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In this work we consider search problems that evaluate the probability distribution of finding the source
at each step in the search. We start with a sample strategy where the movement at each time step is in the
immediate neighborhood. The jump probability is taken to be proportional to the normalized difference between
the probability of finding the source at the jump location with the probability of finding the source at the present
location. We evaluate a lower bound on the average search time for a searcher using this strategy. We next
consider the problem of evaluating the lower bound on the search time for a generic strategy which would utilize
the source probability distribution to figure out the position of the source. We derive an expression for the lower
bound on the search time. We present an analytic expression for this lower bound in a case in which the particles
emitted by the source diffuse in a homogeneous manner. For a general probability distribution with entropy E ,
we find that the lower bound goes as eE/2.
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I. INTRODUCTION

Searching for a source that emits particles is a problem that
is quite ubiquitous. We see this all the way from a bacteria
searching for the source of chemoattractants [1], to a robot
figuring out the source of a gas leak in a room [2]. Search time
is defined as the time required to find the source by a searcher.
This is similar to the first passage time: the first time the
searcher reaches the position occupied by the source. There
is a lot of theoretical work done in this area [3]. One could
classify search strategies into two broad categories: searches
with cues and searches without cues. Searches without cues
involve intermittent search strategies such as [4–7]. Cue-based
searches can be divided into two categories. On one end we
have chemotactic search strategies that measure concentration
gradients where the concentrations involved are much larger
than their fluctuations. The signal-to-noise ratio depends on
time averaging and can be improved by increased waiting
times. This is the realm of searches done by eukaryotic organ-
isms. Robot tracking chemotactic [8–10] or plume tracking
strategies [11–13] also are designed for high concentration
environments. In the case in which the signal-to-noise ratio
is weak, the waiting times are quite large. Moths are known
to work in this regime to locate their mates through pre-
hormones [14–17]. Robots that work in these realms where
signal-to-noise ratio is weak are considered in [18–20]. In
such low signal-to-noise ratio environments, the measure-
ments involve hits from signaling molecules given out by the
source, followed by time intervals without hits. A search strat-
egy presented in literature that utilizes the information from
sporadic hits detected by the searcher to guess the position of
the source, is infotaxis [21,22].

A searcher moving through an environment of particles
emitted by a source has a history of hits at times t1, . . . , tn at
positions �r(t1), . . . , �r(tn). These make up the cues that provide
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all the information from the environment. This information
could be utilized in deciding a future direction of motion in
many ways. One important quantity that could be measured is
the probability of finding the source at any location in space.
One could use Bayes’ theorem to evaluate this as

P[�r|�r(t1), . . . , �r(tn)] = P[�r(t1), . . . , �r(tn)|�r]∑
x P[�r(t1), . . . , �r(tn)|�x]

. (1)

Here P[�r|�r(t1), . . . , �r(tn)] is the probability of finding the
source at position �r given hits at positions �r(t1), . . . , �r(tn)
and P[�r(t1), . . . , �r(tn)|�x] is the probability of hits happening
at positions �r(t1), . . . , �r(tn) given the source is at position �x.
Infotaxis [21] utilizes this probability to evaluate the entropy
of the source. The motion of the searcher at each step isin a di-
rection in which the expected information gain is a maximum.
Given the complexity of the search algorithm, evaluating the
search time analytically for a searcher undergoing infotaxis
is difficult. Given this issue, the question arises whether it
would be possible to evaluate the search times for a class of
cue-based searches, and any statement be made about certain
universal features such as lower bound on these search times.

Evaluation of lower bounds are ubiquitously important in
any problem related to measurement. Take the case of the-
oretically evaluated lower bounds on errors in measurement
of chemoattractant concentration [23], chemoattractant gra-
dients [24] by living cells, which show that cells approach
an optimum design for these measurements. Similarly, lower
bounds on search times are an important aspect of study in the
sciences. For example, a lower bound for query time in nearest
neighbor searches was investigated in [25,26]. Lower bound
on search time during randomized searching on m rays was
studied in [27]. Lower bounds on search times in search strate-
gies involving a searcher figuring out the searchers position
based on particles emitted by the source are useful, because
they could access the effectiveness of machines constructed
to do these searches. In past works the only lower bounds
evaluation using the probability of finding the source by the
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searcher was done in [21]. In that work the search time was
bounded by e|S|, where S is the entropy of the probability
distribution of the source position. In this work we begin with
a strategy that utilizes past cues to evaluate the probability
distribution of finding the source at each step. The searcher at
each step moves in an immediate neighborhood location, with
a probability proportional to the normalized difference in the
probabilities (of finding the source), evaluated at the present
and the immediate neighborhood location. We then evaluate a
lower bound on the search times in the case of homogeneous
diffusion of particles emitted by a source, as a function of
distance of the searcher from the source. We next consider
the problem of evaluating the lower bound on the search time
for a generic strategy which would utilize information in the
source probability distribution to figure out the position of
the source. We derive an expression for the lower bound on
the search time. We evaluate an analytical expression for this
lower bound in the case of homogeneous diffusion of particles
emitted by the source.

