation threshold of
the SC-1,4 lattice to be pc = 0.1503793(7), where the number
in parentheses represents the estimated error in the last digit.

The simulation results for the other 15 3D lattices we
considered are shown in the Supplemental Material [44] in
Figs. 1–30, and the corresponding thresholds are summarized
in Table III.

B. Results in two dimensions

In two dimensions the universal exponents of τ = 187/91,
� = 72/91, and σ = 36/91 are known exactly [2,46]. We
again set upper size cutoff to be 216 occupied sites. Monte
Carlo simulations were performed on system size L × L with
L = 16 384 under periodic boundary conditions. More than
3 × 108 independent samples were produced for each lattice.

Figures 5 and 6 show the plots of sτ−2P�s versus sσ and
s−�, respectively, for the SQ-1, …,8 lattice under probabilities
p = 0.095763, 0.095765, 0.095766, 0.095767, and 0.095769.
Similar to the analysis process of thee dimensions, we de-
duce the site percolation threshold of the lattice here to be
pc = 0.0957661(9). The simulation results for the other six
2D lattices we considered are shown in the Supplemental
Material [44] in Figs. 31–42, and the corresponding thresholds
are summarized in Table IV.

TABLE III. Site percolation thresholds for the simple cubic (SC)
lattice with combinations of nearest neighbors up to the ninth nearest
neighbors, showing the results found here and in previous works.

Lattice z pc (present) pc (previous)

SC-1,4 12 0.1503793(7) 0.15040(12) [26]
SC-3,4 14 0.1759433(7) 0.175 [15], 0.1686 [17]

0.20490(12) [26]
SC-1,3 14 0.1361470(10) 0.1420(1) [25]
SC-1,2 18 0.1373045(5) 0.136 [14], 0.137 [15]

0.1372(1) [25]
SC-2,4 18 0.1361408(8) 0.15950(12) [26]
SC-1,3,4 20 0.1038846(6) 0.11920(12) [26]
SC-2,3 20 0.1037559(9) 0.1036(1) [25]
SC-1,2,4 24 0.0996629(9) 0.11440(12) [26]
SC-1, 2, 3 26 0.0976444(6) 0.097 [15], 0.0976(1) [25]

0.0976445(10) [45]
SC-2,3,4 26 0.0856467(7) 0.11330(12) [26]
SC-1,2,3,4 32 0.0801171(9) 0.10000(12) [26]
SC-1, …,5 56 0.0461815(5) –
SC-1, …,6 80 0.0337049(9) 0.033702(10) [11]
SC-1, …,7 92 0.0290800(10) –
SC-1, …,8 122 0.0218686(6) –
SC-1, …,9 146 0.0184060(10) –

IV. DISCUSSION

A. Analysis of our results

In Tables III and IV, we compare our results with previous
values, which are shown in the last column of each table.
Our results here are at least two orders of magnitude more
precise than most previous values. For some lattices, we get
new thresholds that apparently were not studied before.

For several lattices in three dimensions, we find significant
differences in the threshold values from those of Refs. [25]
and [26]. There are several reasons to believe our values
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FIG. 5. Plot of sτ−2P�s vs sσ with τ = 187/91 and σ = 36/91
for the SQ-1, …, 8 lattice under different values of p. The inset indi-
cates the slope of the linear portions of the curves shown in the main
figure as a function of p, and the predicted value of pc = 0.0957661
can be calculated from the p intercept.
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FIG. 6. Plot of sτ−2P�s vs s−� with τ = 187/91 and � = 72/91
for the SQ-1, …, 8 lattice under different values of p.

are correct. For example, for the SC-1,2,3,4 lattice, we find
pc = 0.0801171(9) compared to the value pc = 0.10000(12)
given in Ref. [26]. But the latter cannot be correct as it is
higher than the value ≈0.097 for the SC-1,2,3 lattice found
by others as well as by us. If one neighborhood is a subset of
another’s, its threshold must be higher, not lower. Likewise,
the threshold for SC-2,3,4 should be lower than that of SC-2,3,
but it was found to be higher in Ref. [26]. Our results also
make sense because they consistently follow the expected
asymptotic scaling discussed below.

