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Emergence of logarithmic-periodic oscillations in contact process with topological disorder
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We present a model of contact process on Domany-Kinzel cellular automata with a geometrical disorder. In
the 1D model, each site is connected to two nearest neighbors which are either on the left or the right. The
system is always attracted to an absorbing state with algebraic decay of average density with a continuously
varying complex exponent. The log-periodic oscillations are imposed over and above the usual power law and
are clearly evident as p → 1. This effect is purely due to an underlying topology because all sites have the same
infection probability p and there is no disorder in the infection rate. An extension of this model to two and three
dimensions leads to similar results. This may be a common feature in systems where quenched disorder leads to
effective fragmentation of the lattice.
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I. INTRODUCTION

The dynamic phase transition to a fully absorbing vacuum
state is the most studied phase transition in nonequilibrium
statistical physics. Several universality classes have been
proposed for this transition. In simulations, the directed per-
colation (DP) is the most observed universality class [1].
However, experimental verification of this universality class
is obtained in very few cases [2,3]. The reasons could be
the inevitable presence of noise and disorder in the exper-
imental systems [4,5]. The quenched disorder is a relevant
perturbation if the spatial correlation length critical exponent
ν⊥ fulfills the condition ν⊥d > 2 where d is dimensionality
and ν⊥ is the correlation length exponent in the spatial di-
rection of the pure system [6]. This is known as the Harris
criterion.

In some cases, quenched disorder leads to a whole param-
eter range of very slow dynamics instead of a clean critical
point. In this phase, the exponent of the power law is con-
tinuously changing due to the formation of rare region. This
phase is known as Griffiths phase [7,8]. This is in contrast with
continuous phase transitions where the power law associated
is observable only at the critical point.

Power law in Griffiths phase has a real exponent usually.
A complex exponent will lead to log-periodic oscillatory cor-
rections to the power law [9]. Complex exponent has been
obtained and studied in systems embedded with geometrical
hierarchy, growth process, rupture [10,11]. They have also
been identified in complex network [12,13]. (This model does
undergo fragmentation and the underlying mechanism maybe
similar to one proposed in this work.) Recently, we have
observed complex persistence exponent in a 1D model where
half of the sites obey rules leading to DP class and the rest
evolve according to rules leading to compact directed perco-
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lation (CDP) class [14]. It demonstrates that such exponent
may appear spontaneously in systems without pre-existing
hierarchy. Even for a random walk, the discrete scale invari-
ance hierarchy is dynamically constructed due to intermittent
encounter with the slow region [15].

In this work, we study the contact process on a d-
dimensional lattice with directed asymmetric coupling. We
observe log-periodic oscillations in the decay of the fraction
of infected sites ρ(t ). This can be an outcome of the quenched
disorder leading to the effective fragmentation of lattice. The
model does not have a self-similar structure in the defects or
the lattice. This is a topological disorder. Griffiths phase has
been observed for complex networks that have inherent topo-
logical disorder [16]. The topological disorder may lead to
the disappearance of an active phase transition for the model
of the resilience of the internet against breakdown [17,18], or
disease spread for sufficiently small infection rate [19]. The
model studied in this work does not show an active phase
either. Throughout the phase diagram, we have an absorbing
phase. However, the dynamical approach to the vacuum state
changes with the parameter values.

Janssen-Grassberger conjecture [20,21] stated the con-
ditions for DP transition. It can be stated as [22] “the
universality class of DP contains all continuous transitions
from a ‘dead’ or ‘absorbing’ state to an ‘active’ one with a
single scalar order parameter, provided the dead state is not
degenerate [and provided some technical points are fulfilled:
Short-range interactions both in space and time, nonvanishing
probability for any active state to die locally, translational
invariance (absence of ‘frozen’ randomness), and absence
of multicritical points].” We relax these conditions. In a 1D
model, every site is randomly labeled as R or L. The site
labeled R (L) is coupled to two nearest neighbors on the
right (left) side. This topological disorder results in effectively
partitioning the cluster into several disconnected pieces as
would be explained in the next section. We extend the study
in 2D and 3D and obtain similar results.
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II. MODEL AND SIMULATION

We consider the cellular automata model of contact process
proposed by Domany-Kinzel [23]. The state of ith site of a
1D lattice (vi = 0 or 1) is specified at time t by vi(t ). In the
models of DP, sites marked as “1” could be interpreted as wet
or infected or chaotic while sites marked as “0” correspond to
dry or healthy or close to the fixed point.

