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Auxiliary open quantum system for the Floquet quantum master equation
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By directly using the probability formulas of quantum trajectories, we construct an auxiliary open quantum
system for a periodically driven open quantum system whose dynamics is governed by the Floquet quantum
master equation. This auxiliary system can generate a quantum trajectory ensemble that is consistent with the
canonical quantum trajectory ensemble. We find that, at a long time limit, though the Lindblad operators are
modified, the coherent dynamics of the auxiliary system is the same as that of the original system. A periodically
driven two-level quantum system is used to illustrate this construction.
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I. INTRODUCTION

In the past decade, microcanonical and canonical trajectory
ensembles of stochastic systems have attracted considerable
interest [1–11]. The underlying reason is that the rare events or
rare large fluctuations generated by these trajectory ensembles
are crucial for understanding and quantizing many physical
contexts, e.g., sheared fluids [1,12,13], dynamic phase transi-
tions in glasses [2,5] and open quantum systems [6,14,15], and
fluctuation theorems in nonequilibrium processes [16–22].

Generally, microcanonical trajectory ensembles can be
regarded as a set of trajectories in which time-integrated
observables defined on trajectories are constrained by given
values. In contrast, in a canonical trajectory ensemble, con-
straints are imposed on the trajectory ensemble-averaged
values of observables. Although these two ensembles seem
to be very distinct, at long time limits and under certain con-
ditions, they have been rigorously proven to be equivalent by
using large deviation theory [9,10,23]. Importantly, auxiliary
stochastic systems, including continuous diffusion [9,10] and
discrete jump stochastic systems [2,5,7], have been explicitly
constructed whose trajectories consist of the trajectories of
canonical or microcanonical trajectory ensembles.

Recently, Carollo et al. [15] extended the results of previ-
ous research on classical stochastic systems to open quantum
systems. The dynamics of open quantum systems obeys the
time-independent quantum master equations. It has been well
established that the quantum master equations can be unrav-
eled into quantum trajectories and, in particular, that these
trajectories have a classic probability interpretation [24–27].
Therefore, this extension is not surprising. Inspired by their
work, in this paper we investigate the construction of an aux-
iliary quantum system for a periodically driven open quantum
system [28–33]. Different from previous stationary equations,
the dynamics of these open quantum systems is governed by
the Floquet quantum master equation [34–37]. Our physical
situation of interest is very distinct from that of Carollo et al.
[15]; moreover, our theory is directly based on the notion of
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quantum trajectories and thus explicitly uses the probability
formulas of quantum trajectories. Compared with the previous
method that employs abstract operator calculations [15], our
method can be regarded as a natural extension of that of
Chetrite and Touchette on classical stochastic systems [10] to
the open quantum systems.

The remainder of this paper is organized as follows. In
Sec. II, we review the Floquet quantum master equation and
the unraveling of its quantum trajectories; the essential nota-
tions are defined therein. In Sec. III, we define the canonical
quantum trajectory ensemble. In Sec. IV, an auxiliary quan-
tum system that can generate a canonical quantum trajectory
ensemble is constructed for the finite time case and long time
limit case. In Sec. V, a two-level quantum system is used to
illustrate the procedure of constructing the auxiliary system in
the long time limit case. Section VI concludes the paper.

II. FLOQUET QUANTUM MASTER EQUATION AND
TRAJECTORY UNRAVELING

Assume that a periodically modulated quantum system in-
teracts with a heat bath and that the inverse temperature of the
heat bath is β. The Hamiltonian of the quantum system is H (t )
and H (t + 2π/�) = H (t ), where � is the driving frequency.
According to the Floquet theorem [38,39], the Hamiltonian
satisfies an eigenvalue equation:

H(t )|un(t )〉 = εn|un(t )〉, (1)

where H(t ) = H (t ) − ih̄∂t is the Floquet Hamiltonian, and εn

and |un(t )〉 (n = 1, . . . , N) are the quasienergy and Floquet
bases, respectively. Because the quasienergy εn − qh̄� with
basis exp(−iq�t )|un(t )〉 is also the solution of Eq. (1), where
q is an arbitrary integer, we restrict the quasienergies in a zone
of size h̄�. Under the assumption of a weak system-bath cou-
pling condition and appropriate timescale separation [40,41],
the evolution of the reduced density matrix of the quantum
system ρ(t ) can be described by the Floquet quantum master
equation [36,37,42]

∂tρ(t ) = L(t )[ρ(t )] = − i

h̄
[H (t ), ρ(t )] + D(t )[ρ(t )]. (2)