Our results in two dimensions are consistent with previous
works. It is interesting to point out that the early series re-
sults of Dalton, Domb, and Sykes [14,15] are all substantially
correct to the number of digits given (three), and the same
is true of the work of d’Iribarne et al. [21]. Note that the
model SQ-1,2 is just the matching lattice to site percolation
on a simple square lattice, so its threshold is 1 − pSQ

c = 1 −
0.59274605 . . ..

Some of the models considered here were previously
studied by Koza et al. in the context of the percolation of
overlapping objects on a lattice [11]. These authors considered
squares of size k × k and cubes of size k × k × k, randomly
distributed in an overlapping manner on square or cubic
lattices. The critical number (per site) of these objects for
percolation between neighboring occupied sites defines the

TABLE IV. Site percolation thresholds for the square (SQ) lattice
with compact neighborhoods up to the eighth nearest neighbors.

Lattice z pc (present) pc (previous)

SQ-1,2 8 0.4072531(11) 0.40725395 …[47]
SQ-1,2,3 12 0.2891226(14) 0.292 [15],

0.290(5) [16], 0.288 [24]
SQ-1,2,3,4 20 0.1967293(7) 0.196 [24]

0.196724(10) [45]
SQ-1, …,5 24 0.1647124(6) 0.164 [24], 0.163 [21]
SQ-1, …,6 28 0.1432551(9) 0.142 [21]
SQ-1, …,7 36 0.1153481(9) 0.113 [21]
SQ-1, …,8 44 0.0957661(9) 0.095765(10) [11], 0.095 [21]

FIG. 7. Adsorption of a 2 × 2 object on a square lattice. (a) The
object, showing the index site in one corner. (b) The four places
where an object can cover the filled-in site. (c) The 20 places where
additional objects can be placed that will overlap or border the shaded
object; shown are the 20 index sites of those objects, and the outlines
of some of them (after Ref. [11]).

threshold pc. Thus, if you pick one point on each object, such
as the center or a corner, as the “index site,” then pc is the
number of these index sites divided by the total number of
sites on the lattice at the critical point. An example of an index
site for a 2 × 2 square is shown in Fig. 7(a).

We define φ(k) as the fraction of sites on the lattice covered
by the squares or cubes, with a value φc(k) at the percolation
point. This quantity can be related to pc defined above by the
following argument [11]: Consider an arbitrary lattice site in
the system; that site will be covered by an object if there is any
index site of any object within a region of volume kd around
that point, as shown in Fig. 7(b) for 2 × 2 objects in two
dimensions. The probability that the site is empty is equal to
the probability that there are no index sites within that region,
(1 − pc)kd

. Consequently, the probability the site is occupied,
which is just φc(k), is given by φc(k) = 1 − (1 − pc)kd

. Solv-
ing for pc, yields

pc = 1 − (1 − φc(k))1/kd
(7)

Values of φc(k) from [11] and the resulting pc are given in
Tables VII and VIII. Percolation of overlapping objects can
be mapped to extended-range percolation between the index
sites. The effective neighborhoods of those sites is determined
by a simple geometric construction and is essentially the same
shape as the object but twice as large [12]. In Fig. 7(c) we
show the situation for a 2 × 2 object on a square lattice. There
are 20 total sites (not counting the index site of the original
object) corresponding to the index sites of additional objects
that border or overlap the original object. Thus, this system is
equivalent to an extended-range percolation problem with z =
20. The neighborhood can be seen to include up to the fourth
nearest neighbors: SQ-1,2,3,4. The value φc(2) = 0.58365(2)
found in Ref. [11] translates to pc = 0.196724(10), which is
consistent with our value 0.1967293(7). Likewise, the overlap
of 3 × 3 squares corresponds to extended-range percolation
on the SQ-1, …,8 lattice with z = 44, and the value of Koza
et al. φc(3) = 0.59586(2) corresponds to pc = 0.095765(10)
compared to our measured value of 0.0957661(9). In three di-
mensions, Koza et al. find φc(2) = 0.23987(2) for 2 × 2 × 2
objects, which corresponds to the SC-1, …,6 system with z =
80, and by Eq. (7) yields pc = 0.033702(10), compared to
our value of 0.0337049(9). In general, for the overlap of kd
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squares and cubes on a lattice, the coordination number of the
equivalent extended-range percolation problem is given by

z =
{

(2k + 1)2 − 5 (in two dimensions)
(2k + 1)3 − 12(2k) + 3 (in three dimensions)

