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Dynamics and decay rates of a time-dependent two-saddle system
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The framework of transition state theory (TST) provides a powerful way for analyzing the dynamics of
physical and chemical reactions. While TST has already been successfully used to obtain reaction rates for
systems with a single time-dependent saddle point, multiple driven saddles have proven challenging because of
their fractal-like phase space structure. This paper presents the construction of an approximately recrossing-free
dividing surface based on the normally hyperbolic invariant manifold in a time-dependent two-saddle model sys-
tem. Based on this, multiple methods for obtaining instantaneous (time-resolved) decay rates of the underlying
activated complex are presented and their results discussed.
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I. INTRODUCTION

One of the central aims in the field of chemical reaction
dynamics is the accurate determination of reaction rates. This
is not just an abstract problem of academic (or basic) con-
cern [1–4], but also a practical problem with many potential
applications in complex reactions [5–9]. The possibility of
optimizing reaction rates by external driving could perhaps
take these applications further in offering improvements to
throughput and efficiency.

Multibarrier reactions were considered early [10,11] in the
context of quantum mechanical tunneling through barriers at
constant energy. In this M-problem, the periodic orbit be-
tween the barriers gives rise to the possibility of an infinite
number of returns to the turning point from which tunneling
can proceed. The return times are usually not commensurate
with the period, either because of coupling to other degrees
of freedom—such as from the bath—or because of variations
in the potential. In such cases, the coherence in the returns is
altered, changing the nature of the dynamics in ways that we
address in this work.

Problems involving fluctuating [12,13] or oscillating
[14–16] barriers have also received significant attention lead-
ing to, for example, the identification of the phenomenon of
resonant activation [17,18]. While the approaches originally
focused on the overdamped regime [12,14], underdamped
systems were later examined [16,19]. For example, mean first
passage times were employed to calculate (diffusion) rates
in spatially periodic multibarrier potentials. Therein, various
static [20] as well as stochastically driven [21,22] cases were
characterized primarily through numerical methods.

In the current context, the main challenge in a multisaddle
system comes from the unpredictability of states in the inter-
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mediate basin. A reactant entering this region may leave either
as a reactant or product depending on the exact initial con-
ditions [23–26]. Historically, this challenge was approached
by categorizing reactions into two classes [24,27,28]: Direct
reactions exhibit a single transition state (TS). Complex reac-
tions, on the other hand, have two clearly separated TSs. The
potential well between those barriers is assumed to be suffi-
ciently deep that it gives rise to a long-lived collision complex.
Trajectories passing through one TS enter this collision com-
plex and hence cannot be correlated to trajectories passing
through the other TS. In reality, however, a reaction cannot al-
ways be uniquely classified. These concerns were addressed in
a unified theory by Miller [24], and later refined by Pollak and
Pechukas [29] so as to address shallow potential wells. While
an important advancement, this theory still treats the saddle’s
interactions statistically, thereby neglecting dynamical effects
like resonances. Moreover, they considered multistep reac-
tions in which the positions and heights of the barriers are
time-independent. Last, there are numerous publications on
valley-ridge inflection points, which are typically described
by a normal TS followed by a shared one [26,30,31].

Craven and Hernandez [32] recently examined a four-
saddle model of ketene isomerization influenced by a
time-dependent external field. They encountered complicated
phase space structures similar to those in systems with closed
reactant or product basins [33]. As a result, their analysis was
limited to local dividing surfaces (DSs) and no reaction rates
were calculated. Moreover, successfully calculating instanta-
neous rates based on a globally recrossing-free DS attached
to the normally hyperbolic invariant manifold (NHIM) of a
time-dependent multisaddle system has—to our knowledge—
not yet been reported.

In this paper, we address the challenge of determining
the instantaneous TS decay rate for systems that not only
feature multiple barriers along the reaction path, but that
are also time-dependent. Specifically, we investigate an open,
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time-dependent two-saddle model with one degree of freedom
(DoF) as introduced in Sec. II A. The theoretical framework
along with the numerical methods used throughout the paper
are described in Secs. II B through II D. We then discuss the
system’s phase space structure under the influence of periodic
driving at different frequencies in Sec. III. By leveraging
unstable trajectories bound between the saddles, we can con-
struct an almost globally recrossing-free DS associated with
the so-called geometric cross in Sec. IV. The DS is used in
Sec. V to calculate instantaneous decay rates and averaged
rate constants for the underlying activated complex using
different methods. Thus we report a detailed analysis of the
nontrivial phase space structure of the chemical M-problem
and the calculation of its associated decay rates.

II. METHODS AND MATERIALS

A. Time-dependent two-saddle model system

In this paper, we investigate the properties of multibarrier
systems by considering a 1-DoF model potential featuring two
Gaussian barriers whose saddle points are centered at x = ±1.
Initially, both barriers are placed at the same level. As we are
interested in considering the time-dependent case, however,
we drive the barrier’s heights Bϕ (t ) sinusoidally in opposite
phases. That is, we use the same amplitude and frequency ω

for both saddles, but opposite initial phases ϕ ∈ {0, π}. This
leads to the potential

V (x, t ) = B0(t )e−(x+1)2 + Bπ (t )e−(x−1)2
(1a)

with Bϕ (t ) = 7

4
+ 1

4
sin(ωt + ϕ). (1b)

The oscillation frequency ω is a free parameter that can be
varied relative to the other natural timescales of the system
at a given fixed total energy. At an arbitrary time, one of the
barriers will be larger than the other. For example, when the
second barrier is larger, the potential takes a shape such as that
shown at the top of Fig. 1(b). Throughout this paper, dimen-
sionless units are used to explore the range of phenomena that
can arise from varying the relative timescales of the system
and the driving.