2470-0045/2021/103(2)/022116(8) 022116-1 ©2021 American Physical Society

https://orcid.org/0000-0002-4396-2977
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.103.022116&domain=pdf&date_stamp=2021-02-09
https://doi.org/10.1103/PhysRevE.103.022116


FEI LIU PHYSICAL REVIEW E 103, 022116 (2021)

The D(t ) term in the generator L(t ) represents dissipation and
dephasing due to the interaction between the system and the
heat bath, and it is expressed as

D(t )O =
∑

ω

r(ω)

[
A(ω, t )OA†(ω, t )

− 1

2

{
A†(ω, t )A(ω, t ), O

}]
, (3)

where the summation is performed with respect to all possible
Bohr frequencies ω, which equal (εn − εm)/h̄ + q�, and q is a
certain integer. The Bohr frequencies may be positive or neg-
ative but always appear in pairs. In the same equation, A(ω, t )
and A†(ω, t ) are the Lindblad operators and are related by
A†(ω, t ) = A(−ω, t ) due to the Hermitian characteristics of
the interaction Hamiltonian. Note that the Lindblad operators
are also the eigenoperators of the Floquet Hamiltonian [36]:

[H(t ), A(ω, t )] = −h̄ωA(ω, t ), [H(t ), A†(ω, t )]

= h̄ωA†(ω, t ). (4)

Because the heat bath is always in the thermal state with
the inverse temperature β, the Fourier transformation r(ω)
of the correlation function of the heat bath satisfies the
Kubo-Martin-Schwinger (KMS) condition [43]: r(−ω) =
r(ω) exp(−β h̄ω).

Equation (2) can be unraveled into the dynamics of in-
dividual quantum systems [25,26,43,44]. The evolution of
each system is alternately composed of continuous processes
and discrete random jumps. Assume that the jumps occur at
time ti with Bohr frequency ωi, where i = 1, . . . , M, and M
denotes the total number of jumps. When the evolution ends
at time T , a quantum trajectory is generated and is denoted
as −→ω M = {ω1, . . . , ωM}. Further assuming that the density
matrices of these individual quantum systems at time t (� T )
are ρ̃(−→ω M, t ), the solution of Eq. (2) is equal to a quantum
trajectory ensemble average:

ρ(t ) =
∑∫

−→ω M

P(−→ω M, t )̃ρ(−→ω M, t ), (5)

where the sum-integral symbol means that we sum with re-
spect to all possible quantum trajectories and integrate over
all possible times [27,33,45],

ρ̃(−→ω M, t ) = 1

P(−→ω M, t )
GM+1,MJMGM,M−1 · · ·J1G1,0ρ(0),

(6)

where ρ(0) is the density matrix at initial time 0, and the
denominator P(−→ω M , t ) is the probability distribution of ob-
serving the quantum trajectory −→ω M , which is simply equal to
the trace of the numerator. In Eq. (6), the symbols G and J
denote superoperators, and they act on all operators on their
right-hand sides. Concretely, the superoperator Gi,i−1 is equal
to T− exp[

∫ ti
ti−1

dτ L0(τ )], and the generator is

L0(t )O = − i

h̄
[H (t ), O] − 1

2

∑
r(ω)

{
A†(ω, t )A(ω, t ), O

}
,

(7)

where T− is the time-ordering operator, i = 1, . . . , M + 1,
t0 = 0, and tM+1 = t . The jump superoperator Ji is a short-
hand notation of JiO = r(ωi )A(ωi, ti )OA†(ωi, ti ).

The quantum trajectory ensemble that we are interested in
is as follows. At initial time 0, the individual quantum systems
are in one of the Floquet pure states |um(0)〉〈um(0)|, which
is randomly selected based on a probability distribution Pm,
m = 1, . . . , N . That is, the quantum ensemble is initially in
a mixed state: ρ(0) = ∑N

m=1 Pm|um(0)〉〈um(0)|. The quantum
system evolves, and a quantum trajectory −→ω M is recorded. At
the end time T , the system is measured in the Floquet basis,
and a pure state |un(T )〉〈un(T )| is obtained. It is not difficult to
argue that, if the joint probability distribution of observing the
quantum trajectory with the special initial and terminal bases
is Pm,n(−→ω M, T ) = PmPm|n(−→ω M, T ), the conditional probabil-
ity distribution equals [27,45]

Pm|n(−→ω M, T ) = 〈un(T )|{GM+1,MJMGM,M−1

× · · ·J1G1,0[|um(0)〉〈um(0)|]}|un(T )〉.(8)