. (8)

These formulas represent in two dimensions a square of
dimension 2k + 1 with the corners missing, and in three di-
mensions a cube of dimension 2k + 1 with a column missing
from each edge, as well as the center sites missing in both
cases.

When k becomes large, these models limit to the percola-
tion of aligned squares or cubes on a continuum, something
that has also been studied precisely [33,48]. Then φc(k) limits
to φc for the continuum systems. One also defines ηc as the
total area or volume of the objects placed or adsorbed in the
system, including the volume of the overlapped parts, divided
by the volume of the system, and is related to φc by

φc = e−ηc (9)

Note that ηc can be greater than 1, which is the case for most
2D systems, while φc < 1 always. Koza et al. [11,12] consider
an approximation to find pc for kd objects with large but finite
k by replacing φc(k) by the continuum limit φc in Eq. (7). We
will discuss this approximation more below.

B. Asymptotic behavior for large z

Here we generalize the discussion of the relation between
percolation on a continuum and lattice percolation for neigh-
borhoods of a general shape, to find a formula for the large-z
behavior of pc. This analysis will apply to the systems we
studied with compact neighborhoods, which are all in two
dimensions, and most in three dimensions.

We consider a continuum system of volume V with the
random placement of N overlapping objects of a given shape.
The continuum percolation threshold ηc represents the total
volume fraction of the adsorbed objects, including the over-
lapping volume, at the critical point:

ηc = ad rd N

V
, (10)

where r is the radius or other length scale of the object and
ad rd is its volume, with ad depending upon its shape. We
use the terminology “adsorbed” to indicate that the object is
placed or superimposed on the system. For example, for disks
of radius r, a2 = π , and for squares of side L we have r = L/2
and a2 = 4. Covering the space occupied by the objects with
a fine lattice, we see that the system maps to site percolation
with extended neighbors of essentially the same shape but
with a length scale 2r about the central point, because two
objects of length scale r will just touch when the centers are
separated a distance 2r. (This is similar to the concept of
a sphere of influence for hard-sphere systems in statistical
mechanics.) Now the ratio N/V corresponds to the site oc-
cupation threshold pc of index sites of the objects, assuming
one index site per object and the total volume is just the total
number of sites in the fine lattice. Thus we are assuming one
unit of volume per site. For example, we saw in the previous
section that the effective neighborhoods of squares of size k
are squares of side 2k + 1 with the corners cut out, so those

TABLE V. Values of zpc from our simulation results for the SC

and SQ lattices with various compact neighborhoods.

Neighbors zpc (SC) zpc (SQ)

1,2 2.471481 3.258025
1,2,3 2.538754 3.469471
1,2,3,4 2.563747 3.934586
1, …,5 2.586164 3.953098
1, …,6 2.696392 4.011143
1, …,7 2.675360 4.152532
1, …,8 2.667969 4.213708
1, …,9 2.687276 –

squares of influence are roughly twice as large as the object
and roughly the same shape [Fig. 7(c)]. The effective z is
equal to the number of sites within that region of influence
of length scale 2r, so that z = ad (2r)d , again assuming one
unit of area per sites. (Note, technically z here should be z + 1
because it should include the origin which is not counted as
a nearest neighbor, but we ignore that difference here.) Then
from Eq. (10) it follows that

zpc = 2dηc, (11)

This should describe the behavior of pc for large z where the
objects become similar to a continuum.