B. Dividing surfaces and the NHIM

Reactants and products on the canonical potential energy
surface (PES) are usually separated by a DS often associ-
ated with a rank-1 saddle, such as that shown in Fig. 1(a),
whose unstable direction identifies the reaction coordinate.
The maximum energy configuration along the corresponding
one-dimensional minimum energy path [34–36] x is called
the TS [3,28,37,38]. In transition state theory (TST), the local
decay rate is obtained from the flux through the DS.

A DS is locally recrossing-free if no particle pierces it more
than once before leaving some predetermined interaction re-
gion around the saddle. In this case, the decay rates (to exit the
interaction region) as determined by the DS are locally exact.
We refer to a DS as being globally exact or recrossing-free if
the above is true independent of the choice of the interaction
region as long as said regions do not overlap with the stable
reactant or product regions [39]. Using this definition avoids
inherent recrossings caused by reflections in closed reactant or

FIG. 1. Typical structures of static potentials V (x) and their cor-
responding phase spaces x–vx with one and two barriers in panels
(a) and (b), respectively. The potential barriers separate reactant (R)
and product (P) states. The two-barrier case features an additional
intermediate (I) state in between. The maxima are associated with a
hyperbolic fixed point (diamonds) and a dividing surface (indicated
by dashed vertical lines) each. The corresponding manifolds divide
the phase space into four distinct, numbered regions in panel (a) and
six regions in panel (b). See Secs. II and III A for details.

product basins [33]. In this paper, we only address transitions
over barriers in series, and we do not address the parallel
case in which a reaction could access more than one distant
barrier. The scope of the definitions of globally exact and
recrossing-free is therefore limited accordingly.

Every saddle point of a d-DoF potential is associated with
(2d − 1)-dimensional stable and unstable manifolds Ws and
Wu in phase space [cf. Fig. 1(a)]. Their (2d − 2)-dimensional
intersection is called the NHIM [40–44] and describes the
unstable subspace of particles trapped on the saddle. It is
noted with a diamond in Fig. 1(a). Depending on the con-
vention used, the time-evolution of the NHIM or of a single
point on the NHIM forms the TS trajectory [39]. A (2d − 1)-
dimensional DS can be constructed by attaching it to the
NHIM, which works even for time-dependent driving. This
particular DS is locally recrossing-free as long as particles
do not cross far away from the NHIM [45–48]. However, it
does not have to be globally recrossing-free if, e.g., the system
features multiple barriers or valleys with sharp turns.

In TST, one typically uses the saddle point as the TS itself,
but the variational principle clearly suggests that the DS can
be moved away from it. In practice, this has led to applica-
tions in which the DS is associated with the saddle point.
However, not only is this strong association not necessary, it
is even possible that the NHIM (which anchors the DS) can
be disconnected. Indeed, we find in the current problem that
the optimal NHIM consists of multiple, disjoint sets. As seen
in Sec. III, such structure can emerge from the interaction of
multiple saddles. Those parts of the NHIM not associated with
a saddle can nevertheless be used to construct a DS as before,
and may feature fewer global recrossings compared to a DS
associated uniquely with a single saddle point. The question
of whether such a DS with fewer or even no recrossings can
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be found in a driven multi-saddle system has led to the central
results of this work.

C. Revealing geometric structures

The geometric structure of the phase space can be revealed
using the Lagrangian descriptor (LD) [32,49–52] defined by

L(x0, v0, t0) =
∫ t0+τ

t0−τ

dt‖v(t )‖ (2)

for a given initial position x0, velocity v0, and time t0. It
measures the arc length of a trajectory x(t ) in the time in-
terval t0 − τ � t � t0 + τ . A local minimum in the LD arises
when the particle covers the minimum distance in the interval
t0 − τ � t � t0 + τ . It consequently remains longer in the
interaction region when integrating forwards or backwards in
time, and thus provides a signature for the presence of a stable
or unstable manifold, respectively.

The LD has the advantage that it is conceptually very sim-
ple and that it can be applied to practically any system. This
makes it suitable for a first visual inspection. As discussed in
Ref. [53], however, it features a nontrivial internal structure.
Numerically determining the exact position of stable and un-
stable manifolds is therefore difficult.

A numerically simpler scheme is based on the con-
cept of reactive (and nonreactive) regions as described in
Refs. [39,53]. It discriminates initial conditions by first defin-
ing an interaction region in position space that encompasses
the relevant dynamics. Particles are then propagated forwards
and backwards in time until they leave said interaction region.
In both directions of time, a particle can end up as either
reactant (R) or product (P). This leads to four possible classi-
fications for a given initial condition as shown in Fig. 1(a) for
each of the four regions: (1) nonreactive reactants R → R, (2)
nonreactive products P → P, (3) reactive reactants R → P,
and (4) reactive products P → R. Similar concepts have been
introduced in, e.g., Ref. [32].