III. CANONICAL QUANTUM TRAJECTORY ENSEMBLE

In this paper, we investigate canonical quantum trajectory
ensembles [5,9,10]. To define such an ensemble, we choose a
time-integrated observable of interest, namely the stochastic
heat current along quantum trajectories. According to the
interpretation of quantum measurements [24,27,36], the oc-
currence of jump events along the quantum trajectory −→ω M

indicates that the quantum system exchanges quanta h̄ωi with
the heat bath. From a thermodynamic point of view, these
quanta represent the discrete heat released to the environment
[45–51]. Hence, given a quantum trajectory −→ω M with duration
T , the heat current is equal to j = QT (−→ω M )/T , and the total
heat production is

QT (−→ω M ) =
M∑

i=1

h̄ωi. (9)

Note that our object of interest is different from the average
rate of quantum jumps, which was the focus of Carollo et al.
[15]. Nevertheless, the extension of our formulas to the latter
case is direct. Given the observable in a canonical quantum
trajectory ensemble, the probability distribution of the quan-
tum trajectory −→ω M with the initial Floquet basis |um(0)〉 and
terminal Floquet basis |un(T )〉 is [5,9,10]

Pm,n(χ,−→ω M, T ) = 1

�T (χ )
Pm,n(−→ω M, T )eχQT (−→ω M ), (10)

where the normalized factor �T (χ ) is the moment generating
function,

�T (χ ) =
N∑

m,n=1

∑∫
−→ω M

Pm,n(−→ω M, T )eχQT (−→ω ). (11)

IV. AUXILIARY OPEN QUANTUM SYSTEM

A. Finite time case

Now, we are in a position to construct an auxiliary open
quantum system whose quantum trajectory ensemble is con-
sistent with Eq. (10). Assume the Hamiltonian and Lindblad
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operators of the auxiliary system are H ′(t ) and A′(ω, t ), re-
spectively. In the remainder of this paper, we denote quantities
in the auxiliary system with a prime symbol unless otherwise
stated. Inspired by Carollo et al. [15], we set

A′(ω, t ) = lχ (t )A(ω, t )l−1
χ (t )eχ h̄ω/2, (12)

where lχ (t ) is an invertible Hermitian operator to be solved
[52]. We preliminarily require that the operator depends on
the parameter χ . Obviously, Eq. (12) implies that the jump
superoperator of the auxiliary system is related to that of the
original system as follows:

J ′
i O = eχ h̄ωi liJi(l

−1
i Ol−1

i )li = eχ h̄ωiViJiV−1
i O, (13)

where we denote li = lχ (ti ) and l−1
i = l−1

χ (ti ). In addition, for
simplicity of notations, we also define the superoperators Vi

and V−1
i : their actions are ViO = liOli and V−1

i O = l−1
i Ol−1

i ,
respectively. Substituting Eq. (13) into P′

m,n(−→ω M, T ), we ob-
tain the probability distribution of observing the quantum
trajectory −→ω M with the initial basis |um(0)〉 and terminal basis
|un(T )〉 in the auxiliary open quantum system:

P′
m,n(−→ω M, T )

= eχQ(−→ω M )〈un(T )|{VM+1V−1
M+1G ′

M+1,MVMJMV−1
M G ′

M,M−1

VM−1 · · ·J1V−1
1 G ′

1,0V0V−1
0 [|um(0)〉〈um(0)|]}|un(T )〉Pm.

(14)

Compared with Eq. (10), we find that, if

V−1
i G ′

i,i−1Vi−1O = e−�T (χ )(ti−ti−1 )Gi,i−1O, (15)

l−1
χ (0)|um(0)〉 = |um(0)〉, and lχ (T )|un(T )〉 = |un(T )〉,

(16)

where

�T (χ ) = 1

T
ln �T (χ ) (17)

is the scaled cumulant generating function [23], the auxiliary
system will generate the same quantum trajectory ensemble
as the canonical one. Simple derivations further show that
Eq. (15) is also equivalent to the following conditions:

H ′(t ) = 1

2
lχ (t )H (t )l−1

χ (t ) + ih̄

2
∂t lχ (t )l−1

χ (t )

+ ih̄

4
l−1
χ (t )

[∑
ω

r(ω)A†(ω, t )A(ω, t )

]
lχ (t ) + H.c.,

(18)

where H.c. denotes Hermitian conjugation, and lχ (t ) must
satisfy the operator equation given by