For circular neighborhoods in two dimensions, where ηc

of a disk equals 1.128087 [33,48–51], one should thus expect
from Eq. (11)

pc = 4.51235

z
, (12)

while for spherical neighborhoods in three dimensions, where
ηc for spheres equals 0.34189 [52–54], one should expect

pc = 2.7351

z
. (13)

Interestingly, in Ref. [15], Domb and Dalton observed that
for site percolation in three dimensions, pc ≈ 2.7/z, consis-
tent with Eq. (13). In Ref. [13] Domb related that coefficient
to continuum percolation threshold, which of course was not
known to high precision at that time.

In Table V we show the values of zpc under different
coordination numbers both in two and three dimensions. As z
increases, the values of zpc show a trend of growth in general
toward these predicted values.

C. Finite-z correction

We find that this finite-z effect can be accurately taken
into account by assuming pc = c/(z + b) where b and c are
constants. We can also write this relation as

z = c/pc − b. (14)

If we plot z versus 1/pc, one can directly get the value of c
from the slope and −b from the intercept. Figure 8 shows such
a plot for the lattices we studied with compact neighborhoods.
Indeed we find c = 2.722 (3D) and c = 4.527 (2D), both close
to the predictions c = 2dηc in Eqs. (12) and (13).
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FIG. 8. Plots of z vs 1/pc for the lattices with compact nearest
neighborhoods: (a) Simple cubic lattice in three dimensions. The
slope gives c = 2.722, compared with the prediction 2.7351 from
Eq. (13). (b) Square lattice in two dimensions. The slope gives
c = 4.527, compared with the prediction 4.51235 from Eq. (12).

To find this fitting form, we considered a variety of other
plots, including pc versus 1/z, zpc versus z−x, ln pc versus
ln z, etc. The plot of z versus 1/pc seemed to give the best
fit in both two and three dimensions, suggesting that adding
a constant b to z is an accurate way to take into account the
finite-z corrections to the asymptotic continuum percolation
formula. The values of b vary somewhat and are sensitive to
the number of points used in the fit. The main purpose of
making these plots is to find a good estimate of the asymptotic
value of c = 2dηc.

D. Analysis of other works

There have been several other works looking at site
percolation on compact extended-range systems, and it is in-
teresting to compare those results with those found here.

As mentioned above, some previous works involved
extended-range systems with square and cubic neighbor-
hoods. For the continuum percolation of aligned squares, one
has ηc = 1.0988428 [48,53,55], which by Eq. (11) implies the
asymptotic behavior

zpc = 4ηc = 4.39537, (15)

while for aligned cubes one has ηc = 0.324766 [12,56], im-
plying

zpc = 8ηc = 2.59813. (16)

In a relatively early work, Gouker and Family [16] studied
diamond-shaped neighborhoods (rotated squares) on a square

TABLE VI. Values of pc for diamond-shaped neighborhoods
on a SQ lattice of Gouker and Family [16] and the corresponding
neighborhoods and z.

R SQ neighbors z pc zpc

2 1, 2, 3 12 0.29 3.48
4 1, 2, 3, 4, 5, 6, 7, 9 40 0.105 4.20
6 1, 2, 3, …, 13 (partial), 14, 18 84 0.049 4.12
8 . . . 144 0.028 4.03
10 . . . 220 0.019 4.18

lattice, with a lattice distance of R steps from the origin. In
Table VI we show their results along with the corresponding
z for each R. Their system for R = 2 corresponds to the SQ-
1,2,3 system studied here and is included in Table IV. Figure 9
gives a plot of z versus 1/pc and shows that their data are also
consistent with our general form, Eq. (1). The neighborhood
here is effectively a square rotated by 45◦, and the slope 4.175
is obtained from the data fitting. This value is somewhat lower
than the prediction in Eq. (15) but not inconsistent considering
the relatively low precision of their results.

More recently, Koza et al. [11] and Koza and Pola [12]
studied overlapping squares, cubes, and higher-dimensional
hypercubes. As discussed above, their results for a critical
coverage fraction φc(k) can be translated to a site percolation
threshold according to Eq. (7), with z given by Eq. (8). In
Tables VII and VIII we give the results for pc and z and
plot them in Fig. 10. Data fittings give c = 4.398 for two
dimensions, consistent with Eq. (15), and c = 2.617 for three
dimensions, consistent with Eq. (16).