II. NARROWING THE SOURCE

Let us assume that the source emitting particles is located
at the origin. Assume the searcher has traversed a particular
trajectory, such that the position of the searcher as a function
of time t ′ for this trajectory is r(t ′). The searcher travels for a
total time t , with �r(t ) = �r f and �r(0) = �ri, respectively being
the initial and final positions of the searcher in its trajectory. A
searcher moving through an environment of particles emitted
by a source has a history of hits at times t1, . . . , tn, occurring
at positions �r(t1), . . . , �r(tn). We have

P[�r|�r(t1), . . . , �r(tn)]

= exp
{− ∫ t

0 P[�r(t ′)|�r]
}
dt ′P[�r(t1), . . . , �r(tn)|�r]∑

x exp
{− ∫ t

0 P[�r(t ′)|�x]
}
dt ′P[�r(t1), . . . , �r(tn)|�x]

. (2)

Here, P[�r(t1), . . . , �r(tn)|�r] is the probability of having hits
at positions �r(t1), ..., �r(tn), given the source is at position
�r. The exponentials correspond to the probability of no hits
happening at the other locations along the trajectory. Because
the hits are independent of each other and can happen at any
time, we have

P[�r(t1), . . . , �r(tn)|�r] = S( �r1|�r) · · · S( �rn|�r). (3)

Here S( �r1|�x) is the normalized concentration of particles at
location �r1, assuming the source is at �x. This is simply because
the probability of having hits at location �r1 should be equal
to the normalized concentration of particles at location �r1.
We will be using the normalized concentration of particles at
a particular location interchangeably with the probability of
having hits at the location in this paper. Hence,

P(�r| �r1, . . . , �rn)

= exp
{− ∫ t

0 S[�r(t ′)|�r]dt ′}S( �r1|�r) · · · S( �rn|�r)∑
x exp

{− ∫ t
0 S[�r(t ′)|�x]dt ′}S( �r1|�x) · · · S( �rn|�x)

.

(4)

We assume that the searcher has an analytical expression for
the distribution of particles emitted by the source, given the
source location.

The probability that the hits occurred at these positions is
simply

e− ∫ t
0 {S[�r(t ′ )|0]}dt ′

S( �r1|�0) · · · S( �rn|�0). (5)

If we were to construct an average measure of the probability
of finding the source at �r, the way forward would be to convo-
lute Eq. (4) with the probability of realizing a single trajectory
and summing over all trajectories. We hence get the average
probability of finding the source at �r to be

P(�r) =
∫ �r(t )= �r f

�r(0)=�ri

D�r(τ )
∑

n=1,∞

1

n!

∫
path

dr1

∫
path

dr2 · · ·
∫

path
drne− ∫ t

0 {S[�r(t ′ )|�r]+S[�r(t ′ )|0]}dt ′
S( �r1|�0) · · · S( �rn|�0)

× S( �r1|�r) · · · S( �rn|�r)∑
x e− ∫ t

0 S[�r(t ′ )|�x]dt ′S( �r1|�x) · · · S( �rn|�x)
. (6)

Here,
∫ �r(t )= �r f

�r(0)=�ri
D�r(τ ) is a path integral summing over all possible trajectories starting from �r(0) = �ri and ending at �r(t ) = �r f .∫

path refers to an integral over a particular path in the path integral.
∫

path dr1
∫

path dr2 · · · ∫path drn considers all possible ways of

realizing n hits on the path and 1
n! exists to prevent overcounting. It is obvious that if our trajectory took an infinite time we

would have the best narrowing of the source location. Hence, the best possible average probability distribution possible is

P∞(�r) =
∫ �r(t )= �r f

�r(0)=�ri

D�r(τ )
∑

n=1,∞

1

n!