[∂t + L∗
χ (t )]l2

χ (t ) = �T (χ )l2
χ (t ), (19)

where

L∗
χ (t )O = i

h̄
[H (t ), O] +

∑
ω

r(ω)

[
eχ h̄ωA†(ω, t )OA(ω, t ) − 1

2

{
A†(ω, t )A(ω, t ), O

}]
. (20)

The χ -dependence of the operator lχ (t ) is explicit. Using Eqs. (18) and (12), we can rewrite the generator of the quantum master
equation of the auxiliary quantum system as

L′(t )O = − i

h̄
[H ′(t ), O] +

∑
ω

r(ω)

[
A′(ω, t )OA′†(ω, t ) − 1

2

{
A′†(ω, t )A′(ω, t ), O

}]
= lχ (t )Lχ (t )

[
l−1
χ (t )Ol−1

χ (t )
]
lχ (t ) − Ol−1

χ (t )L∗
χ (t )

[
l2
χ (t )

]
l−1
χ (t ) − O(∂t lχ (t ))l−1

χ (t ) + (∂t lχ (t ))l−1
χ (t )O

= lχ (t )Lχ (t )
[
l−1
χ (t )Ol−1

χ (t )
]
lχ (t ) − �T (χ )O + Ol−1

χ (t )[∂t lχ (t )] + [∂t lχ (t )]l−1
χ (t )O, (21)

where Lχ (t ) is the dual of L∗
χ (t ) and is defined as

Tr[O1Lχ (t )(O2)] = Tr[L∗
χ (t )(O1)O2], and the third equa-

tion is a consequence of applying Eq. (19). This is a
time-dependent quantum Doob transform. We note that the
generator of the quantum master equation is slightly distinct
from that obtained by Carollo et al. [15], in which the second
term about the scaled generating function �T (χ ) is absent.

B. Long time limit case

Although the previous arguments are generally valid and
the equations are formally correct, it is not very clear whether
Eq. (19) always achieves a solution that can satisfy both the
initial and the terminal conditions of Eq. (16). In addition,
these results do not depend on any special properties of
Floquet open quantum systems. Now we focus on the long
time limit case. An interesting feature of these open quantum
systems is that, at a long time limit, Eq. (2) evolves into a

periodic limit cycle ρ(T ) = ρ(T + 2π/�) [29,42,43] and

lim
T →∞

ρ(T ) =
N∑

n=1

pn|un(T )〉〈un(T )|, (22)

where pn, n = 1, . . . , N , is the stationary probability distribu-
tion, which is uniquely determined by the generator of Eq. (2).
Importantly, under the same situation, the stochastic heat
(9) obeys the large deviation principle [23,30,31,33]: P( j) �
exp[−T I ( j)], where the symbol � denotes an asymptotically
exponential approximation, and I ( j) is the rate function. The
scaled cumulant generating function is

lim
T →∞

�T (χ ) = �(χ ), (23)

where the time-independent �(χ ) is the maximum eigenvalue
of the generator Lχ (t ). The rate function and scaled cumulant
generating function are related by the Legendre transform,

I ( j) = max
χ

{ jχ − �(χ )}. (24)
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Appendix A explains Eq. (22) and the large deviation princi-
ple. Hence, we introduce the logarithmic equivalence between
the canonical quantum trajectory ensemble and the trajectory
ensemble generated by the auxiliary quantum system as that
in classical stochastic systems [5,7,9,10]:

lim
T →∞

1

T
ln

P′
m,n(−→ω M, T )

Pm,n(χ,−→ω M, T )
→ 0. (25)

Correspondingly, the conditions (16) are relaxed to

l−1
χ (0)|um(0)〉 ∝ |um(0)〉 and lχ (T )|un(T )〉 ∝ |un(T )〉.

(26)

Then, the relationship between the moment generating func-
tions of the auxiliary and original quantum systems can be
intuitively obtained as

�′
T (χ ′) =

N∑
m,n=1

∑ ∫
−→ω M

eχ ′QT (−→ω )P′
m,n(−→ω M, T )

= 1

�T (χ )

N∑
m,n=1

∑ ∫
−→ω M

e(χ ′+χ )QT (−→ω )

× P′
m,n(−→ω M, T )

Pm,n(χ,−→ω M, T )
Pm,n(−→ω M, T ). (27)

When the duration T tends to infinity and we let the scaled
cumulant generating function of the auxiliary quantum system
be �′(χ ′), because of the logarithmic equivalence (25), we
immediately have

�′(χ ′) = �(χ ′ + χ ) − �(χ ). (28)