Consider a 1D lattice of length N updated synchronously.
We introduce quenched disorder in the system by choosing
a randomly chosen fraction r of sites as type L and rest
are chosen as type R. We start with random initial condi-
tion with half of the sites chosen as “active.” The sites L
and R evolve according to conditional probability PL and
PR. We define PL[vi(t + 1)|vi−1(t ) + vi−2(t )] as PL(1|0) = 0,
PL(1|2) = PL(1|1) = p and PR[vi(t + 1)|vi+1(t ) + vi+2(t )] is
defined as PR(1|0) = 0, PR(1|2) = PL(1|1) = p where p �=
0. The boundary condition are periodic: If i − 1 < 0, i −
2 < 0, then i − 1 ≡ N + (i − 1), i − 2 ≡ N + (i − 2) if i +
1 > N, i + 2 > N , then i + 1 ≡ i + 1 − N, i + 2 ≡ i + 2 −
N . The order parameter, fraction of active sites is given
by ρ(t ) = 1

N

∑N
i=1 vi(t ). The quantity ρ(∞) approaches zero

asymptotically for p < 1. The updating scheme is syn-
chronous. It is noted for completeness.

We simulate the 1D lattice of size N = 2 × 106 for time
up to 5 × 106 and average over approximately 1000 config-
urations. All the averages are done over different disorder
configurations and different initial conditions. We present the
results for r = 0.5, i.e., half the sites are of type L and the
other half are of type R. This is a case with the maximum
disorder. At the same time, there is no anisotropy on aver-
age. For small values of infection probability p, the fraction
of active sites ρ(t ) undergoes exponential or stretched ex-
ponential decay for small values of infection probability p
[see Fig. 1(a)]. Nevertheless, as p → 1, we observe a regime
where ρ(t ) decays as a power law. The power law is given by
ρ(t ) ∼ t−δ , where the exponent is complex and real part of δ

is continuously decreasing as p → 1. The region of continu-
ously varying power law is known as the Griffiths phase. Thus,
the above phase can be named a complex Griffiths phase. The
Griffiths phase usually results due to the rare region effect.

The Griffiths phase observed in the above connections has
origin in effective fragmentation of lattice in disconnected
parts of different sizes. Consider the sequence RRLL. The first
two sites evolve according to two sites on the right side and
the next two sites evolve according to two on the left. Thus,
the evolution in these four sites is practically independent
of the rest of the lattice (independent of the nature of update).
Thus, if such a group or any group which starts with RR and
ends with LL or LLL or LL . . . L (two or more consecutive L’s)
reaches an absorbing state, it cannot come out of such a state.
We call such groups clusters of type 1. Clusters will decom-
pose the entire lattice into several independent sections when
they reach an absorbing state. Now the decay of the number of
active sites will be dictated by the sum of active sites in several
such independent sections. Consider any sequence which is
sandwiched between two consecutive type 1 clusters. This
sequence is essentially driven by type 1 cluster on the right
side as well as the left side. This sandwiched sequence of
sites will evolve independently of the rest of the lattice when

FIG. 1. (a) The time evolution of ρ(t ) vs t in 1D model on log-
log scale, with r = 0.5 and values of p ranging for 0.7 to 0.93 (from
bottom to top). Clearly, there is a continuous change in the exponent
of power law. (b) We plot ρ(t ) × t δ′

vs log(t ) for p ranging from
0.85 to 0.95 (from bottom to top). The log-periodic oscillations are
clearly evident (ω = 2πδ′′. The y axis is multiplied by an arbitrary
constant for better visualization.

clusters on either side become inactive. This group of sites is
also a finite cluster. We call it a type 2 cluster. Being finite size,
it will eventually reach an absorbing state when the clusters
of type 1 on either side become inactive. We have two types
of clusters. First is type 1 clusters which evolve essentially
independently of the rest of the lattice. Type 2 clusters are
sandwiched group of sites between two type 1 clusters. When
both of them reach an absorbing state, this cluster will even-
tually reach an absorbing state. These sections of type 1 and
type 2 have different lengths and the expected time by which
they reach an absorbing state is different as well. The absence
of a single length-scale (or timescale) in evolution could lead
to non-exponential relaxation. We indeed obtain power-law
relaxation over a large range of parameters in this model.