Very recently, Malarz [28] has studied site percolation
on various neighborhoods on the triangular lattice, includ-
ing hexagonal shells around the origin, which is somewhat
analogous to the shells Gouker and Family considered on
the square lattice. Previously, d’Iribarne et al. [21] had also
studied this system with neighbors up to the 10th, to lower

0 10 20 30 40 50 60
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50

100

150

200

250

z

1/pc

y=4.175x-1.652

FIG. 9. Plot of z vs 1/pc for the diamond-shaped neighborhood
on a SQ lattice, with the lattice distance R = 2, 4, 6, 8, and 10 from
left to right, using the data of Ref. [16]. The slope gives c = 4.175.
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TABLE VII. Values of pc for 2D systems related to the overlap
of k × k objects on a SQ lattice, from Koza et al. [11]. Here pc is
deduced from φc using Eq. (7), and z = 4k2 + 4k − 4 Eq. (8).

k z φc pc zpc

2 20 0.58365(2) 0.196724(10) 3.9345(2)
3 44 0.59586(2) 0.095765(10) 4.2137(2)
4 76 0.60648(1) 0.0566227(15) 4.3033(1)
5 116 0.61467(2) 0.037428(2) 4.3416(2)
7 220 0.62597(1) 0.0198697(5) 4.3713(1)

10 436 0.63609(2) 0.0100576(5) 4.3851(2)
20 1676 0.65006(2) 0.0026215(1) 4.3937(2)

100 40 396 0.66318(1) 0.000108815(6) 4.3957(2)
1000 4 003 996 0.66639(2) 1.0978 ×10−6 4.3955(1)

10 000 400 039 996 0.66674(2) 1.0988 ×10−8 4.3958(1)

precision. The data from both of these studies for hexagonal
neighborhoods are shown in Table IX and the z versus 1/pc

plot is shown in Fig. 11. Again a good fit is seen. Note that
the continuum threshold φc or ηc for aligned hexagons is not
known, but presumably it is close to the case of disks, and
indeed the value we find c = 4.467 is not far from the value
4.51235 predicted by Eq. (12) for disks. When we use just the
three precise values of Malarz, we get c = 4.517. Finally, if
we use the ten values of d’Iribarne et al., which represents
compact connection neighborhoods but of different shapes,
we get c = 4.434, but with more scatter.

It is interesting to note that the threshold for the three-
shelled hexagon TR-1, …,5, pc = 0.115740(36), with z = 36,
is nearly identical to the threshold pc = 0.1153481(9) for
SQ-1, …,7, which is in the shape of an octagon (see Fig. 1)
and also has z = 36, showing that the coordination number z
appears to be the principal determinant of the thresholds of
systems with extended compact neighborhoods, with the lat-
tice type and neighborhood shape seemingly less important.

E. Exponential form of finite-z behavior

Going back to the formula of Koza et al. Eq. (7), we recall
that these authors proposed an approximation for large but
finite z by replacing φc(k) by the continuum value φc, and

TABLE VIII. Values of pc and zpc deduced from the overlap of
k × k × k objects on a cubic lattice, from Koza et al. [11]. Here pc is
deduced from the Eq. (7) and z = 8k3 + 12k2 − 18k + 4, Eq. (8).

k z φc pc zpc

2 80 0.23987(2) 0.033702(3) 2.6962(3)
3 274 0.23436(1) 0.0098417(5) 2.6966(1)
4 636 0.23638(1) 0.0042050(2) 2.6744(1)
5 1214 0.23956(2) 0.0021885(2) 2.6568(3)
7 3210 0.24550(1) 0.00082095(4) 2.6352(1)

10 9024 0.25197(1) 0.00029027(1) 2.6194(1)
20 68 444 0.26246(2) 3.8054(3)×10−5 2.6045(2)