This agrees with the crucial result obtained by Carolla et al.
for the time-independent quantum master equations [15] [see
Eq. (10) therein]. Due to the Legendre transform (24) and
Eq. (28), the typical heat current of the auxiliary quantum
system ∂χ ′�′|χ ′=0, which is equal to the average heat current
〈 j′〉, is equal to ∂χ�(χ ). Note that the latter is also the average
heat current of the canonical quantum trajectory ensemble.
Because of the equivalence of the canonical and microcanon-
ical trajectory ensembles, if χ 
= 0, the typical heat current
of the auxiliary quantum system becomes the atypical heat
current of the original quantum system conditioned on this
large deviation [5,7,9].

Equations (25)–(28) depend on the operator lχ (t ), which
satisfies both Eqs. (19) and (26). Here, we argue the existence
of this operator. We conjecture that the solution of Eq. (19)
is diagonal in the Floquet basis, and its elements are time-
independent:

l2
χ (t ) =

N∑
n=1

l2
n (χ )|un(t )〉〈un(t )|. (29)

Apparently, this solution satisfies Eq. (26). In addition, the
operator is periodic. Substituting the solution into Eq. (19) and
writing the equation in the Floquet basis, we obtain a matrix
equation:

RT(χ )
−→
l2 (χ ) = �(χ )

−→
l2 (χ ), (30)

where T represents transpose, the column vector
−→
l2 (χ ) is

the transpose of the row vector (l2
1 (χ ), . . . , l2

N (χ )), and the
definition of the matrix R(χ ) is presented in Appendix A.

Equation (30) is simply the left eigenvector
−→
l2 (χ ) of the

matrix R(χ ) with the maximum eigenvalue �(χ ). Their pos-
itivity is ensured by the definition of the moment generating
function and the Perron-Frobenius theorem. Appendix A gives
some details.

The diagonal structure of l2
χ (t ) leads to an interesting

consequence. First, the formally complicated Hamiltonian
H ′(t ) of the auxiliary quantum system is simply equal to the
Hamiltonian H (t ) of the original quantum system. The proof
includes two steps. In the first step, Eq. (29) implies that the
sum of the first two terms and their Hermitian conjugations in
Eq. (18) is

1

2
lχ (t )H (t )l−1

χ (t ) + ih̄

2
∂t lχ (t )l−1

χ (t ) + H.c.

= 1

2

N∑
n=1

[ih̄∂t |un(t )〉 + εn|un(t )〉]〈un(t )| + H.c.

= H (t ). (31)

For this purpose, we use Eq. (1) and the completeness of the
Floquet basis. The second step makes use of the microscopic
expressions of the Lindblad operators. Assume the interaction
Hamiltonian between the quantum system and the heat bath
to be A ⊗ B, where A and B are the Hermitian operators of
the system and heat bath, respectively. Then, the Lindblad
operator is [36]

A(ω, t ) =
∑
m,n,q

δω,εn−εm+q�〈〈um|A|un〉〉q|um(t )〉〈un(t )|e−iq�t ,

(32)

where δ is the Kronecker symbol, and the time-independent
coefficient 〈〈um|A|un〉〉q is the qth harmonic of the transition
amplitude 〈um(t )|A|un(t )〉, i.e.,

〈〈um|A|un〉〉q = �

2π

∫ 2π/�

0
〈um(t )|A|un(t )〉eiq�t . (33)

Using this expression and performing a straightforward ar-
gument, we find that the square bracket term in Eq. (18) is
diagonal and especially real in the Floquet basis. Because the
operator lχ (t ) is also diagonal, we conclude that the sum of
the third term and its Hermitian conjugation is exactly zero.
In addition, we can also verify that the Lindblad operators
A′(ω, t ) and A′†(ω, t ) of the auxiliary quantum system are still
the eigenoperators of the Floquet Hamiltonian H(t ).

Before closing this section, we want to point out that
the scaled cumulant generating function �′(χ ′) of the aux-
iliary quantum system satisfies a matrix equation analogous
to Eq. (30):

R′T(χ ′)
−→
l ′2 (χ ′) = �′(χ ′)

−→
l ′2 (χ ′), (34)

where the matrix R′T(χ ′) is determined by the generator
L′

χ ′ (t ). Although we have obtained Eq. (28), it shall be in-
teresting to see how the same conclusion is achieved and what

the relation is between
−→
l ′2 (χ ′) and

−→
l2 (χ ) from an eigenvalue
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matrix equation perspective. Some discussion of this topic is
presented in Appendix B.