The lattice decomposes into several finite-size clusters. The
activity of these some large rare clusters is disassociated from
the bulk, i.e., although the bulk lattice is in the absorbing
phase, the rare regions are locally in the fluctuating phase.
This leads to slow dynamics in the Griffiths phase [4]. Due
to the finite size of these disconnected sets of sites, the system
always collapses to the absorbing phase [see Fig. 1(a)] for any
value of p < 1. Thus, the model has only an absorbing phase
and no fluctuating phase.
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FIG. 2. (a) The plot of Re(δ) as a function of p ranging for 0.76
to 0.95. The error bar are also shown in figure (red marks). (b) The
plot of Img(δ)/2π as a function of p ranging for 0.83 to 0.95. The
error bar are also shown in figure (blue marks). In both cases, the
error in the parameter is found using the least-squares method and
found to be smaller than the size of symbols.

With no effective fragmentation of lattice, DP universality
class is restored even with the quenched disorder in topology.
With probability r, we connect a given site i to both nearest
neighbors and with probability 1 − r we connect them to
both next-nearest neighbors. There is no disorder in infection
probability. The disorder is only in the sense that some sites
are connected to nearest neighbors only and some sites are
connected to next-nearest neighbors only. The system under-
goes DP transition with a clean critical point.

The exponent of power law is complex in nature.
A complex exponent can be written as δ = δ′ + i2πδ′′.
Thus, ρ(t ) ∼ Re(At−δ′−i2πδ′′

) ∼ At−δ′
cos[2πδ′′ log(t )] and

ρ(t )t δ′ ∼ A cos[2πδ′′ log(t )]. As the function is log-periodic,
it is very difficult to extract the exact periodicity. The
amplitude of these oscillation increases as p → 1. These os-
cillations become more evident if we plot the quantity ρ(t ) ×
t δ′

with time [Fig. 1(b)]. This behavior can be fitted by a con-
stant superposed by log-periodic oscillations. The amplitude
and wavelength of these oscillations grow as p → 1. For small
values of p the amplitude is very small (if any) and it makes
it difficult to determine if δ′′ �= 0. The value of δ′ decreases as
p → 1 [see Fig. 1(b)]. Figures 2(a) and 2(b) show the linear fit
of Re(δ) and Img(δ)/(2π ). The error bars are shown as well.

FIG. 3. (a) We plot time evolution of ρ(t ) × t δ′
for various values

of p in the range 0.87 to 0.95 (bottom to top) in 2D model. (b) We
plot ρ(t ) × t δ′

for values of p in the range 0.87 to 0.95 (bottom to
top) in 3D model. The log-periodic oscillations are evident. The y
axis is multiplied by an arbitrary constant for better visualization in
both figures.

The error in case of δ′ is calculated from the goodness of linear
fit of ρ(t ) versus t for various values of p. In the case of δ′′, we
use this value of δ′ and plot ρ(t )t δ′

as a function of t . We have
fitted a function A cos(2πδ′′ log(t ) + φ) + a0 and found error
in δ′′ using nonlinear least squares. A “fit” function in gnuplot
which uses an implementation of the nonlinear least-squares
(NLLS) Marquardt-Levenberg algorithm was used [24]. This
procedure has been followed for all fits to complex exponents
in this work. (Of course, the fit is carried out over the relevant
range. For larger values of p, the fragmentation of lattice oc-
curs late and the onset of logarithmic oscillations is delayed.)
The error in δ′′ is found to be very small and less than 1% in
all cases. It is less than 0.1% for the 1D case.

We extend this study to 2D and 3D. Let us consider
the state of a site at time t , vi, j (t ) on lattice of size
N2. Let the sites be of four types: L, R, U , and D.
For all four types, the evolution occurs according to the
value of the site itself and one of its nearest neighbors
(whichever is not blocked by the quenched defects). The
conditional probabilities PL[vi, j (t + 1)|vi, j (t ) + vi, j−1(t )] and
PR[vi, j (t + 1)|vi, j (t ) + vi, j+1(t )] and PU [vi, j (t + 1)|vi, j (t ) +
vi−1, j (t )] and PD[vi, j (t + 1)|vi, j (t ) + vi+1, j (t )] are defined
as follows. PL(1|k) = PR(1|k) = PU (1|k) = PD(1|k) = p for
k �= 0 and 0 for k = 0. We introduce a defect in the lattice
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by assigning type L, U , R, and D to each site. This results
in the coupling of a given site in a certain randomly chosen
direction. At time t = 0 almost half of the N × N sites are
randomly chosen as “active.” Boundary condition are anal-
ogous to 1D case. In 2D, we define boundary condition as
follows: If i − 1 < 1, j − 1 < 1, then i − 1 ≡ N + i − 1, j −
1 ≡ N + j − 1, and if i + 1 > N, j + 1 > N, then i + 1 ≡
i + 1 − N, j + 1 ≡ j + 1 − N. In the case of 3D, we have
six possible directions. Each site is coupled with neighbors
only in one direction and the conditional probabilities for their
evolution can be defined on similar lines. In all these cases
ρ(t ) → 0 as t → ∞ for p < 1.