Such a classification for the initial conditions has to be
extended to include the consequences of a local minimum
between the saddles of the reacting system of Eq. (1). A low-
energy particle trapped near this local minimum [cf. Fig. 1(b)]
would lead to diverging computation times because it may
never leave the interaction region. To solve this problem, an
additional termination condition is introduced, whereby any
particle that crosses the potential minimum a specified num-
ber of times nmc is classified as an intermediate (I) particle.
Consequently, up to nine different regions in phase space can
be distinguished for any given value of nmc.

Using the concept of reactive regions, stable and unsta-
ble manifolds can be revealed as borders between adjacent
regions. Their closure’s intersections form the NHIM. The
algorithm used to calculate points of the NHIM is based on
the binary contraction method (BCM) introduced in Ref. [53].
It starts by defining a quadrangle with one corner in each
of the phase space regions surrounding the manifold inter-
section. The quadrangle is then contracted by successively
determining the region corresponding to an edge’s midpoint
and moving the appropriate adjacent corner there. The BCM
is therefore effectively composed of four intertwined classical

bisection algorithms. To reliably identify the initial corners,
we modify the BCM slightly as detailed in Appendix A.

D. Calculating decay rates

The existence of a NHIM of codimension 2 and its role
in determining the chemical reaction rate brings an additional
concern. Namely, what is the degree of instability of the TS
as determined by the decay of trajectories that start in the
proximity of the NHIM? In a time-dependent—e.g. driven—
environment, this instantaneous decay will be time-dependent
as well. Nevertheless, it can be assigned a single characteristic
decay rate constant when the time dependence is periodic by
taking the average over the period [14,54].

In this paper, we implement three different methods,
summarized in Appendix B, for calculating decay rates.
(i) The ensemble method [14,54] yields instantaneous (time-
resolved) rates by propagating a large number of particles. It
is computationally expensive but conceptually simple. (ii) The
local manifold analysis (LMA) [54,55] accelerates the com-
putation of instantaneous rates by leveraging the linearized
dynamics near the NHIM. (iii) If only average rate constants
are desired, the Floquet rate method [54,56] can be used
instead while requiring even less computational resources.

In the cases resolving the dynamics of the two-barrier prob-
lem of Eq. (1), all three generally converge within reasonable
time. However, they each involve different assumptions which
might have led to different results, and which can provide
complementary interpretations about the underlying dynam-
ics. As shown in the results sections, all three lead to decay
rates in excellent agreement. The repetition thus also serves to
provide assurance in the reported values.

III. GEOMETRIC STRUCTURE OF THE TWO-SADDLE
SYSTEM

The phase space structure of the model system introduced
in Sec. II A is highly dependent on the driving frequency ω.
In the following we will give a qualitative overview of the
behavior the system can exhibit.

A. Limiting cases

A static two-saddle system akin to Eq. (1) with ω = 0
exhibits the phase space structure shown in Fig. 1(b). The
saddle tops are associated with hyperbolic fixed points whose
stable and unstable manifolds each form a cross. If the first
saddle is smaller than the second one, two of its manifolds
constitute a homoclinic orbit. In this case, the phase space
is composed of six regions, namely, (1) nonreactive reac-
tants R → R, (2) nonreactive products P → P, (3) reactive
reactants R → P, (4) reactive products P → R, (5) particles
that react over the first saddle but get reflected at the second
R → I → R, and (6) intermediate particles that are trapped
between the saddles I → I.

Likewise, if the driving frequency is sufficiently large
(ω → ∞), the particle will effectively see an average static
potential in which it must cross two similar static barriers of
equal height. As the energy is conserved, once the particle
crosses the first barrier, it necessarily crosses the second bar-
rier. This results in a phase space structure similar to that for
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the static case of Fig. 1(b), although with heteroclinic orbits
connecting the hyperbolic fixed points.

In such (effectively) static cases, it is straightforward to
define a global recrossing-free DS. In a 1-DoF constant energy
system, if (and only if) a particle crosses the highest saddle,
it has demonstrated to have enough energy to react over all
saddles. Since the largest barrier therefore unambiguously
determines whether a particle reacts or not, its associated local
DS becomes the global (recrossing-free) DS.

While this holds true for static systems, dynamically driven
systems may exhibit much richer dynamics. For example, in
the case of an alternating pair of dominant barriers, as in
the model of Eq. (1), the naive DS jumps discontinuously
from one side to the other twice per period. As a result there
exist reactive trajectories that never cross the DS. Instead,
the DS jumps over the trajectory leading to an inconsistent
description of the reaction. Addressing this issue by defining
particles between the local DSs as reacting the moment the
dominant saddle changes would lead to more problems, e.g.,
unphysical Dirac delta peaks in the reaction rate. To solve this
issue, the system has to be treated as a whole.

B. Intermediate driving frequency

The limiting cases discussed so far result in effectively
static systems. Since we are interested in novel and nontrivial
behavior, however, we will now turn to intermediate driving
frequencies. These can exhibit varying degrees of complexity
as a function of the driving frequency ω. An example of
such nontrivial behavior with a highly complex phase space is
shown in Fig. 2. We use the LD defined in Sec. II C for visu-
alization since it is very general and requires little knowledge
about the system.

The geometric structure was obtained for the driven po-
tential V (x, t ) of Eq. (1) at an intermediate driving frequency
ω = π . The general shape of the boundaries separating re-
active and nonreactive regions [cf. Fig. 1(b)] is still vaguely
visible. However, the precise position of the crossing points
between the stable and unstable manifolds can no longer be
determined. This family of crossing points together with the
associated stable and unstable manifolds within their vicinity
appears as a cross that has arisen from all of these geometric
considerations. For simplicity, we define it as a geometric
cross throughout this work. Note that this term is not meant to
be a precise mathematical structure but rather an illustrative
concept for describing the complex phase space of the system
under study.