100 8 118 204 0.27389(1) 3.2005(1)×10−7 2.5983(1)
1000 8 011 982 004 0.27694(2) 3.2426(3)×10−10 2.5978(2)

10 000 8.0012×1012 0.27723(2) 3.246(1)×10−13 2.5974(9)
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FIG. 10. Plots of z vs 1/pc for (a) 2D systems related to the
overlap of k × k objects on a SQ lattice for k � 20, and (b) 3D
systems related to the overlap of k × k × k objects on a SC lattice
for k � 10, from the work of Koza et al. [11]. Here pc is deduced
from φc using Eq. (7). The slopes give c = 4.398 for two dimensions
and c = 2.617 for three dimensions. The large value of b found in
the 3D case is a artifact of the large range of z and is very sensitive
to the number of points being used in the fit.

(2k)d by z, yielding

pc = 1 − exp(−2dηc/z) (17)

To get this formula we also substituted φc = exp(−ηc) by
Eq. (9).

Now we suppose that this formula also applies to a system
of any shape of neighborhoods, using the corresponding val-
ues of ηc and z for that system. This is because the derivation
of Eq. (17) is essentially independent of the shape of the
neighborhood. Note that this formula also does not depend
upon the type of lattice (square, triangular, etc.)—all that

TABLE IX. Values of pc for the triangular lattice (TR) with
hexagonal-shaped neighborhoods, from Malarz [28] and d’Iribarne
et al. [21].

Lattice z pc from [28] pc from [21]

TR-1 6 0.500029(46) 0.500
TR-1,2,3 18 0.215484(19) 0.215
TR-1, …,5 36 0.115847(21) 0.115
TR-1, …,8 60 0.071
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FIG. 11. Plot of z vs 1/pc for the triangular lattice with compact
hexagonal neighborhoods, from the work of Refs. [28] and [21]. The
slope gives c = 4.467.

matters is the number of nearest neighbors z and the shape
of the neighborhood which determines ηc. This is because for
any lattice, for compact neighborhoods with z nearest neigh-
bors, the number of sites in the equivalent object-adsorption
problem is (z/2)d . The area per lattice site effectively cancels
out.

When z is large, Eq. (17) yields

zpc = 2dηc − 1

2

(2dηc)2

z
+ · · · . (18)

The leading term yields the asymptotic formula Eq. (11), and
this represents another derivation of that result. The next-order
term implies that b in Eq. (14) is given by b = 2d−1ηc = c/2.
This prediction does not agree accurately with the values we
found, which suggests that this form Eq. (17) requires further
corrections to accurately capture the finite-z corrections.

In Table X we show that, for various 2D compact systems,
Eq. (17) gives better estimates for pc than Eq. (11). Here
we use ηc appropriate for disks. We also consider the results
when replacing z by z + 1, to account for the center site
in calculating the effective area, and in general find even a
better fit to the measured values. We note that Koza et al.
also discuss additional corrections to their formula for squares
and cubes, and perhaps these ideas apply to systems of other
neighborhood shapes. Further investigation of this formula for
different neighborhood shapes and dimensions is an area for
future study.

F. Power-law fitting

Finally, we consider power-law fitting of the thresholds,
since this has been considered in several other papers. Even
though such fittings do not obey the necessary asymptotic
behavior ∼z−1, they are useful to give good estimates for
finite-z systems. For example, in Ref. [25], it was found that
the site thresholds for several 3D lattices can be fitted by
pc(z) ∼ z−a, with a = 0.790(26). For bond percolation, it was
found that a = 1.087 for many lattices in four dimensions [31]
and a = 1.111 in three [32]. Other formulas have also been

TABLE X. Comparison of using Eqs. (11) and (17) to estimate
pc for some compact systems in two dimensions, with ηc = 1.128087
appropriate for disks. Data are from other tables in this paper. Note
we have two systems with z = 36 and therefore identical estimates
for pc. In general, it can be seen that Eq. (17) gives much better
results than Eq. (11). *The numbers with asterisks show the results
when z is replaced by z + 1 in both formulas, corresponding to in-
cluding the origin in the number of sites. This substitution generally
improves the overall accuracy of the results.