V. TWO-LEVEL QUANTUM SYSTEM

In this section, we use a two-level quantum system driven
by a periodic external field [29–31,33,36,53] to illustrate the
construction of the auxiliary quantum system at a long time
limit. The Hamiltonian is given as

H (t ) = h̄ω0

2
σz + h̄�R

2

(
σ+e−i�t + σ−ei�t

)
, (35)

where ω0 is the transition frequency of the bare system, �R

is the Rabi frequency, and � is the frequency of the external
field. The Floquet basis and quasienergy are

|u±(t )〉 = 1√
2�′

( ±√
�′ ± δ

ei�t
√

�′ ∓ δ,

)
(36)

and ε± = h̄(� ± �′)/2, respectively, where �′ =
√

δ2 + �2
R

and the detuning parameter δ = ω0 − �. Here, we addition-
ally set � > �′. We assume that the coupling between the
quantum system and heat bath is σx-coupling. There are six
Lindblad operators: three of them with Bohr frequencies �,
(� − �′), and (� + �′) are

A(�, t ) = �R

2�′ [|u+(t )〉〈u+(t )| − |u−(t )〉〈u−(t )|]e−i�t ,

A(� − �′, t ) =
(

δ − �′

2�′

)
|u+(t )〉〈u−(t )|e−i�t , (37)

A(� + �′, t ) =
(

δ + �′

2�′

)
|u−(t )〉〈u+(t )|e−i�t ;

the other three Lindblad operators with Bohr frequencies
−�, −(� − �′), and −(� + �′) are the adjoint operators of
Eq. (37). Through a simple derivation, we obtain the matrix
elements of R(χ ):

R11(χ ) = (eχ h̄� − 1)�+� + (e−χ h̄� − 1)�−� − �−(�−�′ )

−�+(�+�′ ),

R22(χ ) = (eχ h̄� − 1)�+� + (e−χ h̄� − 1)�−� − �+(�−�′ )

−�−(�+�′ ),

R12(χ ) = eχ h̄(�−�′ )�+(�−�′ ) + e−χ h̄(�+�′ )�−(�+�′ ),

R21(χ ) = e−χ h̄(�−�′ )�−(�−�′ ) + eχ h̄(�+�′ )�+(�+�′ ), (38)

where the coefficients are

�±� =
(

�R

2�′

)2

r(±�),

�±(�−�′ ) =
(

δ − �′

2�′

)2

r[±(� − �′)], (39)

�±(�+�′ ) =
(

δ + �′

2�′

)2

r[±(� + �′)].

Because the above is a simple 2 × 2 matrix, we can easily
write its maximum eigenvalue and the corresponding left

FIG. 1. Large deviation functions I ( j) of the original (solid
curve) and auxiliary two-level quantum systems with χ = −0.4
(dashed curve) and 0.4 (dotted curve). The functions are solved by
applying the Legendre transform (24) to Eq. (28). The symbols are
the approximated large deviation functions and are calculated by
− ln P( j)/T , where the probability distribution P( j) is collected by
simulating the quantum trajectories. The durations for the cross and
hollow symbols are 100 and 1000, respectively. The Fourier trans-
forms of the correlation functions are set to be r(ω) = A|ω|3Nk (ω)
for ω < 0; otherwise, r(ω) = A|ω|3[Nk (ω) + 1], where N (ω) =
1/[exp(β|ω|) − 1] and the coefficient A is related to the coupling
strength between the system and the heat bath [43]. The parameters
used are ω0 = 1, �R = 0.8, � = 1.1, A = 1, and β = 1/3.

eigenvector: �(χ ) = [R11(χ ) + R22(χ ) + B(χ )]/2 and

(l2
1 (χ ), l2

2 (χ )) =
(

R11(χ ) − R22(χ ) + B(χ )

2R12(χ )
, 1

)
, (40)

where B(χ ) =
√

[R11(χ ) − R22(χ )]2 + 4R21(χ )R12(χ ).
Based on these results, we can directly construct the auxiliary
open quantum system. For instance, three of the Lindblad
operators are

A′(�, t ) = eχ h̄�/2A(�, t ), (41)

A′(� − �′, t ) = eχ h̄(�−�′ )/2 l1(χ )

l2(χ )
A(� − �′, t ), (42)

A′(� + �′, t ) = eχ h̄(�+�′ )/2 l2(χ )

l1(χ )
A(� + �′, t ). (43)

We must emphasize that the other three Lindblad operators
A′(ω, t ) with ω = −�, −(� − �′), and −(� + �′) are equal
to the adjoints of Eqs. (41)–(43) and that χ therein is replaced
by −χ . For the long time limit case, the Hamiltonian of the
auxiliary quantum system is simply Eq. (35).