∫
path

dr1

∫
path

dr2 · · ·
∫

path
drne− ∫ ∞

0 {S[�r(t ′ )|�r]+S[�r(t ′ )|0]}dt ′
S( �r1|�0) · · · S( �rn|�0)

× S( �r1|�r) · · · S( �rn|�r)∑
x e− ∫ ∞

0 S[�r(t ′ )|�x]dt ′S( �r1|�x) · · · S( �rn|�x)
. (7)

Let us assume for illustrative purposes that S( �r1|�x) =
S(| �r1 − �x|). Also, let us assume that S is appreciable only
up to a distance L away from the source. Because of the

presence of terms such as S( �r1|�0)S( �r1|�r), the average prob-
ability distribution of finding the source evaluated above is
appreciable over a distance 2L, as long as we are considering
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trajectories of lengths a few orders larger than L. This implies
that the probability distribution measured by the searcher will
not narrow the source better compared to the probability dis-
tribution of particles emitted by the source S. If we consider
the limit in which t → 0 in Eq. (6), we can see that the
probability distribution measured by the searcher is centered
at the searcher position. The measured probability distribution
is similarly in general not centered at the location of the source
for other values of t . This implies that the measured probabil-
ity distribution by the searcher cannot narrow the source better
than S(�x).

III. EXAMPLE STRATEGY

Let us consider a search strategy in which the prob-
ability to jump to a neighboring location is proportional
to the normalized difference in the probability of find-
ing the source from its present location. The probabil-
ity for the searcher to jump to the nearest neighbor
(x + dx, y) on an average would go as �(x + dx, y) =
β�[P(x + dx, y) − P(x, y)] [P(x+dx,y)−P(x,y)]

P(x,y) . Let us also use α

to label the jump probability, in a case in which the probability
of finding the source as the present site is the same as the
neighboring site. P(x, y) is the average probability of finding
the source at position (x, y), which is evaluated by the searcher
using the Bayes theorem as described by Eq. (6). �(x) is
defined as

�(x) =
{

1, if x > 0
0, otherwise. (8)

Let the average time to reach the source from position (x, y)
be T (x, y). As derived in the Appendix,

0 = −P(x, y) − 2β∇T (x, y) · ∇P(x, y) − βT (x, y)∇2P(x, y)

+αβ∇2T (x, y). (9)

Consider a simple case where the probability distribution
has a radial symmetry with the source located at r = 0. The
above equation then becomes

0 = −P(r) − β
∂T (r̄)

∂r

∂P(r̄)

∂r
− βT (r̄)

[
∂2P(r̄)

∂r2
+ 1

r

∂P(r̄)

∂r

]

+αβP(r)

[
∂2T (r̄)

∂r2
+ 1

r

∂T (r̄)

∂r

]
. (10)

For α = 0 and the boundary condition T (r = 0) = 0, we
have

T (r) = − 1

βrP′(r)

∫ r

0
xP(x)dx. (11)

As mentioned above, the probability distribution P(x) is
more poorly localized near the source in comparison to S(x).
In the case of a homogeneous diffusion of particles emitted by
a source located at the origin in two dimensions, the equilib-
rium particle concentration at r goes as K0(r/L). Hence the
lower bound on search time is

T (r) > LB(r) = − 1

βrK ′
0(r/L)

∫ r

0
xK0(x/L)dx. (12)

This is plotted in Fig. 1. One can see that for r � L, LB(r)
increases exponentially with r. LB(r) would be the lower

FIG. 1. LB(r) plotted against r for L = 1. We see that the lower
bound increases exponentially with r, for larger values of r.

bound even if α �= 0. This is because α adds randomness to
the search and α �= 0 would hence increase the search time.

IV. GENERIC LOWER BOUND

We can use the fact that the probability distribution evalu-
ated by Bayes’ theorem is not as concentrated near the source
as S(x, y), to evaluate a lower bound on search time as follows.
First let us assume that the searcher knows that the source
is located at the origin with a probability 1. Then, the least
amount of time taken by the searcher to reach the source goes
as r: the distance between the source and the searcher. In the
case in which the searcher instead has knowledge that the
source is located at one of the two locations �x1 and �x2, with
probabilities of occurrence at these locations p1 and p2, re-
spectively, the smallest possible search time would then go as
p1| �x1 − �xs| + p2| �x2 − �xs|, where �xs is the searcher’s position.
This is obvious because out of N possible measurements, the
source will be detected N p1 times at �x1 and N p2 times at �x2,
for N � 1. One could extend this argument to conclude that
for a source probability distribution P(�x) as evaluated by the
searcher, the shortest time to reach the source on an average