In the 2D model, we simulate a 2D lattice of size N2, where
N = 600 for a very long time t = 1 × 107 and average over
more than 600 configurations. In 3D we consider a lattice of
size N3 where N = 50 for time up to 5 × 106 and average
over more than 103 configurations. In both cases, ρ(t ) decays
to an absorbing phase for p �= 0. For small values of p, ρ(t )
decays exponentially or stretched exponentially to an inactive
state. As in 1D, a regime of continuously changing power-law
decay with complex exponent δ = δ′ + i2πδ′′ is observed for
p close to 1. The fact that the exponent is complex is reflected
in logarithmic oscillations in the decay of ρ(t ) particularly as
p → 1 in both 2D and 3D [see Figs. 3(a) and 3(b)].

In 2D and 3D, we connect each site with only one neighbor.
This neighbor is affected by only one neighbor and so on. This
can be viewed as a random walk. Thus, if we start this walk
from a site that does not affect any other site and continue
till the walker backtracks or gets connected to a site visited
previously, then the walk ends there since each site couples

FIG. 4. (a), (b), (c) A few examples of random walk in the 2D
model which ends up in an absorbing state. If the evolution of site A
is affected by site B, then we draw an arrow from site A to site B.
Panel (d) shows the fraction of walks surviving till step n in 2D and
3D.

FIG. 5. We plot the number of surviving configuration vs t/Tk

for group of size k = 5, 6, 7, 8, 9, 10. The initial number of configu-
rations are 104 and p = 0.94.

to only one site. A few examples of such walks are shown
in Figs. 4(a), 4(b), and 4(c). The fraction of such surviving
walks go down exponentially in 2D as well as 3D, though the
exponent is smaller in 3D [see Fig. 4(d)]. Now if all the sites

FIG. 6. (a) We plot Tk vs k, where Tk is the average time taken
by cluster of k sites to become inactive starting with 104 configu-
rations. We consider k = 1–10. Tk can be fitted as exp(γpk), where
γp = 1.15, 1.4, 1.79 for p = 0.94, 0.96, 0.98. (b) We plot the rela-
tion Tk/ exp(γpk) with k for p = 0.94, 0.96, 0.98. The oscillations
are pronounced for larger values of p.
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FIG. 7. Panel (a) shows the plot of ρ(t )t δ′
with time for various

values of b (from top to bottom in increasing order of b. We assume
functional form τ (x) = exp[bx − d cos(πx)√

x ] for relaxation times. The
log-periodic oscillations are evident in the picture. However δ′ and
δ′′ keep changing with b. Onset of oscillations is delayed for higher
wavelength oscillations. Panel (b) shows the plot of ρ(t )t δ′

with time
for various values of d (from top to bottom in decreasing order of d),
while b = 1.2, c = 1, δ′ = 0.765, δ′′ = 0.413. Both δ′ and δ′′ remain
unchanged. But the onset of logarithmic oscillations is delayed for
small |d|. The y axis is multiplied by an arbitrary constant for better
visualization and ω = 2πδ′′ in both figures.

covered by this walk go to zero, then these sites will be in an
absorbing state forever since all the sites that affect them are in
an absorbing state. These sites form a 1D lattice of finite size
in all practical senses. This leads to fragmentation of lattice
and the mechanism in higher dimensions could be the same as
in one dimension.