Figure 1 shows the rate functions of the original quantum
system and the auxiliary quantum system. These functions are
solved by applying the Legendre transform (24) to the scaled
cumulant generating functions (the curves) and by simulating
the quantum trajectories (the symbols). We can clearly see
that, by modulating χ , the typical current of the auxiliary
system, i.e., the value at the minimum of its rate function, is
located at different large deviations from the original system.
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FIG. 2. Segments of the simulated quantum trajectories, where
the χ values in panels (a), (b), and (c) are 1, 0.0, and −1, respectively,
and the time intervals are 50 after the system is in a steady state. The
other parameters are the same as those used in Fig. 1. The arrow in
the middle panel denotes the time orientation. The short lines denote
time points at which discrete quantum jumps occur. The upper and
bottom lines represent the released and absorbed heat, respectively.

To intuitively express the behaviors of the auxiliary quantum
system, we also plot several segments of the quantum tra-
jectories from the original and auxiliary quantum systems in
Fig. 2. Figure 1 reminds us that, by choosing a sufficiently
negative χ , the typical current can become negative. Then,
along the quantum trajectories, one would observe that heat
is more frequently absorbed from than released into the heat
bath. Figure 2(a) confirms this expectation. When we examine
the algorithm of simulating the quantum trajectories [45],
we note that a negative χ value exponentially inhibits the
rates of quantum jumps with heat release and exponentially
increases the rates of quantum jumps with heat absorption
(data not shown). These χ -modulated rates do not satisfy the
KMS condition. This observation simply explains the relation
between panels (a) and (b). If χ is positive, the opposite will
happen; see Fig. 2(c).

Let us comment on the typical negative heat current to fin-
ish this work. According to the first law of thermodynamics,
a positive power is output from the heat bath. Therefore, the
auxiliary quantum system seems to violate the second law of
thermodynamics. However, previous studies have confirmed
that Floquet open quantum systems strictly obey the law
of thermodynamics [29–31,33,53]. In fact, there is no contra-
diction because the auxiliary quantum system is not physical
in the sense that A′†(ω, t ) 
= A′(−ω, t ); see their definitions in
Eq. (12).

VI. CONCLUSION

In this paper, we investigate the construction of an auxiliary
open quantum system that can generate a canonical quantum
trajectory ensemble. The dynamics of the original quantum
system is governed by the Floquet quantum master equation.
The probability formula of the quantum trajectory is explicitly

used. We see that the theory on quantum trajectory ensem-
bles is highly analogous to the theory on classical trajectory
ensembles. Since most of the studies in the literature are
concerned about trajectory ensembles conditioned on simple
time-integrated observables, it will be interesting to explore
complex quantities, e.g., stochastic efficiency.
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APPENDIX A: EXPLANATION OF EQS. (22) AND (23)

The moment generating function (11) can be rewritten as
�T (χ ) = ∑N

m,n=1 Pmφm|n(χ, T ), where

φm|n(χ, T ) =
∑ ∫

−→ω
Pm|n(χ,−→ω M, T )eχQT (−→ω )

= 〈un(t )|ρ̂(t )|un(t )〉|t=T . (A1)

Obviously, φm|n(χ, T ) is also the moment generating function
of the stochastic heat current for the special quantum trajec-
tory ensemble, in which the initial and terminal Floquet bases
are constrained at |um(0)〉 and |un(T )〉, respectively. In the
second equation of Eq. (A1), the operator ρ̂(t ) (0 � t � T )
satisfies

∂t ρ̂(t ) = Lχ (t )[ρ̂(t )], (A2)

and its initial condition is |um(0)〉〈um(0)|. To derive this result,
we use the quantum trajectory probability formula of Eq. (5)
and the ensemble average of Eq. (8) [27,33,45]. Equation
(A2) has been named the modified quantum master equation
[6,30,31,41,54] or the tilted quantum master equation [15],
where another technique, counting field statistics, is used in
the derivation. If we express the evolution equation in the
Floquet basis, we have

d

dt
−→
φ m(χ, t ) = R(χ )

−→
φ m(χ, t ), (A3)

where
−→
φ m is the transpose of vector (φm|1, . . . , φm|N ), and its

initial condition is φm|n(0) = δm,n, n = 1, . . . , N . The nondi-
agonal matrix element of R(χ ) is