The fractal-like geometric crosses seen in the series of
Figs. 2(a) to 2(d) for a finite τ suggests a fractal structure at
all scales for τ → ∞. This structure emerges from particles
trapped between the two saddles. For example, a reactant can
enter the intermediate region over the left saddle, be reflected
multiple times at both saddles, and finally leave the interaction
region over the right saddle as a product. The number of
reflections is in this case highly dependent on the particular
initial conditions as a result of the system being chaotic. In
turn, this leads to a discontinuity in the LD, and eventually to
the self-recurring patterns of a fractal structure.

Figure 2 also supports the observation of geometric struc-
tures at a given time that are thinner near the dominant saddle

FIG. 2. Phase-space structure for the time-dependent potential in
Eq. (1) with ω = π at t0 = 3/2 as revealed by the Lagrangian de-
scriptor L given in Eq. (2) with τ = 16. Although the two geometric
crosses seen in Fig. 1(b) are still present in panel (a), they now exhibit
a complicated substructure involving a vast number of homoclinic
and heteroclinic points as well as homoclinic and heteroclinic orbits.
The progressively zoomed cutouts shown in subpanels (b) through
(d) exhibit self-recurring structures. Labels in the bottom right cor-
ners indicate the corresponding enlargement from the previous zoom
level. The potential at time t0 is indicated in the top left inset of
panel (a).

compared to the lower energy saddle. In Fig. 2(a), when the
right barrier is dominant, particles initialized near the higher
saddle start with higher potential energy and therefore have
a lower chance of being reflected. As a result, fewer of these
particles linger in the interaction region and the phase space
structures are thinner. While this may be an interesting ob-
servation, the geometric cross near the dominant barrier is
still highly fractal. There are no isolated, weakly fractal ge-
ometric crosses that could reasonably be tracked numerically.
Consequently, we cannot make meaningful statements about
a globally recrossing-free DS.

C. Slow driving frequency

The previous sections have shown the range of complexity
the model system (1) can exhibit. We now need to move from
the aesthetically pleasing structures of Fig. 2 to a more rig-
orous identification of the globally recrossing-free DS. To do
so, we switch to a lower driving frequency ω = π/10 which
is simpler to analyze but still exhibits nontrivial behavior.
Additionally, we employ the concept of reactive regions as
described in Sec. II C instead of the LD. The partitioning of
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FIG. 3. Reactive regions for potential (1) with ω = π/10 and nmc = 8 as a function of time t0 (cf. inset labels). The color (or shaded)
legend at the top indicates whether a particle starts or ends in the reactant (R), intermediate (I), or product (P) state. The position of the point on
the NHIM associated with the primary geometric cross (black dot) is tracked across a full period (TS trajectory, black dashed line). The insets
in the upper right corner of the top row panels and the lower right corner of the bottom row panels illustrate the potential at the corresponding
initial time t0.

the phase space into nine distinct regions allows us to make
quantitative assessments more easily.

The application of this analysis to V (x, t ) with ω = π/10
leads to the time-dependent regions shown in Fig. 3. Although
fractal-like structures still remain, they are less pronounced
and mostly concentrated around whichever saddle happens to
be the lower saddle at a given instance. The higher saddle, on
the other hand, is accompanied by a clearly visible geometric
cross, where the four regions known from the one-saddle case
(no intermediate states) meet. The regions are also arranged
in the same way: R → P on top, R → R to the left, P → P to
the right, and P → R below. In the following, we refer to this
geometric cross as the primary geometric cross.

IV. GEOMETRIC CROSS

We will now analyze the primary geometric cross and its
associated TS trajectory in more detail. Its time-dependent
position can be tracked precisely over a full period using the
algorithm described in Sec. II C and Appendix A. The result
is marked as a series of black dots in Fig. 3. The correspond-
ing trajectory connecting those dots is indicated as a black
dashed line.

A. Global transition state trajectory

The primary geometric cross associated with the instanta-
neously higher saddle in Fig. 3 remains on the barrier nearly
as long as the barrier remains dominant. However, when the
barriers’ heights approach each other, the geometric cross

quickly moves from one barrier to the other in the following
way. The geometric cross begins to rapidly accelerate towards
the middle (x = 0). It crosses the local potential minimum
exactly when both saddle points are level (e.g., t0 = 10) and
continues in the same direction until it is located near the
now higher saddle (e.g., t0 = 15). The reverse happens in the
following half period, thereby forming a closed trajectory with
the same period T1 = 20 as the potential V (x, t ) (dashed line
in Fig. 3).

This primary geometric cross marks the position of a parti-
cle on an unstable periodic trajectory trapped in the interaction
region. The particle on this trajectory oscillates between the
saddles with a period of T1 = 20 so that it is always located
near the higher saddle. Many other unstable periodic trajecto-
ries associated with geometric crosses—i.e., hyperbolic fixed
points—in phase space have also been found for particles
in the interaction region. Two such trajectories are shown in
Fig. 4. They are typical of an increased degree of structure
relative to the primary TS trajectory. All such trajectories to-
gether form the system’s disjoint, fractal-like time-dependent
NHIM. In contrast to the primary TS trajectory, however,
all other trajectories have periods larger than T1. The only
exceptions to this observation are the local TS trajectories in
the vicinities of the saddle maxima, which are also part of the
global NHIM. These trajectories have the same period T1 as
the potential by construction.