System z pc pc, Eq. (11) pc, Eq. (17)

TR-1,2,3 18 0.215459(36) 0.25069 0.22173
0.23749* 0.21140*

SQ-1,2,3,4 20 0.1967293(7) 0.22562 0.20198
0.21487* 0.19336*

SQ-1, …,7 36 0.1153481(9) 0.12534 0.11781
TR-1, …,5 36 0.115740(36) 0.12196* 0.11481*
SQ-1, …,7,9 40 0.105 0.11281 0.10668

0.11006* 0.10422*
SQ-1, …,8 44 0.0957661(9) 0.10255 0.097470

0.10027* 0.095411*
TR-1, …,8 60 0.071 0.07521 0.07245

0.07397* 0.07130*

proposed to correlate percolation thresholds with z and other
lattice properties [57–59], but we do not pursue them here.

Figure 12 shows a log-log plot of pc versus z for lattices
with compact nearest neighborhoods both in two dimensions
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FIG. 12. Log-log plots of pc vs z for the lattices with compact
nearest neighborhoods: (a) Simple cubic lattice in three dimensions.
The slope gives an exponent of a = 0.960, and the intercept (z = 1)
of the line is at ln pc = 0.799. (b) Square lattice in two dimensions.
The slope gives an exponent of a = 0.844, and the intercept of the
line is at ln pc = 0.867.
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and 3D. The percolation thresholds decrease monotonically
with the coordination number, and linear behavior implies that
the dependence of pc on z follows a power law pc ∼ cz−a.
Data fittings lead to a = 0.960 for 3D site percolation and a =
0.844 for 2D site percolation.

V. CONCLUSIONS

To summarize, we have carried out extensive Monte Carlo
simulations for site percolation on square and simple cubic
lattices with various combinations of nearest neighbors, and
found precise estimates of the percolation threshold for 16
3D systems and seven 2D systems, based upon an effective
single-cluster growth method. Site percolation on lattices with
some compact neighbors can be mapped to the problems of
adsorption of extended objects on a lattice, such as disks and
spheres, and also k × k × k cubes (or k × k squares) on a
cubic (or square) lattice as investigated by Koza et al. [11,12].

For large z, we predicted their continuum limits of zpc =
2.7351 for 3D site percolation and zpc = 4.51235 for 2D site
percolation, by mapping to the percolation of overlapping
spheres (or disks) in a continuum.

The finite-z effects in the simulation can be accurately
taken into account by writing (z + b)pc = c. The values of c
that we found were consistent with the continuum percolation
predictions 2dηc. The values of b, which were found by the in-
tercepts in our plots of z versus 1/pc, varied over a fairly wide
range for different shaped neighborhoods, and are sensitive to
the number of points used in the fit.

Another approach to the finite-z behavior can be found by
generalizing the approach of Koza et al. to objects (and neigh-
borhoods) of any shape, implying Eq. (17). We can get even

better fits to the measurements by replacing z by z + 1. This
intriguing formula deserves further study for neighborhoods
of different shapes and in different dimensions.

We also looked at power-law correlations between site
threshold and coordination number for the lattices with com-
pact neighborhoods, and found that the thresholds decrease
monotonically with the coordination number according to
pc ∼ cz−a, with the exponent a = 0.960 in three dimensions
and a = 0.844 in two. While these power laws fit the data
well in the range of the values of z we considered, they are not
correct asymptotically for large z.

Some areas for future work include studying different lat-
tices, including analyzing the extensive results of d’Iribarne
et al. [21] for all 11 Archimedean lattices, looking at various
shapes of neighborhoods (such as hexagons and octagons),
and going to higher dimensions. This will help to understand
the application of various approaches to fitting the data, such
as Eqs. (1), (17), and (14) and power-law fits. Lattices with
extended neighborhoods interpolate between discrete perco-
lation and continuum percolation. Through the work of this
paper, as well as former studies [13,28,31,60], one can have
a deeper understanding of the relationship between these two
limiting systems.
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