Ri j (χ ) =
∑

ω 
=q�

eχ h̄ωr(ω)|〈ui(t )|A(ω, t )|uj (t )〉|2 (A4)

(i 
= j), and the diagonal elements are

Rii(χ ) =
∑

ω=q�

eχ h̄ωr(ω)|〈ui(t )|A(ω, t )|ui(t )〉|2

−
∑

ω

r(ω)
∑

j′
|〈u j′ (t )|A(ω, t )|ui(t )〉|2, (A5)

i, j, j′ = 1, . . . N . We emphasize that R(χ ) is a constant
matrix. Then, we formally express the moment generating
functions as

φm|n(χ, T ) = (eT R(χ ) )mn. (A6)

Because these moment generating functions are always
positive, according to the Perron-Frobenius theorem, we im-
mediately arrive at the conclusion that the matrix R(χ ) has
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a unique maximum positive eigenvalue with a positive left
eigenvector, i.e., Eq. (30). When the duration T tends to infin-
ity, Eq. (23) is proven. There is a special case, χ = 0. Under
this situation, the maximum left eigenvector is a unit vector,

(1, . . . , 1), and the maximum eigenvalue trivially equals 0.
Note that the corresponding right eigenvector is the station-
ary probability distribution, (p1, . . . , pN ). Hence, Eq. (22) is
proven as well.

APPENDIX B: �′(χ′ ) OF THE AUXILIARY OPEN QUANTUM SYSTEM

The moment generating function �′
T (χ ′) of the auxiliary open quantum system can be solved as that of the original quantum

system: �′
T (χ ′) = Tr[ρ̂ ′(T )] and ∂t ρ̂

′(t ) = L′
χ ′ (t )[ρ̂ ′(t )], where the generator of the tilted quantum master equation is

L′
χ ′ (t )O = − i

h̄
[H (t ), O] +

∑
ω

r(ω)

[
eχ ′ h̄ωA′(ω, t )OA′†(ω, t ) − 1

2

{
A′†(ω, t )A′(ω, t ), O

}]
. (B1)

Then, we construct the matrix R′(χ ′) and its elements as follows. The nondiagonal elements are

R′
i j (χ

′) = l2
i (χ )

l2
j (χ )

∑
ω 
=q�

e(χ ′+χ )h̄ωr(ω)|〈ui(t )|A(ω, t )|u j (t )〉|2 = l2
i (χ )

l2
j (χ )

Ri j (χ
′ + χ ) (B2)

(i 
= j), and the diagonal elements are

R′
ii(χ

′) =
∑

ω=q�

e(χ ′+χ )h̄ωr(ω)|〈ui(t )|A(ω, t )|ui(t )〉|2 −
∑

ω

eχ h̄ωr(ω)
∑

j′

(
l j′

li

)2

|〈u j′ (t )|A(ω, t )|ui(t )〉|2

= Rii(χ
′ + χ ) − �(χ ). (B3)

Equation (30) is used here. We immediately find that the vector
−→
l ′2 (χ ′) = (l ′2

1 (χ ′), . . . , l ′2
N (χ ′)) with elements

l ′2
n (χ ′) = l2

n (χ ′ + χ )

l2
n (χ )

, (B4)

n = 1, . . . , N , is the eigenvector of Eq. (34), while the eigenvalue is Eq. (28).
We shall mention that �′(χ ′) can be alternatively obtained by abstract operator calculations as Carollo et al. [15] did. First,

Eq. (34) has an equivalent operator expression:

[∂t + L′∗
χ ′ (t )]l ′2

χ ′ (t ) = �′(χ ′)l ′2
χ ′ (t ), (B5)

where

L′∗
χ ′ (t )O = i

h̄
[H (t ), O] +

∑
ω

r(ω)

[
eχ ′ h̄ωA′†(ω, t )OA′(ω, t ) − 1

2

{
A′†(ω, t )A′(ω, t ), O

}]
= l−1

χ (t )L∗
χ ′+χ (t )[lχ (t )Olχ (t )]l−1

χ (t ) − �(χ )O + l−1
χ (t )(∂t lχ (t ))O + O(∂t lχ (t ))l−1

χ (t ). (B6)

Then, it is direct to verify that the operator

l ′2
χ ′ (t ) =

N∑
n=1

l ′2
n (χ ′)|un(t )〉〈un(t )| = l−1

χ (t )l2
χ ′+χ (t )l−1

χ (t ) (B7)

satisfies Eq. (B5) and that �′(χ ′) is simply Eq. (28).
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