The complex dynamics that arises from the moving barriers
is also affected by the degree to which a given trajectory is
decoupled from the barriers as it traverses the well between
them. Although the energy of the minimum stays roughly
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FIG. 4. Examples of typical periodic trajectories x(t ) with pe-
riods T2 = 40 (darker gray or blue) and T3 = 60 (lighter gray or
orange) for potential (1) with ω = π/10. The primary TS trajectory
from Fig. 3 with period T1 = 20 (black dashed line) is shown for
comparison.

constant, as indicated in Fig. 3, its position moves back and
forth between the barriers as shown in Fig. 5(a) so that it is
always closer to the lower barrier. This is a manifestation
of the Hammond postulate [57] but now applied to the
negative potential. When the first (left) barrier dominates
the dynamics, a locally nonrecrossing DS associated with it
identifies the trajectories with sufficient energy to cross it,
and those continue unabated across the well and the second
barrier. As a consequence, a DS located at the well identifies
the reactive trajectories equally well (or badly) in this regime.
This is indicated in Fig. 5(b) by good identification when
the activated particle continue past the second barrier or
disagreement when misidentification of trajectories begin
to be reflected across both. When the second (right) barrier
dominates the dynamics, identifying reactive trajectories at
a DS at the distant well allows the evolving trajectories to
be reflected by the barrier leading to recrossings. Thus we
find that the reaction dynamics in between the barriers
(e.g., at the well) does not go through a single identifiable
doorway. In turn, this points to the need for describing
the dynamics—even in a local sense—through a geometric
picture that spans the two barriers, e.g., the global NHIM.

Meanwhile, since the NHIM now consists of more than
one trajectory, it is not necessarily obvious which of these
is most suited for attaching a global DS. We can, however,
set conditions the global TS trajectory should fulfill. First, for
symmetry reasons, the trajectory should have the same period
T1 = 20 as the potential. Second, the global TS trajectory
should approach the higher saddle’s local TS trajectory in the
(quasi)static limit ω → 0 (cf. Sec. III). The only trajectory
found that matches both criteria is the primary TS trajectory
introduced previously, see Fig. 5(a). The large featureless
regions surrounding the trajectory in phase space additionally
suggest that it affects a significant fraction of the system’s
dynamics. We will therefore refer to this trajectory as the
global TS trajectory.

B. Comparison of dividing surfaces

The next task is to determine the degree to which the global
TS trajectory gives rise to a recrossing-free DS. Numerically,

FIG. 5. (a) Position xDS and (b) percentage of trajectories with
recrossings or classification errors as a function of time t0 for var-
ious choices of their assignment as reactive or nonreactive. The
assignment is performed according to the crossing of a specified DS
associated with either the local (solid) or global (thick dashed) TS
trajectories, the instantaneous potential minimum between the sad-
dles (dotted), or the discontinuous TS trajectory jumping between the
local ones (dash-dotted). For every t0, an ensemble of 106 particles
with uniformly distributed velocities 1.7 � vx (t0) � 2.1 is initialized
at x(t0) = −3 and propagated for �t = 80 time units. The attached
DS is parallel to vx for all times. The right local DS is recrossing-free
by construction since particles are started solely to the left of the
saddles and is therefore not shown in (b). This specific choice for the
ensemble is also the reason for the graph’s asymmetry.

this can be tested by attaching a DS to it as specified in the
caption of Fig. 5, propagating an ensemble initialized near
it, and recording the number and direction of DS crossings
(or not) that transpire thereafter in the propagated trajectories.
For simplicity, we consider only the most challenging cases
in which the ensemble’s initial energies are chosen to be
between the saddles’ minimum and maximum heights. The
usual error in the DS is signaled by the existence of more
than one crossing for the trajectories, and the fraction of such
recrossings is used below as a measure for the DS’s quality.

For simplicity, we limit ourselves to DSs defined by x =
xDS(t ), i.e., parallel to vx. The results of this analysis are
shown in Fig. 5(b). As can be seen, the global DS associ-
ated with the time-dependent geometric cross features error
rates that are significantly reduced compared to the local
DS fixed at the left barrier. One possible DS could be con-
structed by placing it at the instantaneous potential minimum
[shown as the dotted curve in Fig. 5(a)]. It would be expected
to be ineffective given that rates are usually determined by
rate-limiting barriers, not valleys, in between reactants and
products. Indeed, the recrossing errors found for this DS,
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FIG. 6. Reactive regions analogous to Fig. 3 at t0 = 0.25 with
the addition of the DS (solid black line). (a) The simplest choice of a
DS parallel to vx leads inevitably to recrossings as indicated. (b) The
immediate region of the TS trajectory [shown as a dot in panel (a)],
is enlarged, as indicated, to reveal the geometry of the ensemble
(densely dotted) used in the rate calculations of Sec. V. The ensemble
is sampled equidistantly on a line parallel to the unstable mani-
fold Wu at distance x − xDS = −1 × 10−3 from the TS trajectory
at xDS(t0). The manifolds Wu and Ws are given by the boundaries
between reactive and nonreactive regions. The differential of Wu is
indicated by the sides �x and �vu

x of the slope.

shown in Fig. 5(b), were high and even worse than those from
the use of the DS fixed at the left barrier. But the highest error
rate comes from the naive attempt to treat the DS associated
with the instantaneously higher saddle point as the global
one. In this case, errors can arise from events beyond the
recrossing of the DS. That is, there now exists the possibility
that the discontinuous instantaneous DS can jump over the
trajectory. It is the combination of recrossing and classifica-
tion errors that leads to the jagged and large deviations in the
% error seen for the naive discontinuous DS. As discussed in
Appendix C, this can lead to misclassification of the reactivity
of the trajectory.