FIG. 2. LB(rs ) obtained by solving Eq. (13), is plotted as a func-
tion of rs with L = 1. As can be seen for rs � L, the expected lower
bound goes as rs. Also note that for rs = 0 the lower bound on the
search time is not zero.
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should go as
∫

d�x| �xs − �x|P(�x). Since the probability distribu-
tion evaluated using Bayes’ theorem is not as concentrated
near the source as S(�x), the shortest search time on an average

will not be larger than 1
vs

∫
d�x| �xs − �x|S(�x) (vs is the speed of

the searcher, which we take to be equal to 1 below), which for
S ∼ K0(r/L) is

LB(rs) ∼
∫

r dθ dr K0(r/L)
√

(rs − r cos θ )2 + r2 sin2 θ =
∫

r dθ dr K0(r/L)
√

r2
s + r2 − 2rrs cos θ. (13)

Substituting x = r/L and considering the case rs � L, we get

LB(rs) ∼ rsL
2
∫ ∞

0
dx

∫ 2π

0
dθ xK0(x)

√
1 + x2

L2

r2
s

− 2x
L

rs
cos θ

= rsL
2
∫ ∞

0
dx

∫ 2π

0
dθ xK0(x)

{
1 − x

L

rs
cos θ + terms of order O

[( L

rs

)2]
and higher

}

= 2πrsL
2 + terms of order O

[( L

rs

)2]
and higher. (14)

In going from the first to the second equation we have used the fact that K0(x) is of a substantial magnitude only for small values
of x and hence majoritarian contributions to the integral come only from small values of x. We have also used

∫ ∞
0 r dr K0(r) = 1.

As rs is made smaller, terms of order O[( L
rs

)2] and higher start appearing. However, we note that as rs becomes larger and larger,
the lower bound on search time goes as rs. This behavior is seen by solving Eq. (13) for L = 1 as plotted in Fig. 2.

Now

LB(rs) ∼
∫

r dθ dr K0(r/L)
√

(rs − r cos θ )2 + r2 sin2 θ

= L3
∫

r

L
dθ d

r

L
K0(r/L)

√( rs

L

)2
+

( r

L

)2
− 2

r

L

rs

L
cos θ

= L3
∫

x dθ dx K0(x)

√( rs

L

)2
+ x2 − 2x

rs

L
cos θ. (15)

If rs
L 
 1, we can Taylor expand in powers of rs

L

LB(rs : rs 
 L) ∼ L3
∫

x2dθ dx K0(x) + L3
∫

dθ dx xK0(x)
rs
L − x cos θ√( rs

L

)2 + x2 − 2x rs
L cos θ

∣∣∣∣
rs/L=0

( rs

L

)

+ terms of order O
[( rs

L

)2]
and higher

= π2L3 − rsL
2
∫

dθ dx xK0(x) cos θ + terms of order O
[( rs

L

)2]
and higher

= π2L3 + terms of order O
[( rs

L

)2]
and higher. (16)

From Fig. 2 we can see that LB(rs) is linear for rs > 2L. From Eq. (14) we can see that the slope of this line is 2πL2. One
can hence say that

LB(rs) >
π2L3

2
+ 2πL2rs. (17)

The Shannon entropy of the probability distribution is

E = −
∫

2πr dr dθ S(r, θ ) ln S(r, θ ). (18)

S(r, θ ) is the normalized concentration of particles at (r, θ ) assuming the source is at the origin. In the language of the text below
Eq. (3), S(r, θ |�0) = S(r, θ ). If we were to evaluate the lower bound on the search time, with the constraint that the probability
distributions could be of any kind but should have a fixed entropy E , then we would have to include a Langrange multiplier λ

that sets E equal to the entropy of the probability distribution S(r, θ ). We have the following:

LB =
∫

2πr dr dθ rS(r, θ ) − λ

[ ∫
2πr dr dθ S(r, θ ) ln S(r, θ ) + E

]
− β

[∫
2πr dr dθ S(r, θ ) − 1

]
. (19)

022124-4



AVERAGE SEARCH TIME BOUNDS IN CUE-BASED … PHYSICAL REVIEW E 103, 022124 (2021)

We have assumed the searcher is located at r = 0. Minimizing
with respect to S(r, θ ) gives

r − λ[ln S(r, θ ) + 1] − β = 0, (20)

which solves to

S(r, θ ) = er/λ−β/λ−1. (21)

λ < 0 for consistency. Requiring that∫
2πr dr dθ [S(r, θ ) ln S(r, θ )]