Now the question is what is the origin of the complex
exponents? In the case of the 1D model, we simulate systems
of k + 2 sites such that the first and the k + 2th are set as
inactive and the rest of the sites are kept active. Thus, we
have a group of k sites of evolving according to rules of the
1D model as described in the above section. For uncorre-
lated disorder, we expect the probability of occurrence of a
group of a given size to decay exponentially. We denote the
average time taken by this group to become inactive by Tk .
We note that the fraction of groups of size k surviving till
time t seems to be a function of t/Tk (see Fig. 5) Thus, Tk

is a characteristic time for system size k. This average time

FIG. 8. Panel (a) shows the δ′ and δ′′ as a function of c/b where
c = 1 for simulation of τ (x) defined in the text. (b) We plot δ′′ as
a function of δ′ for1D model and our choice of τ (x). We observe a
linear relationship between two exponents in both cases.

Tk increases exponentially with relation Tk ∼ exp(γ k) with
odd-even oscillations imposed over and above the exponential
[see Fig. 6(a)]. [In Fig. 6(b), we plot Tk/ exp(γpk) versus k
for various values of p.] We argue that the combination of
exponentially rare regions that survive for exponentially long
times leads to a power law and the oscillations over and above
this exponential leads to log-periodicity.

The standard explanation of Griffiths phase goes as fol-
lows. The probability of finding rare regions is exponentially
small P(x) ∝ exp(−cx) but can exhibit exponentially large
lifetime τ (x) = τ0(x) = exp(bx). The fraction of active sites
can be approximated by ρ(t ) ∼ ∫

xP(x) exp [−t/τ (x)]dx.
Using saddle-point approximation, it can be shown that this
leads to algebraic decay of ρ(t ), i.e., ρ(t ) ∼ t−c/b with con-
tinuously varying exponent. We do not exactly know the
functional form of relaxation times for different sizes. How-
ever, in this model, the oscillations get damped, and we pro-
pose a functional form as τ (x) ∼ τ0(x)τp(x), where τp(x) =
exp[−d cos(πx)√

x
], because the odd-even oscillations get damped

quickly. (Sign of d in the expression of τp(x) does not mat-
ter because cos takes either sign.) We numerically compute
the above sum ρ(t ) = ∑N

x=1 x exp(−cx) exp[−t exp(−bx +
d cos(πx)√

x
)] for large N , i.e., N = 107. The plot of ρ(t )t δ′

versus
time clearly shows log-periodic oscillations as shown in
Fig. 7(a). The values of δ′ and δ′′ do not depend on d as
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shown in Fig. 7(b). The obtained values of δ′ are close to c/b
as expected and it does not depend on d at all. Similarly δ′′
does not change for any |d| �= 0. However, for smaller values
of |d|, the amplitude of oscillations is reduced and the onset
of oscillations is delayed. Both exponents vary linearly with c

b
and are expected to vary linearly with each other. Although
τ (x) is not a perfect analogy of the model presented here,
the above simulations show that the lifetime of a rare region
imposed with the periodic term can generate log-periodic os-
cillations. The exponents δ′ and δ′′ have a linear relationship in
exponents computed using this ansatz as well as in our model.
This linear variation is shown in Fig. 8. The onset of oscil-
lations is delayed when oscillations have longer periodicity
in our model. We observe it in our ansatz as well. We have
studied a few different functional forms of τp(x) and they lead
to log-periodic oscillations as well. Thus we believe that odd-
even oscillations over and above the exponential in relaxation
times are the likely reason for log-periodic oscillations.

III. SUMMARY

We have studied a contact process with random asymmet-
ric couplings in one to three dimensions on Domnay-Kinzel
automaton. In one dimension, we study a system in which
each lattice site is coupled to two neighbors either on left or

on right. In two and three dimensions each site is coupled
to a neighbor chosen randomly. This is a quenched disor-
der. (There is no disorder in the infection probability, only
in connections.) For low values of p the fraction of active
sites ρ(t ) decays exponentially or stretched exponentially. But
for p → 1, ρ(t ) shows a power-law decay with a complex
exponent. Thus, we observe log-periodic oscillations in time
over and above the power-law decay. This power-law decay
of order parameter with complex exponent can be termed as
a complex Griffiths phase. Such a transition is not observed
when the lattice is not effectively fragmented in disjoint units.
We have also given an argument that this is likely an effect of
odd-even oscillations in relaxation times as a function of size.

In the complex Griffiths phase, the real part of the expo-
nent decreases continuously while amplitude and wavelength
of oscillations increases as p → 1. This is a system with a
parallel update of all sites. It can be of interest to study the
impact of changes in updating schemes, dimensionality, and
other factors in the complex Griffiths phase.
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