Finally, we consider a local DS fixed at the right barrier.
This choice would lead to no recrossing or classification er-
rors for trajectories moving in the forward direction (from
reactants to products). However, it would fail badly for tra-
jectories moving in the backward direction by symmetry with
our finding for the forward trajectories crossing the DS at the
left barrier. Thus, the use of the global DS associated with the
TS trajectory best captures the time-dependent geometry of
the reaction.

Although this TS-trajectory DS is much better than any
alternatives considered so far, it still exhibits an amount of
recrossings that cannot be explained by numerical imprecision
alone. Instead, recrossings are caused by the fractal-like phase
space structure of the system: Figure 6(a), for example, shows
the phase space structure at t0 = 0.25. We can see a relatively
large patch of nonreactive reactants (labeled R → R, light
blue) to the right of the DS. Particles in this patch leave
the interaction region to the reactant (left) side forwards and
backwards in time. Consequently, they need to cross the DS

at least twice, which counts as a recrossing. An analogous
argument can be applied to P → P regions to the left of
the DS. The fractal-like phase space structure thus leads to
numerous problematic patches of vastly different sizes, hence
the two distinct peaks in Fig. 5(b).

A totally recrossing-free DS, by contrast, would necessar-
ily have to divide the phase space such that R → R regions
are always on the reactant side, and P → P regions always on
the product side. This is not possible with a planar DS of any
orientation due to the system’s fractal-like nature. A globally
recrossing-free DS—if it exists—would have to curve as time
passes because the entirety of the phase space between the
saddle points has a clockwise rotating structure (including
periodic trajectories on the NHIM, cf. Figs. 3 and 4). The
periodicity of this system would then result in a fractal, spiral-
like DS. Thus the next step in generalizing this theory would
require the identification of a non-planar DS anchored at the
TS trajectory which we leave as a challenge to future work.

V. REACTION RATE CONSTANTS

We can now calculate decay rate constants k for the acti-
vated complex using the global TS-trajectory DS defined in
Sec. IV. The patches leading to recrossing (cf. Sec. IV B) are
unproblematic in this case because the ensemble was selected
close to the NHIM and thereby necessarily far from them, as
can be seen in Fig. 6. The few recrossings that do still occur
are artifacts from the numerical error in the propagation, and
are sufficiently small in number that their effect is smaller than
the numerical precision of the calculation.

In the following, we consider the three different pos-
sible approaches defined in Sec. II D to demonstrate their
equivalence in multisaddle systems. An example for the ini-
tial reactant ensemble and manifold geometry can be found
in Fig. 6(b).

While the application of the LMA and the Floquet method
to our model system are straightforward, applying the ensem-
ble method poses a challenge: A finite ensemble of reactants
(e.g., of size 105 as implemented here) will mostly react
within a short time (e.g., 2 to 5 units of time in the case shown
here) compared to the period of driving T1 = 20. Resolving
the whole period with a single ensemble would therefore
require an exponentially growing ensemble size. This would
not be numerically feasible. Instead, multiple ensembles have
been started at times t j incremented at equal intervals �t , and
set to 1 in the current case. An instantaneous rate ke(t ; t j )
can be obtained for each ensemble j. The instantaneous rate
for the whole period ke(t )—independent of t j—can then be
recovered by concatenating the segments of each ke(t ; t j )
for t from t j to t j+1. Compared to the first option, this ap-
proach scales linearly with the system’s period instead of
exponentially leading to vastly decreased computing times
and increased numerical stability.

The results are shown in Fig. 7. Since ke(t ) and km(t ) are
not constant in time, we additionally show the average

k̄ = 1

T1

∫ T1

0
dt k(t ) (3)

over one period T1 of the TS trajectory.
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FIG. 7. Various instantaneous reaction rates k parameterized by
time t and associated with the global TS trajectory of the potential
defined in Eq. (1) with ω = π/10, and driving period T1 = 20. The
ensemble rate ke(t ) (blue solid) is obtained by propagation of 20
ensembles of 105 particles each as described in Appendix B 1. The
manifold rate km(t ) (orange dashed) is obtained using Eq. (B2). The
Floquet rate constant kF (green dotted) is obtained from Eq. (B5).
The mean rates, k̄e and k̄m (thick horizontal lines) are averaged over
the period as defined in Eq. (3). For comparison, the Floquet rate
constant kloc

F (red dash-dotted) of a single barrier’s local TS trajectory
is also shown.