= −E , → (2π )2λeβ/λ−1(β − 3λ) = −E ,∫
2πr dr dθ S(r, θ )

= 1 → eβ/λ−1(2π )2λ2 = 1, (22)

which implies (β − 3λ) = −Eλ → ( β

λ
) = 3 − E and λ =

− 1
2π

eE/2−1.
Hence the lower bound is

LB =
∫

2πr dr dθ rS(r, θ )

= −2(2π )2λ3eβ/λ−1 = −2λ = eE/2−1

π
. (23)

V. CONCLUSION

In [21] the difficulty in evaluating the search time for info-
taxis was highlighted, and instead a calculation for a different
search strategy which does not utilize information about past
hits was presented. They evaluated the lower limit for search
time for this strategy in certain limits as ∼eE , where E is the
entropy of the probability distribution of finding the source.
In this work we first evaluated a lower bound on the average
search time in a search strategy that evaluates the probability
distribution of finding the source at each step given the infor-
mation of past hits. The rate of jumps to a neighboring site is
proportional to the normalized difference of evaluated proba-
bility of finding the source with the present site of the searcher.
This lower bound goes as the exponential of distance from the
source for large distances. We then provided an expression for
the lower bound for the search time for a generic cues-based
search strategy. For a general probability distribution with
entropy E , we showed that the lower bound goes as eE/2,
which is similar to eE in [21], which was evaluated for a
non-cue-based search strategy in the limit in which the search
time as well as entropy are much larger than 1.

APPENDIX

To simplify things, let us consider the system in one di-
mension. The final result can be easily generalized to higher
dimensions. We have

T (x) = −dt + T (x + dx)[β�(x + dx) + α�(x + dx)]

+T (x − dx)[β�(x − dx) + α�(x − dx)]

+T (x){1 − β[�(x + dx)−

+�(x − dx)− + 2α�(x)]}, (A1)

where

�(i) = �[P(x) − P(i)]
[P(x) − P(i)]

P(x)
,

�(i)− = �[−P(x) + P(i)]
[−P(x) + P(i)]

P(x)
,

�(i) = 1, P(x) = P(i),

= 0, P(x) �= P(i). (A2)

Equation (A1) states that we can reach the point x from its
neighbors x + dx and x − dx, which subtracts time dt from
times T (x + dx), T (x − dx) to reach the source from these
sites. Each of the times T (x + dx), T (x − dx) are multiplied
by the probabilities to make the jump from x + dx and x − dx
to x, respectively. The term multiplying T (x) on the right-hand
side is the probability of not making a jump to the neighbors
x + dx, x − dx. α is the probability of making a jump ran-
domly in the case in which the neighboring site has the same
probability of finding the source as the present site.

Equation (A1) becomes

0 = −dt + β[T (x + dx)�(x + dx) + T (x − dx)�(x − dx)]

−T (x)β{[�(x + dx)− + �(x − dx)−]}
+βα dx2∇2T (x) (A3)

or

0 = −dt + β{[T (x) + dx ∂xT (x)]�(x + dx)

+[T (x) − dx ∂xT (x)]�(x − dx)}
−T (x)β{[�(x + dx)− + �(x − dx)−]}
+βα dx2∇2T (x) (A4)

or

0 = −dt − β dx2∂xT (x)

{
∂xP(x)

P(x)
�[P(x) − P(x + dx)]

+ ∂xP(x)

P(x)
�[P(x) − P(x − dx)]

}
+ T (x)β{[�(x + dx) + �(x − dx)]}
− T (x)β{[�(x + dx)− + �(x − dx)−]}
+βα dx2∇2T (x). (A5)

Now

�(i) − �(i)− = {�[P(x) − P(i)] + �[−P(x) + P(i)]}
× [P(x) − P(i)]

P(x)
= [P(x) − P(i)]

P(x)
. (A6)

Hence

0 = −dt − β dx2∂xT (x)
∂xP(x)

P(x)

− T (x)β

[
[P(x + dx) + P(x − dx) − 2P(x)]

P(x)

]

+βα dx2∇2T (x) (A7)
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or

0 = −P(x)dt − β dx2∂xT (x)∂xP(x)

− T (x)β dx2∇2P(x) + βα dx2P(x)∇2T (x), (A8)

which becomes in two dimensions

0 = −P(x, y) − β∇T (x, y) · ∇P(x, y)

−βT (x, y)∇2P(x, y) + βαP(x, y)∇2T (x, y). (A9)

We have redefined βdx2

dt → β above.
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