Figure 7 shows a large variation in the instantaneous re-
action rate in the interval 0.13 � k(t ) � 3.85. Two features
are distinctive. First, the rate k(t ) shows mostly flat plateaus
during the time the TS trajectory is located near a saddle.
This can be explained using Fig. 3: Although the phase space
structure as a whole is undergoing significant changes during,
e.g., 2.5 � t � 7.5, the local vicinity around the TS trajectory
stays almost unaffected. Second, there are deep dips in k(t )
while the TS trajectory moves between the saddles (as seen
at around t ∈ {10 j | j ∈ Z}). As can be seen in Figs. 3 and 6,
these times are characterized by much more shallow geomet-
ric crosses with a low difference in the slopes of the stable
and unstable manifolds. This effect is particularly apparent
in Fig. 6(b).

The same observations can also be interpreted another
way. By comparing Fig. 7 to Fig. 5(a), we can see a clear
correlation between the velocity of the TS trajectory and the
instantaneous rate k(t ): the faster the TS trajectory moves, the
lower the rate drops.

As can be seen in Fig. 7 and Table I, k̄e, k̄m, and kF are
in excellent agreement, which illustrates the equivalence of
all three methods. The local Floquet rate constant kloc

F of a
single saddle, on the other hand, differs significantly from kF,
even though both saddles are identical. While the local rate
constant can thus be used as an upper limit for the overall rate
constant, there is no straightforward way to derive a global
rate constant from it. Thus global methods employing the full

TABLE I. Values of the reaction rate constants discussed in
Fig. 7. The averaged ensemble and LMA rate constants k̄e and k̄m

match the Floquet rate constants to within less than 0.1%. The local
(single barrier) Floquet rate constant, however, differs by +27%.

Method Symbol Value

Ensemble propagation k̄e 2.7055
Manifold geometry (LMA) k̄m 2.7062
Floquet stability analysis kF 2.7036

Local saddle (Floquet analysis) kloc
F 3.4384

TS trajectory are necessary if accurate rates for multi-saddle
systems are desired. All three methods in this section satisfy
this requirement, and are consequently in agreement.

VI. CONCLUSION AND OUTLOOK

In this paper, we fully characterized the reaction geometry
and determined the associated decay rates in oscillatory (or
time-dependent) two-saddle systems in the framework of TST.

The first set of central results of this work lies in re-
vealing the phase space structure of the two-saddle model
system. While the structure of stable and unstable mani-
folds is straightforward for (quasi)static (ω → 0) or very fast
oscillating (ω → ∞) systems, intermediate frequencies lead
to a fractal-like phase space. In this case, the existence of
a completely recrossing-free DS is questionable. For lower
oscillation frequencies, however, an isolated geometric cross
with negligible substructure—referred to as the primary geo-
metric cross—emerges. This structure is part of the NHIM and
can now be referred to as a global TS trajectory in contrast to
the local TS trajectories associated with the respective single
barriers. The global TS trajectory oscillates between the two
local TS trajectories with the same frequency as the potential
and can be used to attach a mostly recrossing-free DS.

The second set of central results of this work involves the
determination of the decay rate constants of the oscillatory
(or time-dependent) two-saddle model system. Using the DS
acquired in the first part, we can propagate ensembles of parti-
cles, record a time-dependent reactant population, and finally
derive an instantaneous reaction rate parameterized by time
according to Ref. [54]. Alternatively, the same result can be
achieved purely by analyzing the time-dependent phase space
geometry. For comparison, a rate constant can be obtained
from the global TS trajectory by means of Floquet stability
analysis. This method is in excellent agreement with the aver-
age of each instantaneous rate.

While these results mark an important step in the treatment
of time-dependent multisaddle systems, many questions still
remain unanswered: First, we restricted ourselves to two-
saddle systems with one DoF. To be applicable to real-world
systems, however, the methods presented here will have to
be generalized to at least more DoFs because few chemical
reactions can be treated exactly, or nearly so, when reduced to
just one coordinate. Second, it will be important to investigate
the influence of minor manifold crossings on the rate constant.
This is particularly necessary for cases of time-dependent
barriers found here in which there is no longer an equivalent
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to the primary geometric cross. This is even more challenging
when the alternation between barriers is driven at high fre-
quencies (cf. Fig. 2).

The applicability of our results to real-world systems
also remains to be demonstrated. It remains unclear whether
it is possible to treat systems without a primary geomet-
ric cross. That chemical reactions can be represented with
potentials exhibiting the challenges discussed here, is illus-
trated by the isomerization of ketene via formylmethylene and
oxirene which has been modeled via a four-saddle potential
[32,58–61]. The isomerization reaction of triangular KCN
via a metastable linear K-CN configuration can similarly be
described by a two-saddle system [62,63]. Thus the analysis of
time-dependent driven potentials resolved here, when applied
to these and other chemical reactions, should provide new
predictive rates for driven chemical reactions of interest.
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APPENDIX A: TRACKING GEOMETRIC CROSSES

To be able to track geometric crosses in phase space re-
liably, the binary contraction method (BCM) (cf. Sec. II C)
needs to be initialized with four points in four different reac-
tive regions without human intervention. Since the geometric
crosses of interest can be quite distorted while moving be-
tween saddles, the BCM cannot be used precisely in the
way described in Ref. [53]. Originally, the initial quadrangle
was defined by guessing the geometric cross’s position and
choosing two coordinates each on a horizontal and a vertical
line through it. In our case, though, we first define an ellipse
enclosing the geometric cross, centered on this guess. The ini-
tial corners of the quadrangle are then selected on the ellipse
according to the algorithm described in Fig. 8.

Interestingly, even a given geometric cross is not entirely
free of substructures. Instead, it features a fractal-like set of
crossing manifolds in its close proximity. Since these ad-
ditional structures are extremely thin, however, they do not
hinder the BCM from finding the desired geometric cross
coordinates up to the desired precision which maybe be even
smaller than the width of substructures.

APPENDIX B: DECAY RATES METHODS

1. Ensemble method

The conceptually simplest method for calculating decay
rates ke is by means of propagation of an ensemble. In analogy
to Ref. [54] we first identify a line segment parallel to the

FIG. 8. Sketch of the algorithm for finding the inputs to the
BCM: four arbitrary initial phase space coordinates representative of
the four regions associated with the NHIM. Instead of naively choos-
ing coordinates on two right-angled axes (empty circles), an ellipse
enclosing the geometric cross is constructed. The first point (filled
circle on the right-hand side) is selected arbitrarily at coordinates
with angle α = 0. Subsequent coordinates are found by incrementing
α in steps of �α = π/4 (solid lines), and confirming that said point
satisfies the condition of a new region. If a region is skipped (e.g. as
shown in the dotted line) the increment �α is temporarily reduced
until a point in the region in between is found.

unstable manifold that satisfies the property: it lies on the
reactant side between the stable manifold and the DS at a
distance that is small enough to allow for linear response and
large enough to suppress numerical instability. At t = t0, an
ensemble of particles is placed on this line and propagated in
time to yield a time-dependent reactant population NR(t ; t0).

In the second major step, one can obtain a reaction
rate constant ke by fitting an exponential decay NR(t ; t0) ∝
exp[−ke(t − t0)] to the reactant population [28,64–68]. This,
however, is not possible in all systems—and, in particular, in
the two-saddle system being investigated here—because the
decay in NR(t ; t0) can be nonexponential. Instead, we use the
more general approach described in Ref. [54], which involves
examining the instantaneous decays

ke(t ; t0) = − 1

NR(t ; t0)

d

dt
NR(t ; t0) . (B1)

An analogous definition has been used in Ref. [14] for escape
rates over a potential barrier.

2. Local manifold analysis

In general, the approach described above is computation-
ally expensive since a lot of particles have to be propagated.
This led us to develop a second method, called the LMA,
for obtaining instantaneous reaction rates purely from the
geometry of the stable and unstable manifolds in phase space.
If the slopes of the stable and unstable manifolds Ws and Wu

at time t are given by �vs
x(t )/�x and �vu

x (t )/�x then the
instantaneous rate km(t ) can be written as their difference [54],

km(t ) = �vu
x (t ) − �vs

x(t )

�x
. (B2)

This allows for the calculation of km(t ) independently at dif-
ferent times t , making it easy to compute in parallel.
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FIG. 9. Fraction of trajectories with (see text) and without (la-
beled “succ.”) errors as a function of time t0 for the discontinuous
DS from Fig. 5.

3. Floquet method

Last, average decay rates kF can also be obtained directly
using a Floquet stability analysis [54,56] that was seen earlier
to lead to accurate rates in reactions with a time-dependent
barrier. While this method is the computationally cheapest, it
cannot yield instantaneous rates.

To obtain the time-independent rate constant kF for a given
trajectory on the NHIM, we can linearize the equations of
motion using the Jacobian

J (t ) =
(

0 1
−d2V (x, t )/dx2 0

)
. (B3)

By integrating the differential equation

dσ (t )

dt
= J (t )σ (t ) with σ (0) = 1, (B4)

one obtains the system’s fundamental matrix σ (t ). When
considering trajectories with period T , M = σ (T ) is called
the monodromy matrix. Its eigenvalues mu and ms, termed

Floquet multipliers, can be used to determine the Floquet
rate constant

kF = 1

T
(ln |mu| − ln |ms|) . (B5)

APPENDIX C: POSSIBLE ERRORS FOR THE
DISCONTINUOUS DS IN FIG. 5(b)

There are multiple ways in which a discontinuous DS can
show errors for a trajectory.

(i) A nonreactive trajectory is classified as reactive (la-
beled “N as R” in Fig. 9). This can happen when a reactant
enters the central region between the saddles while the DS is
located near the left saddle. If this happens shortly before the
DS jumps to the right, the particle can get reflected at the right
barrier and leave the central region on the reactant side.

(ii) A reactive trajectory is classified as nonreactive (la-
beled “R as N” in Fig. 9). This can happen when a reactant
enters the central region while the DS is located near the
right saddle. The DS can then jump discontinuously over
the particle to the left saddle—which is not counted as a
crossing—before the particle leaves the central region to the
right as a product.

(iii) The classification is thus inconsistent (labeled “in-
cons.” in Fig. 9). This can happen, e.g., when a reactant enters
the central region while the DS is located near the right saddle,
and leaves it again to the reactant side while the DS is near
the left saddle. As a result, a backward reaction is recorded
even though the particle started as a reactant. Similarly, it is
possible to detect two forward reactions over the same DS
without an intermediate backward reaction. It is unclear which
reaction is to be counted as the real one.

(iv) The trajectory crosses the DS multiple times, i.e., it
exhibits recrossings (labeled “recross.” in Fig. 9). This can
happen when a particle enters and leaves the central region on
the reactant side while the DS is near the left saddle, resulting
in two crossings.

The distributions of the errors that arise from the discon-
tinuous DS originating from recrossing and misclassification
are shown in Fig. 9. The sum of these errors gives rise to that
reported in Fig. 5 for this DS.
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